xeuwruoneziwndo Jesul|

264

6.4.

6.5.

Chap. 6 Large scale optimizatioj

in Section 11.1. The same idea can also be applied to more gene
convex optimization problems; see, eg., Bertsckas {1995b).]

Dantzig-Wolfe deccmposition was developed by Dantzig and Wol
(1960). Example 6.2 is adapted from Bradley, Hax, and Magnasi
(1977). 3
Stochastic programming began with work by Dantzig in the 1950
and has been extensively studied since then. Some books on this sujj
Ject are Kall and Wallace (1994), and Infanger (1993); Example 63
is adapted from the latter reference. The Benders decompeasitiof
method wes developed by Benders (1962). It finds applications i
other contexts as well, such as discrese optim:zation; see, e.g., Schrl
jver (1986), and Nemhauser and Wodey (1988).

" Contents
' 7 1. Graphs
7.2, Formulation of the network flow problem -
7.3. The network simplex algorithm
* T.4. The negasive cost cycle algorithm
- 7.5. The maximum flow problem
7.6. Duality i network flow problems
7.7. Dual ascent methods*) e
7.8. The assignment problem ard the auction algorithm =
7.9. The shortest path problem S
7.10. The mininium spanning tree problem
7.11. Summary
7.12. Exetcises.
7.13. Notes and sources

265

xeuwruoneziwndo Jesul|

266 Chap. 7 Network flow probl'emql

Network flow problems (also known as transshipment problems) are thej
most frequently solved linear programming problems. They include as spe-
cial cases, the assignment, transportation, maximum flow, and shortest
path problems, and they arise naturally in the analysis and design of com}
munication, transportation, and logistics networks, as well as in many cthes
contexts. 1

The network flow problem is a special case of linear programming
and any algorithm for linear programming can be directly applied. On thg
other hand, network flow problems have a spesial structure which results in
substantial simplification of general methods ie.g., of the simplex method
as well as in new, special purpose, methods. '

From a high level poirt of view, most of the available algorithms fo .
network flow problems fall into one of three categories:

(a) Primal methods. These methods maintain and keep improving af
primal feasible solution. The primal simplex method, presented -
Section 7.3, is an important representative. An alternative algorithmd
is derived from first principles in Sectior 7.4. '

(b) Dual ascent methods. These methods, which are discussed i
Section 7.7, maintain & dual feasible solution and an auxiliary prig
mal (usually infeasible) solution that satisfy complementary slacks
ness. The dual variables are updated s as to increase the value of]
the dual objective and reduce the infeasbility of the complementary;
primal solution. The Hungarian, primal-dual, relazation, and d
simplez methods fall in this general category.

(c) Approximate dual ascent methods. These methods are sirnilar]
in spirit to the dual ascent methods, except that small decreases m
the dual objective are allowed to occur and the complementary slack-}
ness conditions are only approximately enforced. The auction algo-1
rithm, which is discussed in Section 7.%, as well as the e-relazation
and preflow-push methods, are of this type.

In this chapter, all three of the above mentioned algorithm types will §
be encountered. The chapter begins with a brief introduction to graphs
(Section 7.1), that provides us with the language for studying network How
problems, and with a problem formulation (Section 7.2). We develop a}
number of general methods, but we also pay attention to special cases whose §
structure can be further exploited, such as the maximum fAow problem |
(Section 7.5), the assignment problem (Section 7.8), and the shortest path |
problem (Section 7.9). We also discuss the minimum spanning tree problem]
(Section 7.10), which is not a network flow problem. but has a similar }
underlying graph structure. Throughout this caapter, our focus is on major 3
algorithmic ideas, rather than on the refinements that can lead to better |
complexity estimates. '

“ Sec. 7.1

Graphs 267

7.1 Graphs

Network flow problems are defined ¢n graphs. In this section, we intro-
duce graphs formally and provide a number of elementary definitions and

properties.

Undirected graphs

An undirected graph G = (N, £) conssts of a set A of nodes and a set & of
(undirected) arcs or edges, where an «lge e is an unordered pair of distinct
nodes, that is, a two-element subset ‘%, 5} of V; see Figure 7.1. Note that

Figure 7.1: An undirected zraph G = (N,€) with N =
{1,2,3,4,5} and £ = {{1,2}, {1,3}, {2,3}, {1,4}, {3,4}, {3,5}}.

an undirected arc {i,;} is o1e and the same object as the undirected arc
{j.i}. Furthermore, “self-arcs” like {¢,1} are not allowed. We say that
the arc {i,5} is incident to nodes ¢ and 7, and these nodes are called the
endpoints of the arc.

