Ecuaciones Diferenciales Ordinarias

(Coeficientes Indeterminados y Variación de Parámetros)

Julio López iclopez@dim.uchile.cl

Depto Ingeniería Matemática, Universidad de Chile

Otoño 2011. Resumen clases

Julio López

EDO

Método de Coeficientes Indeterminados

- Sirve para encontrar una sol. particular.
- Es aplicado solo a ED lineales con coef. constantes.
- Este método es usado cuando

$$y'' + ay' + by = q(x) = \sum_{i=1}^{m} e^{\alpha_i x} (P_i(x) \cos(\beta_i x) + Q_i(x) \sin(\beta_i x)),$$
(1)

donde $\alpha_i, \beta_i \in \mathbb{R}$, $P_i(x)$ y $Q_i(x)$ son polinomios.

Esto significa que q(x) tiene una de las siguientes formas:

$$q(x) = k, \ k \equiv \text{cte}; \quad q(x) = \text{polinomio en } x;$$

 $q(x) = e^{\alpha x}; \qquad q(x) = \cos(\beta x), q(x) = \sin(\beta x)$

q(x) =sumas, sustracciones y/o multiplicaciones finitas de las expresiones anteriores.

Ejemplo:(este tipo)

1)
$$y'' + 4y' + 5y = 2e^{3x}$$

2)
$$y'' - 3y' + 2y = (x^2 + x)e^{3x}$$
.

Método de Coeficientes Indeterminados

$$y'' + ay' + by = e^{\alpha x} (P(x)\cos(\beta x) + Q(x)\sin(\beta x)). \tag{2}$$

$$p(\lambda) = \lambda^2 + a\lambda + b. \tag{3}$$

Teorema

Sea $k = \max\{\operatorname{grad}(P), \operatorname{grad}(Q)\}.$

(a) Si $\alpha \pm i\beta$ no es raíz de (3), entonces (2) tiene sol. particular de la forma

$$y_p(x) = e^{\alpha x} (R_k(x) \cos(\beta x) + S_k(x) \sin(\beta x)),$$

donde R_k , S_k son polinomios de grado k.

(b) Si $\alpha \pm i\beta$ es raíz de multiplicidad η de (3), entonces (2) tiene sol. particular de la forma

$$y_p(x) = x^{\eta} e^{\alpha x} (R_k(x) \cos(\beta x) + S_k(x) \sin(\beta x)),$$

donde R_k , S_k son polinomios de grado k.

Método de Coeficientes Indeterminados

Observación:

- El Teorema sólo da un método cuando m = 1.
- Si m > 1, para cada i = 1, ..., m, usando este método podemos encontrar una sol. particular $y_p^i(x)$ de:

$$y'' + ay' + by = e^{\alpha_i x} (P_i(x) \cos(\beta_i x) + Q_i(x) \sin(\beta_i x)).$$

Luego,

$$y_p(x) = \sum_{i=1}^m y_p^i(x)$$

es sol. particular de (1).

Ejemplos: Encontrar la solución general de:

$$y'' + 2y' + y = (x+2)e^{-x}.$$

$$y'' + 5y' + 4y = 3 + 8x^2 + 2\cos(2x).$$

Considere el Problema de Cauchy

$$\begin{cases} y'' + p_1(x)y' + p_2(x)y = 0 \\ y(x_0) = y_0, \ y'(x_0) = y'_0, \end{cases} (**)$$

con p_1 , p_2 continuas.

Vamos a determinar condiciones sobre dos soluciones $y_1(x)$, $y_2(x)$ para que existan ctes c_1 , c_2 tq $y(x) = c_1y_1(x) + c_2y_2(x)$ sea sol. del PC. De las condiciones iniciales tenemos el sgte sistema

$$\begin{cases} c_1 y_1(x_0) + c_2 y_2(x_0) &= y_0 \\ c_1 y_1'(x_0) + c_2 y_2'(x_0) &= y_0'. \end{cases}$$

Este sistema tiene única solución sii

$$W(x_0) = \det \left(\begin{array}{cc} y_1(x_0) & y_2(x_0) \\ y'_1(x_0) & y'_2(x_0) \end{array} \right) \neq 0.$$

Por tanto, si $W(x_0) \neq 0$, entonces para todo par (y_0, y_0') existe un único par de ctes (c_1, c_2) tq $y(x) = c_1y_1(x) + c_2y_2(x)$ es sol. del PC.

