Class outline

- Motivating examples.
- Steps to implement the Newsvendor model.
- Finding the quantity that maximizes expected profit.
- Performance measures in the Newsvendor model.

iPhone Sales in Fiscal Year 2011 Q3?

Historical Sales Data

Hammer 3/2 timeline and economics

Generate forecast
of demand and
submit an order

Nov Dec Jan Feb Mar Apr May Jun Jul Aug

Receive order from TEC at the end of the month

Economics:

- Each suit sells for $p=\$ 180$
- TEC charges $c=\$ 110$ per suit
- Discounted suits sell for $v=\$ 90$
- The "too much/too little problem":
- Order too much and inventory is left over at the end of the season
- Order too little and sales are lost.
- Marketing's forecast for sales is 3200 units.

Historical forecast performance at O'Neill

Forecasts and actual demand for surf wet-suits from the previous season. Each point is a different style.

The Newsvendor model: Implementation

Newsvendor model can be used to make a single-shot commitment in anticipation to an uncertain outcome.

Demand model:
Distribution function \mathbf{F} (.)
From historical data, experts assessment, market info.

Choose an objective:
-Maximize Expected Profit
 Quantity (Q)

Input 1: Demand distribution

Examples:

-Normal with mean= 100 and std. dev. $=25$.
-Histogram of historical data.

Distribution Function (F(x))

$\mathrm{F}(\mathrm{x})=$ Probability that demand is less than or equal to x.

Based on historical performance of forecasts, O'Neill uses normal distribution with mean 3192 and standard deviation II8I to represent demand for the Hammer 3/2 during the Spring season.

Input 2: "Too much" and "too little" costs

- $C_{o}=$ overage cost
- The consequence of ordering one more unit than what you would have ordered had you known demand.
- In other words, suppose you had left over inventory (you over ordered). C_{0} is the increase in profit you would have enjoyed had you ordered one fewer unit.
- For the Hammer 3/2 $\quad C_{o}=$ Cost - Salvage value $=c-v=110-90=$ 20
- $C_{u}=$ underage cost
- The consequence of ordering one fewer unit than what you would have ordered had you known demand.
- In other words, suppose you had lost sales (you under ordered). C_{u} is the increase in profit you would have enjoyed had you ordered one more unit.
- For the Hammer $3 / 2 \quad C_{u}=$ Price - Cost $=p-c=180-1 I 0=70$

Balancing the risk and benefit of ordering a unit

- Ordering one more unit increases the chance of overage ...
- Expected loss on the $Q^{\text {th }}$ unit $=C_{0} \times F(Q)$
- $F(Q)=$ Distribution function of demand $=\operatorname{Prob}($ Demand $<=Q)$
- ... but the benefit/gain of ordering one more unit is the reduction in the chance of underage:
- Expected gain on the $Q^{\text {th }}$ unit $=C_{u} \times(I-F(Q))$

- As more units are ordered, the expected benefit from ordering one unit decreases while the expected loss of ordering one more unit increases.

Newsvendor expected profit maximizing order quantity

- To maximize expected profit order Q units so that the expected loss on the $Q^{\text {th }}$ unit equals the expected gain on the $Q^{\text {th }}$ unit:

$$
C_{o} \times F(Q)=C_{u} \times(1-F(Q))
$$

- Rearrange terms in the above equation:

$$
F(Q)=\frac{C_{u}}{C_{o}+C_{u}}
$$

- The ratio $C_{u} /\left(C_{o}+C_{u}\right)$ is called the critical ratio.
- Hence, to maximize profit, choose Q such that the probability we satisfy all demand (i.e., demand is Q or lower) equals the critical ratio.

Profit maximizing order quantity using the Normal distribution: Hammer 3/2 example.

- Demand distribution: Normal ($\mu=3192, \sigma=1|8|)$
- Economic data: $p=\$ 180, c=\$ 110, v=\$ 90$.
- $C u=\$ 70, C_{0}=\$ 20$.
- Critical ratio $=\mathrm{Cu} /(C o+C u)=.778$
- In Excel: find the ordering quantity Q by inverting a Normal Distribution with mean μ and standard deviation σ.

Order quantity for Hummer 3/2 using Standard Normal Table

- Demand distribution: Normal ($\mu=3|92, \sigma=1| 8 \mid$)
- Economic data: $p=\$ 180, c=\$ 110, v=\$ 90$.
- $C u=\$ 90, C_{0}=\$ 20$.
- Critical ratio $=C u /\left(C_{o}+C u\right)=.778$
- Look critical ratio in Standard Normal distribution table:

| z | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- | Approximate

(it is just a coincidence that $\mathrm{z}=0.77$ is so close to the critical ratio)

- Convert z-statistic into order quantity Q :

$$
\begin{aligned}
Q & =\mu+z \times \sigma \\
& =3192+0.77 \times 1181=4101
\end{aligned}
$$

Demand Forecasting

- Order-up to quantity to meet weekly demand.
- Fit regression line to estimate linear trend.
- Trend from day 75 to 150 .
- Use data from weeks 12 to 21 .
- Trend continues until the middle of week 22.
- Forecast for week $22=$

forecast of week $21+6.3212 / 2$
$=83.7$
- Prediction error $=9.5$ (from regression residuals).