The degree of a node n an undirected graph is the number of arcs
incident to that noce. The degree of an undirected graph is defined as the
maximum of the degrees of its nodes.

A walk from node #; to node i; in an undirected graph is defined
as a finite sequence of nodes iy,4y,...,8; such that {ig, ik} € &, k =
1,2,...,t - 1. A walk is called a path if it has no repeated nodes. A cycle
is defined as a walk iy, i, ...,%; such that the nodes 4y,...,4;_1 are distinct
{and hence form a path) and i; = ¢;. In addition, we require the number
t -1 of distinct nodes to be at least 3. This is in order to exclude a walk
of the form 4, 7,7, where the same arc {i,j} is traversed back and forth.
An undirected graph is said to be connected if for every two distinct nodes
i,i € N, there exists a path from i to 7.

As an example, the graph in Figure 7.1 is connected. The sequence
1,2,3,1,4 is a walk but not a path. The sequence 1,2,3,1 is a cycle, and the
sequence 1,3,5 is a path.

xeuwruoneziwndo Jesul|

268 Chap. 7 Network flow probien f

For undirected graphs, we will often d:note the number of nodes K3
|V| or n, and the number of edges by |£| or m.

Directed graphs

A directed graph G = (N, A) consists of a set N of nodes and a set ‘
of (directed) ares, where a directed arc is an ordered pair (1,) of disting
nodes; see Figure 7.2. Our definition allows for both (4, J) and (4,1) to M

Figure 7.2: A directed graph G = (M, 4) with N = {1,2,3, 4,5}
and A = {(1,2), (2,1), (1,3), (3,2), (1,4), (4,3), (3,5)}.

elements of the arc set A, but self-arcs like (G, ¢) are not allowed. 3

For any arc (i, j), we say that i is the start node and j is the eng
node. The arc (4,) is said to be outgoing from node %, incoming to nodd
J> and incident to both i and j. We define I(;) and O(i) as the set of star§
nodes (respectively, end nodes) of arcs that are incoming to (respectivelyy
outgoing from) node 7. Thar is, 3

1) = {7 e M| (4,9) € A},

and
O(iy={j e N'|(i,5) £ A}.

Starting from a directed graph, we can construct a corresponding
undirected graph by ignoring the direction of the arcs and by deleting re+
peated arcs; for example, the directed graph in Figure 7.2 leads to the
undirected graph in Figure 7.1. Under one possible incerpretation, flow or}
movement in a directed arc is permitted only from the start node to thel
end node, whereas in an undirected arc, flow or movement is permitted inj
bath directions. We say that a directed graph is connected if the resulting
undirected graph is connected. i

We now present a definition of walks i directed graphs; it is im-!
portant to note that this definition allows us to traverse an arc in either}
direction, irrespective of the arc’s direction. More specifically, a walk i8]

Sec. 7.1 Graphs 269

defined as a sequence i1,....4; of nodes, together with an associated se-
quence @i,...,a;—1 of arcs such that for £ = 1,...,t — 1, we have ei-
ther ax = (i, %k+1) (in whith case we say that ar is a forwerd arc) or
ax = (ik+41,9%} (in which case we say that ¢y is a backward arc). Note that
if i and 741 are consecutive nodes in a walk and if (g, 4441) and (igi1, %)
are both arcs of the underlying directed graph, then either arc can be used
in the walk. The reason for ircluding the arcs ay in the definition of a walk
is precisely to avoid such ambiguities.

A walk is said to be a peth if all of its nodes 44, .. ., 4, are distinet, and
a cycle if the nodes 4;,...,4;_; are distinct and 4; = 7;. Note that we allow
a cycle to consist of only two distinet nodes (in contrast to our definition
for the case of undirected graphs). Thus, a sequence 1,{4,7), 4, 4,1),i is a
bona fide eycle. Finally, a walk, path, or cycle is said to be directed if it
only contains forward arcs.

For the graph shown ir Figure 7.2, the sequence 1,(1,3),3,(3,2),2,
(1,2),1,{1,4),4 is a walk, but not & directed walk, because (1,2) is a
backward arc. The sequence 1,(1,3),3,(3,2),2,(2,1),1 is a directed cy-
cle. The sequence 1,(1,2),2,12,1),1 is also a directed cycle. The sequence
4,(4,3),3,(1,3),1,(1,2),2 is a path, bat not a directed path, because (1,3)
is & backward arc.