Además, c₁ y c₂ vienen dados explícitamente como:

$$c_1 = \frac{y_0 y_2'(x_0) - y_0' y_2(x_0)}{W(x_0)}; \quad c_2 = \frac{y_1(x_0) y_0' - y_0 y_1'(x_0)}{W(x_0)}.$$

Teorema

Sean y_1, y_2 soluciones de la ED del PC tq en un pto $x_0 \in \mathbb{R}$ $W(x_0) \neq 0$. Entonces para todo par de c.i (y_0, y'_0) el PC tiene una única sol. de la forma $y(x) = c_1 y_1(x) + c_2 y_2(x)$.

Definición

- (A) El determinante $W(x_0) = W(y_1, y_2)[x_0] = \begin{vmatrix} y_1(x_0) & y_2(x_0) \\ y_1'(x_0) & y_2'(x_0) \end{vmatrix}$ es llamado Wronskiano de las funciones $y_1(x)$ e $y_2(x)$ en x_0 .
- (B) Si dos sol. y_1, y_2 de (**) son tales que su Wronskiano es diferente de cero en $x_0 \in \mathbb{R}$ decimos que son soluciones fundamentales.
- (C) Si y_1 e y_2 son soluciones fundamentales de (**), entonces la familia de soluciones $y(x) = c_1y_1(x) + c_2y(x)$ para ctes c_1, c_2 es llamada solución general de (**).

6/19

Observación:

Así, para encontrar una sol. general de una ED lineal de 2do orden homogénea (**), precisamos encontrar 2 sol. fundamentales de (**), i.e dos soluciones $y_1(x)$ e $y_2(x)$ tq $W(x_0) \neq 0$, para algún $x_0 \in \mathbb{R}$.

Ejemplo:

Sea $b \in \mathbb{R}$, $b \neq 0$. Vamos a mostrar que $y_1(x) = \cos(bx)$ e $y_2(x) = \sin(bx)$ son sol. fundamentales de la ED $y'' + b^2y = 0$. Calculemos su Wronskiano:

$$W(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{vmatrix} = \begin{vmatrix} \cos(bx) & \sin(bx) \\ -b\sin(bx) & \cos(bx) \end{vmatrix} = b \neq 0.$$

Por tanto, $y_1(x)$ e $y_2(x)$ son soluciones fundamentales de la ED (para cualquier $x \in \mathbb{R}$).

Luego, la familia de soluciones $y(x) = c_1 y_1(x) + c_2(x)$, $c_1, c_2 \in \mathbb{R}$ es sol. general de la ED.

Teorema

Si y_1 e y_2 son soluciones fundamentales (i.e $W(y_1, y_2)[x_0] \neq 0$, para algún $x_0 \in I$), entonces $W(y_1, y_2)[x] \neq 0$, $\forall x \in I$.

Formula de Abel

Considere la ED

$$y'' + p_1(x)y' + p_2y = 0,$$

con p_1, p_2 continuas. Sean y_1, y_2 soluciones de la ec. homogénea. Entonces

$$W(y_1, y_2) = Ce^{-\int p_1(x)dx}$$

Dependencia e Independencia Lineal

Definición

Sean $y_1, y_2 \in C^2(I)$.

① Decimos que y_1 e y_2 son linealmente independientes (LI) en I si

$$c_1y_1+c_2y_2=0, \quad \forall x\in I$$

implica que $c_1 = c_2 = 0$.

② Las funciones y_1 e y_2 son **linealmente dependientes** (LD) en I, si existe $\alpha \in \mathbb{R} \setminus \{0\}$ tq:

$$y_1(x) = \alpha y_2(x) \text{ ó } y_2(x) = \alpha y_1(x), \quad \forall x \in I.$$

Lema

Si y_1, y_2 son LD en I, entonces $W(y_1, y_2)[x] = 0$, $\forall x \in I$.

Dependencia e Independencia Lineal

Observación: Recíproco de este Teorema no es cierto. Basta considerar $y_1(x) = x^2$ e $y_2(x) = x|x|$, las cuales son LI y satisfacen que $W(y_1, y_2)[x] = 0$, $\forall x \in I$.

Teorema

Sean y_1, y_2 dos soluciones de la ED

$$y'' + p_1(x)y' + p_2(x)y = 0,$$

con p_1, p_2 continuas en I. Entonces, y_1 e y_2 son LI sii $W(y_1, y_2)[x] \neq 0$.