...Order-up-to Quantity

- Demand distribution: Normal ($\mu=83.7, \sigma=9.5$)
- Relevant costs:
- Overage costs $=\$ 600$ (cost of kit)
- Underage costs $=\$ 1250$ (for Contract Type 3 and ample machine capacity).
- Critical ratio $=\frac{1250}{600+1250}=.68$
v-value: $\quad z=0.47$
- Optimal order quantity: $\quad Q=83.7+.47 * 9.5$ $=88$ units

Newsvendor model: Performance measures

- For any order quantity we would like to evaluate the following performance measures:
- Expected lost sales
- The expected number of units demand exceeds the order quantity
- Expected sales
, The expected number of units sold.
- Expected left over inventory
- The expected number of units left over after demand (but before salvaging)
- Expected profit
- Expected fill rate
* The fraction of demand that is satisfied immediately
- In-stock probability
- Probability all demand is satisfied
- Stockout probability
- Probability some demand is lost

Expected lost sales: graphical explanation

- Suppose demand can be one of the following values
$\{0,10,20, \ldots, 190,200\}$
- Suppose Q = 120
- Let $\mathrm{D}=$ actual demand
- What is expected lost sales?
- If $\mathrm{D}<=\mathrm{Q}$
lost sales $=0$
- If D = I30,
lost sales $=\mathrm{D}-\mathrm{Q}=10$
- Expected lost sales =
$10 \times \operatorname{Prob}\{D=130\}+$
$20 \times \operatorname{Prob}\{D=\{40\}+$
... +
$80 \times \operatorname{Prob}\{D=200\}$

Expected lost sales of Hammer 3/2s with $Q=3500$

- For example:
- if demand is 3800 and $Q=3500$, then lost sales is 300 units.

। if demand is 3200 and $Q=3500$, then lost sales is 0 units.

- Definition:
- Expected lost sales is the average number of lost sales over all possible demand outcomes.
- If demand is normally distributed:
- Step I: normalize the order quantity to find its z-statistic.

$$
z=\frac{Q-\mu}{\sigma}=\frac{3500-3192}{1181}=0.26
$$

- Step 2: Look up in the Standard Normal Loss Function Table the expected lost sales for a standard normal distribution with that z-statistic: $L(0.26)=0.2824$
b or, in Excel

$$
L(z)=\operatorname{Normdist}(z, 0,1,0)-z *(1-\operatorname{Normsdist}(z))
$$

- Step 3: Evaluate lost sales for the actual normal distribution:

$$
\text { Expected lost sales }=\sigma \times L(z)=1181 \times 0.2824=334
$$

Measures that follow expected lost sales:

Expected sales $=\mu$ - Expected lost sales $=3192-334=2858$
Expected Left Over Inventory = Q - Expected Sales

$$
=3500-2858=642
$$

Expected profit $=[($ Price-Cost $) \times$ Expected sales $]$
$-[($ Cost-Salvage value $) \times$ Expected left over inventory $]$
$=(\$ 70 \times 2858)-(\$ 20 \times 642)=\$ 187,221$
Expected fill rate $=\frac{\text { Expected sales }}{\text { Expected demand }}=\frac{\text { Expected sales }}{\mu}$

$$
=1-\frac{\text { Expected lost sales }}{\mu}=\frac{2858}{3192}
$$

= 89.6\%

Note: the above equations hold for any demand distribution

Example Littlefield: Customers in Queue

- When we order $\mathrm{Q}=83$ kits: How many customers are expected to be waiting in queue at the end of each week?
- A customer waits in queue when demand exceeds the number of kits available.
- Expected number of customers waiting in queue = "Expected lost sales" in a Newsvendor model.
- $z=(83-83.7) / 9.5=-0.07=>L(-0.07)=0.4349$

Expected customers in queue $=\sigma \times L(z)$

$$
=9.5 \times .4349=4.13
$$

Newsvendor model summary

- The model can be applied to settings in which...
, There is a single decision opportunity (order/production/replenishment).
- Demand is uncertain.
- There is a "too much-too little" challenge:
b If demand exceeds the order quantity, sales are lost.
- If demand is less than the order quantity, there is left over inventory.
- Firm must have a demand model that includes an expected demand and uncertainty in that demand.
- With the normal distribution, uncertainty in demand is captured with the standard deviation parameter.
- At the order quantity that maximizes expected profit the probability that demand is less than the order quantity equals the critical ratio:
- The expected profit maximizing order quantity balances the "too muchtoo little" costs.

Lo que se viene la proxima semana...

- Caso LL Bean

- Leer preguntas de preparacion del caso.
- Bajar datos en U-cursos.
- Trabajar con grupos para entregar mini-tarea (I pagina).

, Timbuk2

- Leer preguntas de preparacion del caso.
- Miren el sitio www.timbuk2.com !