For directed graphs, we will often denote the number of nodes by |V|
or n, and the number of arcs by |.A| o m.

Trees

An undirected graph G = (N, €) is called a tree if it is connected and has
no cycles. If a node of a tree has degree equal to 1, it is called a leaf See
Figure 7.3 for an illustration.

Figure 7.3: A tree with 8 nodes, 7 arcs, end 5 leaves. Note that
if we were to add the arc {2,7}, a single cycle would be created,
namely, 2,3,5,7,2.

xeuwruoneziwndo Jesul|

270

later on (e.g., in the development of the simplex method, in Section 7.3}

Chap. 7 Network flow proble ¥

We now present some important properties of trees that will be of il

& cycles mvajvmg tbe smue set of nodfs:)

Proof.

(a)

(b)

(©)

Consider a tree with more than one node and suppose that there &
no leaves, Then, every node has degree greater than 1. (If the n
of a node were 1, that node would be a leaf, and if it were 0,
graph would not be connected.) Therefore, given a node and an '
through which we enter the node, we czn find a different arc throug
which we can exit. By repeating such a process, we must eventual
visit the same node twice, which implies that there exists a ¢]
contradicting the definition of a tree.
We first prove that every tree has |A| - 1 arcs. This is trivially try
if the tree has a single node. Consider row a tree that has more th
one node. Such a tree must have at least one leaf, by part (a).
delete that leaf together with the single arc incident to that node. TR
resulting graph is again a tree, because the deletion of a leaf cannd
create a cycle or cause a graph to become disconnected. This proced
can be carried out |A] — 1 times, until we are left with a single nodf
and, therefore, no arcs. Since at each stage there was exactly one as
deletion, we conclude that the original tree had |[A| — 1 arcs.

In order to prove the converse statemert, let us consider a connectel
graph with |[A| — 1 ares. If this graph contains a cycle, we can
one of the arcs in the eycle and still maintain connectivity. We
peat this process as many times as needed, until we are left with §
connected graph without any cycles, that is, a tree. We have alread!
proved that a tree with || nodes must have || — 1 arcs, and thi
shows that the final t-ee has as many arcs as the original graph.
follows that no arc was deleted and the original graph was a tree
start with.

Suppose that there exist two different paths joining the same nodes §
and j. By joining these two paths and by deleting any arcs that an

Sec. 7.1

Graphs 271

{a) An undirectel graph. The thicker arcs form
a spanning tree. (b) Aaother urdirected graph. The arcs {l,2},
{2,3}, {4,6} do not form any cycle. They can be augmented to
form a spanning tree, eg., by adding arcs {3,6} and {5, 6}.

Figure 7.4:

common to both, we are left with cne or more cycles, contradicting
the definition of a tree.

(d) Consider a tree, and let us add an undirected arc {i,j}. Using part
{b), the resulting graph must have |N} arcs. Therefore, it cannot be
a tree, and must have a cycle. Any cycle created by this addition
consists of the arc {4, j} and a path from i to j. Since there exists a
unique path from i to j [part (¢}], it follows that a unique cycle has
been created.

Spanning trees

Given a connected undirected graph G = (N, £), let £ be a subset of £
such that T = (A,£1) is a tree. Sich a tree is called a spanning tree.
Tke following result will be used late- on (in Sections 7.3 and 7.10) and is
illustrated in Figure 7.4.

Theorem 7.2 Let G = (N, £} be a connected undirected graph and
let & be some subset of tle set £ of arcs: Suppose that the ercs in £
do not form any cycles. Then, the set & can bé augmenéed to a set
£1 D& so tbat (A, 81) i 5 spanniig tree. .

Proof. Let G = (V,£) be a connected undirected graph. Suppose that
& C £, and that the arcs in & do not form any cycles. If & is a tree, we
may let £; = £ and we are done. Otherwise, ¢ contains at least one cycle.
A cycle cannot consist exclusively of arcs in &), because of our assumption
on &. Let us choose and delete an arc that lies on a cycle and that does

xeuwruoneziwndo Jesul|

270 Chap. 7 Network flow problems i

We now present some important properties of trees that will be of use j
later on (e.g., in the development of the simplex method, in Section 7.3).

wen s
NS

with more than one node hes a4 Jeast oo Jeaf

An undivosted graph is o128 if andl ouly i s coniected

(B An undirséted grapk anecte
te): For any two distinct nodes's:and in a tree, thers exists 4
oihathfom it S T T e T
- (d) Ifwestart with a tree and add a new v, the resulting graph og
;.. tains exactly one cycie (as long a5 we do not distinguish betwe

e

cycles involving the ssme set of nodes). -

Proof.