Reducción de Orden: Construcción de una 2da Solución a partir de una conocida

Considere la ED lineal de 2do orden homogénea

$$y'' + p_1(x)y' + p_2(x)y = 0. (4)$$

11/19

Sea $y_1(x)$ una sol. conocida de la ED en $I \subset \mathbb{R}$ tq $y_1(x) \neq 0$, $\forall x \in I$.

Buscamos una 2da sol. de la ED de la forma $y(x) = u(x)y_1(x)$. Como $y' = u'y_1 + uy_1'$ e $y'' = u''y_1 + 2u'y_1' + uy_1''$, entonces y(x) es sol. de la ED sii:

$$u''y_1 + 2u'y_1' + uy_1'' + p_1(x)(u'y_1 + uy_1') + p_2(x)uy_1 = 0.$$

$$\Leftrightarrow (y_1'' + p_1y_1' + p_2y_1)u + u''y_1 + u'(2y_1' + p_1y_1) = 0.$$

Como y_1 es sol. de la ED, la ec. se reduce a:

$$u'' + u'(2\frac{y_1'}{y_1} + p_1(x)) = 0.$$

Haciendo z = u', la ec. anterior se escribe como:

$$z' + z\left(2\frac{y_1'}{y_1} + p_1(x)\right) = 0. \leftarrow \text{ED 1er orden var. sep.}$$

La solución de esta ec. es:

$$z(x) = \frac{c_1}{y_1^2} e^{-\int p_1(x)dx}.$$

Pero z = u', entonces

$$u(x) = \int \frac{c_1}{y_1^2} e^{-\int p_1(x)dx} dx + c_2.$$

Por tanto

$$y(x) = c_1 y_1(x) \int \frac{1}{y_1^2} e^{-\int p_1(x)dx} dx + c_2 y_1(x).$$

Tomando $c_2 = 0$ y $c_1 = 1$, obtenemos la 2da sol. de la ED

$$y_2(x) = y_1(x) \int \frac{1}{v_1^2(x)} e^{-\int p_1(x)dx} dx, \quad y_1 \neq 0$$
 (5)

conocida como Fórmula de Liouville.

Las soluciones $y_1(x)$ e $y_2(x)$ son soluciones fundamentales (Verificar). Por tanto, $y(x) = c_1y_1(x) + c_2y_2(x)$ es **sol. general** de la ED (4).

Ejemplo: Sea $x^2y'' - xy' + 2y = 0$. Sabiendo que $y_1(x) = x \text{sen}(\ln(x))$ es una sol. de la ED, encuentre y_2 y la solución general.

Según la fórmula dada, tenemos:

$$y_2 = x \operatorname{sen}(\ln(x)) \int \frac{1}{x^2 \operatorname{sen}^2(\ln(x))} e^{-\int \frac{-1}{x} dx} dx$$

$$= x \operatorname{sen}(\ln(x)) \int \frac{1}{x^2 \operatorname{sen}^2(\ln(x))} e^{\ln(x)} dx$$

$$= x \operatorname{sen}(\ln(x)) \int \frac{1}{x \operatorname{sen}^2(\ln(x))} dx$$

$$= x \operatorname{sen}(\ln(x))(-\cot(\ln(x)))$$

$$= -x \cos(\ln(x))$$

Por tanto, la solución general es:

$$y(x) = c_1 x \operatorname{sen}(\ln(x)) + c_2 x \cos(\ln(x)), \quad c_1, c_2 \in \mathbb{R}.$$

Obs. El método también es aplicable para ED no homogéneas

$$y'' + p_1(x)y' + p_2(x)y = q(x).$$

En este caso, se supone $y = uy_1$ y se llega a la ED de 1er orden:

$$z' + \left(2\frac{y_1'}{y_1} + p_1(x)\right)z = \frac{q(x)}{y_1},$$

y se continua de la misma manera anterior.

Ejercicio: Considere la ED $xy'' + (1-2x)y' + (x-1)y = xe^x$. Sabiendo que $y_1 = e^x$ resuelve la homogénea asociada, encuentre $y = uy_1$ tq y sea sol. general de la ED.

