MA2601-1: Ecuaciones Diferenciales Ordinarias. Semestre 2011-01.

Profesor: Raúl Manasevich. Auxiliares: Bastián Bahamondes - Pablo Muñoz.

Auxiliar n° 7

29 de Abril del 2010

P1. Calcule la matriz exponencial e^{At} en los siguientes casos:

$$(a) \quad \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$(b) \quad \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

$$(c) \quad \begin{bmatrix} 2 & 1 & 3 \\ 0 & 2 & -1 \\ 0 & 0 & 2 \end{bmatrix}$$

P2. Considere la matriz

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

- (a) Encuentre los valores propios y una base vectores propios generalizados de ${\cal A}$
- (b) Utilize (a) para encontrar la solución general del sistema lineal :

$$x' = Ax$$

P3. Considere el sistema lineal

$$x' = Ax$$

donde A es una matrix $n \times n$ antisimétrica, es decir, $A^T = -A$. Demuestre que si $x_1(t), x_2(t) : \mathbb{R} \to \mathbb{R}^n$ soluciones del sistema anterior, son ortogonales en algún punto $t_o \in \mathbb{R}$ entonces son ortogonales en todo \mathbb{R} .