(a) Consider a tree with more than one node and suppose that there are}
no leaves. Then, every node has degree greater than 1. (If the degreef
of a node were 1, that node would be a leaf, and if it were 0, thq
graph would not be connected.) Therefors, given a node and an are}
through which we enter the node, we can find a different arc through
which we can exit. By repeating such a process, we must eventually
visit the same node twice, which implies that there exists a cycle, §
contradicting the definition of a tree.

(b) We first prove that every tree has || — 1arcs. This is trivially true
if the tree has a single node. Consider now a tree that has more thar |
one node. Such a tree must have at least one leaf, by part (a). We }
delete that leaf together with the single arcincident to that node. The §
resulting graph is again a tree, because the deletion of a leaf cannot 1
create a cycle or cause a graph to become disconnected. This process §
can be carried out [A] — 1 times, until we are left with a single node }
and, therefore, no arcs. Since at each stage there was exactly one arc
deletion, we conclude that the original tree had |JA/] — 1 arcs. ‘

In order to prove the converse statement, Izt us consider a connected

graph with |A| - 1 arcs. If this graph contains a cycle, we can delete :
one of the arcs in the cycle and still mairtain connectivity. We re- |
peat this process as many times as needed, until we are left with a |
connected graph without any cycles, that i, a tree. We have already -
proved that a tree with |A/| nodes must have |V | — 1 arcs, and this §
shows that the final tree has as many arcs as the original graph. It
follows that no arc was deleted and the original graph was a tree to 3
start with, '

(c) Suppose that there exist two different paths joining the same nodes 1
and j. By joining these two paths and by deleting any arcs that are

Sec. 7.1 Graphs 271

Figure 7.4: (a) An undirected graph. The thicker arcs form
a spanning tree. (b) Another undirected graph. The arcs {1,2},
{2,3}, {4,6} do not form any cyde. They can be augmented to
form a spanning tree, e.g., by addng arcs {3, 6} and {5, 6}.

common to both, we are left with one or more cycles, contradicting
the definition of a tree.

(d} Consider a tree, and let us add an undirected arc {i,7}. Using part
(b), the resulting graph must have JA| arcs, Therefore, it cannot be
a tree, and must have a cycle. Any cycle created by this addition
consists of the arc {7, 7} and a path from 4 to 7. Since there exists a
unique path from i to j [part {c], it follows that a unique cycle has
been created. O

Spanning trees

Given a connected undirected graph ¢ = (N, E), let & be a subset of £
such that T = (N, £)) is a tree. Swch a tree is called a spanning tree.
The following result will be used later on (in Sections 7.3 and 7.10) and is
illustrated in Figure 7.4.

Theorem 7.2 Let G = (N, £) be a connected undirscted graph and
let £, be some subset of the set £ of arcs. Suppose that the ards in &
do not form any cycles. Then, the set £ can be augmented to a set
&1 D & 's0 that (N, &) is aspanning tree.

Proof. Let G = (N, £€) be a connect>d undirected graph. Suppose that
&y C &, and that the arcs in & do not form any cycles. If 7 is a tree, we
may let £, = £ and we are done. Otherwise, G contains at least one cycle.
A cycle cannot consist exclusively of arcs in £o, because of our assumption
on &. Let us choose and delete an are that lies on a cycle and that does

xeuwruoneziwndo Jeaul|

272 Chap. 7 Network flow problems

not belong te £. The resulting graph is still connectec. By repeating this

process as many times as needed, we end up with a connected graph (N, &)]

without any cycles, hence a tree. In addition, since the arcs in &) are never

deleted, we have & C &;. |

7.2 Formulation of the network flow problem ‘

A network is a directed graph G = (N, .A) together with some additional -§
numerical information, such as numbers b; representing the external suppiy 3
to each node ¢ € A, nonnegative (possibly infinite) numbers u;; represent- 1§
ing the capacity of each arc (4, f) € A, and numbers ¢;; representing the

cost per wiit of flow along arc (4, f).