Solución La ED se puede escribir como:

$$y'' + (\frac{1}{x} - 2)y' + (1 - \frac{1}{x})y = e^{x}.$$

Ahora, haciendo uso de la obs. tenemos que solucionar la ED

$$z' + \frac{1}{x}z = 1 \iff xz' + z = x.$$

De aquí se obtiene: $z = \frac{x}{2} + \frac{c_1}{x}$. Pero z = u'. Luego

$$u(x) = \frac{x^2}{4} + c_1 \ln(x) + c_2.$$

Así,

$$y(x) = u(x)y_1(x) = c_2e^x + c_1e^x \ln(x) + \frac{x^2}{4}e^x.$$

Obs. $y_2(x) = e^x \ln(x)$ (2da solución de la homogénea asociada), $y_p(x) = \frac{x^2}{4}e^x$ (sol. particular), y(x) es la solución general.

Ecuaciones Lineales de 2do Orden no Homogénea

Consideremos la ED

$$y'' + p_1(x)y' + p_2(x)y = q(x), (6)$$

donde p_1, p_2, q son continuas en $I \subset \mathbb{R}$.

Teorema

Sea y_p una sol. particular de (6) y sean y_1, y_2 soluciones fundamentales de la ec. homogénea asociada. Entonces la sol. general de la ec. no homogénea (6) es:

$$y(x) = y_p(x) + c_1y_1(x) + c_2y_2(x).$$

Obs. Por tanto, para encontrar la sol. general de una ED lineal de 2do orden no homogénea se precisa encontrar una sol. particular y dos soluciones fundamentales de la ec. homogénea asociada.

- ¿Como calcular tales soluciones fundamentales?
- ¿Como calcular tal solución particulares?

Método de Variación de Parámetros

► Encuentra una sol. particular a partir de dos soluciones fundamentales conocidas.

Desventaja: se debe conocer tales soluciones para aplicar este método.

Sean y_1, y_2 sol. fundamentales de la ec. homogénea asociada. Luego, $y_h(x) = c_1 y_1(x) + c_2 y_2(x)$ es sol. general de dicha ED. Este método consiste en construir una sol. particular de la forma:

$$y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x),$$
 (7)

donde u_1 , u_2 son funciones a determinar.

Resolución: Busquemos condiciones que permitan determinar u_1 y u_2 . Derivando y_p :

$$y_p' = u_1'y_1 + u_1y_1' + u_2'y_2 + u_2y_2'.$$

Imponiendo $u_1'y_1 + u_2'y_2 = 0$, se obtiene $y_p' = u_1y_1' + u_2y_2'$. Luego

$$y_p'' = u_1'y_1' + u_1y_1'' + u_2'y_2' + u_2y_2''.$$

Método de Variación de Parámetros

Reemplazando en la ED obtenemos $u_1'y_1' + u_2'y_2' = q(x)$. En consecuencia, para que y_p sea sol. particular de (7), u_1, u_2 deberán satisfacer el sistema:

$$\begin{cases} u'_1y_1 + u'_2y_2 &= 0 \\ u'_1y'_1 + u'_2y'_2 &= q(x). \end{cases}$$

Como $W(y_1, y_2)[x] \neq 0$, $\forall x \in I$, el sistema tiene única solución, y son dadas por:

$$u'_{1} = \frac{1}{W(y_{1}, y_{2})} \begin{vmatrix} 0 & y_{2} \\ q(x) & y'_{2} \end{vmatrix} = -\frac{y_{2}q(x)}{W(y_{1}, y_{2})}.$$

$$u'_{2} = \frac{1}{W(y_{1}, y_{2})} \begin{vmatrix} y_{1} & 0 \\ y'_{1} & q(x) \end{vmatrix} = \frac{y_{1}q(x)}{W(y_{1}, y_{2})}.$$

Por tanto, la sol. particular es:

$$y_p(x) = -y_1(x) \int \frac{y_2(x)q(x)}{W(y_1, y_2)} dx + y_2(x) \int \frac{y_1(x)q(x)}{W(y_1, y_2)} dx.$$

Método de Variación de Parámetros

La función

$$G(x,s) = \frac{1}{W(y_1, y_2)(s)} (-y_1(x)y_2(s) + y_2(x)y_1(s))$$

es conocida como **Función de Green**. Así, la sol. particular queda escrita como:

$$y_p(x) = \int G(x,s)q(s)ds.$$

Ejemplo: Encontrar la solución de $y'' + y = \sec(x)$

Ejemplo: Hallar la solución general de $y'' + \frac{2}{x}y' + y = \frac{1}{x}$, $x \neq 0$, sabiendo que $y_1(x) = \frac{\text{sen}(x)}{x}$ es sol. particular de la ec. homogénea asociada.