Auxiliar 3 - Introducción al Álgebra

Escuela de Ingeniería, Universidad de Chile

Viernes 08 de Abril, 2011

Profesores de Cátedra: Pablo Dartnell - Leonardo Sánchez Profesores Auxiliares: Orlando Rivera Letelier - Matías Godoy Campbell

Pregunta 1.

a) Considere las funciones f(x) = 3 - 2x y $g(x) = \frac{x}{2} - 2$. Pruebe que ambas son funciones biyectivas, Luego considere la función

 $h(x) = \begin{cases} f(x) & \text{si } x \le 2\\ g(x) & \text{si } x > 2 \end{cases}$

Determine $h^{-1}((-\infty, -1))$, ¿Qué puede concluir sobre h?

b) Considere las funciones $f: \mathbb{N} \setminus \{0\} \to \mathbb{Q}$ definida en cada $n \in \mathbb{N}^*$ por $f(n) = \frac{1}{2n}$ y $g: \mathbb{Q} \to \mathbb{Q}$ definida para cada $q \in \mathbb{Q}$ por $g(q) = \frac{q}{2}$. Determine los conjuntos preimágenes $g^{-1}(\mathbb{Z})$ y $(g \circ f)^{-1}(\mathbb{Z})$

Pregunta 2.

- a) Se dice que una funcion f es estrictamente creciente si: $\forall x, y \in Dom(f)$ con x < y se tiene f(x) < f(y). Pruebe entonces que:
 - a.1) Toda función estrictamente creciente es inyectiva.
 - **a.2**) Si $f: \mathbb{N} \to \mathbb{N}$ y f es estrictamente creciente, ¿es f biyectiva?
- b) Considere las funciones $f, g: A \to B$ con $A, B \neq \emptyset$ y f inyectiva. Se define $\varphi: A \to B \times B$ como $\varphi(x) = (f(x), g(x))$ para cada $x \in A$.

Pruebe que φ es inyectiva.

Indicación: Recuerde que $(a,b) \neq (c,d) \Leftrightarrow [(a \neq c) \lor (b \neq d)]$

Pregunta 3. Considere el conjunto $\mathcal{F} = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ es biyectiva}\}$ Es decir, los elementos de \mathcal{F} son funciones biyectivas de \mathbb{R} en \mathbb{R} . Se define la función $\Psi : \mathcal{F} \times \mathcal{F} \to \mathcal{F}$ dada por:

$$\Psi(f,g) = (f \circ g)^{-1}$$

- a) Justifique el hecho que $\forall (f,g) \in \mathcal{F} \times \mathcal{F}$. $\Psi(f,g) \in \mathcal{F}$.
- **b)** Pruebe que Ψ es sobreyectiva, pero no inyectiva.
- c) Demuestre que para todo par $(f,g) \in \mathcal{F} \times \mathcal{F}$ se tiene:

$$\Psi(\Psi(f,g),\Psi(g^{-1},f^{-1})) = id_{\mathbb{R}}$$

Pregunta 4. Sea $f: A \to B$ y $C \subseteq A$. Se define: $g: C \to B$ tal que $g(x) = f(x) \ \forall x \in C$ Demuestre que: $\forall D \subseteq B, \ g^{-1}(D) = C \cap f^{-1}(D)$

Pregunta 5. Sea $f: X \to Y$ una función. Pruebe que $\forall A, B \subseteq X$

$$f(A)\triangle f(B) \subseteq f(A\triangle B)$$

Muestre además que si f es inyectiva, entonces

$$f(A)\triangle f(B) = f(A\triangle B)$$

1