We visualize a network by thinking of some material that flows on }
each arc. We use f;; to denote the amount of flow through arc (4,). The
supply b; B interpreted as the amount of flow that enters the network from §

the outside, at node ¢. In particular, node ¢ is called a iource if &, > 0, and

a sink if b, < 0. If node i is a sink, the quantity |b;| is sometimes called the
demand at node i. We impose the following conditions on the flow variables 1

.fijv (7‘1.7) € 'A:

b+ Z fi = Z fijs YieN, (7.1}

FelI(i) FEO0()
0 < fi; <y,

Equation i7.1) is a flow conservation law: it states that the amount of flow .‘
into a node ¢ must be equal to the total flow out of that node. Equation }
{7.2) simply requires that the flow through an arc must be nonnegative and |
cannot exceed the capacity of the arc. Any vector with components f;, j
(¢,7) € A, will be called a flow. If it also satisfies the constraints (7.1)-(7.2}, |

it will be called a feasible flow.
By summing both sides of Eq. {7.1} over all { € A/, we obtain

Y b =0,

N

which mezns that the total flow from the environment nto the network (at ;

the sources) must be equal to the total flow from the network {at the sinks)

to the environment. From now on, we will always assure that the condition |

¥ iear bi = 0 holds, because otherwise no flow vector could satisfy the flow
conservation constraints, and we would have an infeasible problem.

The general minimum cost network flow problem deals with the min-
imization of a linear cost function of the form

Z ci; fizs

(L.1)e4

¥ (i.9) € A. 72) |}

Sec. 7.2 Formulation of the network flow problem 273

over all feasible flows. We observe that this is a linear programming prob-
lem. If u;; = oo for all (4,5) € A, we say that the problem is uncapacitated;
otherwise, we say that it is cpacitated. Note that in the uncapacitated
case, we only have equality and nonnegativity constraints, and the problem
is in standard form.

We now provide an overview of important special cases of the network
flow problem; most of them will be studied later in this chapter.

The shortest path problem

For any directed path in a retwork, we define its length as the sum of
the costs of all arcs on the path. We wish to find a shoriest poth, that
is, a directed path from a given origin node to a given destination node
whose length is smallest. This problem is studied in Section 7.9, where we
show that it can be formulated as a network flow problem, under a certain
assumption on the arc lengths.

The maximum flow problem

In the maximum flow probler, we wish to determine the largest possible
amount of flow that can be sent from a given source node to a given sink
node, without exceelding the arc capacities. This problem is studied in
Section 7.5.

The transportation problem

Let there be m suppliers and 7 consumers. The ith supplier can provide s,
units of a certain good and the jth consumer has a demand for d; units. We
assume that the total supply T7~; s; is equal to the total demand 3°7_, d;.
Finally, we assume that the transportation of goods from the ith supplier
to the jth consumer carries a tost of ¢;; per unit of goods transported. The
problem is to transport the gpods from the suppliers to the consumers at
minimum cost. Let f;; be the amount of goods transported from the éth
supplier to the jth consumer. We then have the following problem:

e k{3
minimize E ECT‘,:’,‘fi_r‘i

i=1 j=1

T
subject to Y fi; =d, j=1,...,n,
i=1

i
Zfij = 8, i = 1,...,’:‘7!4,
J=1

f43 20, Yi g

xeuwruoneziwndo Jeaul|

274 Chap. 7 Network flow proble

The first equality constraint specifies that the demand d; of each consumg
must be met; the second equality constraint requires that the entire suppd
s; of each supplier must be shipped. This is a specizl case of the uncd
pacitated network flow problem, where the underlying graph has a spe
structure; see Figure 7.5. Tt turns out that every network flow problem

Figure 7.5: A network corresponding to a transportation prob-
lem with three suppliers and two consumers.

be transformed into an eguivalent transportation proolem {Exercises 7.3
and 7.6). Consequently, any algorithm for the transportation problem caf
be adapted and can be used to solve general network flow problems. Fof
this reason, the initial development and testing of new algorithms is often
carried out for the special case of transportation problems. 3

The assignment problem

The assignment problem is a special case of the transportation problem,}
where the number of suppliers is equal to the number of consumers, each}
supplier has unit supply, and each consumer has unit demand. As will bel
proved later in this chapter, one can always find an optimal solution in]
which every f;; is either 0 or 1. This means that for each 4 there will be a
unique and distinct § for which f;; = 1, and we can say that the ith supplier
is assigned to the jth consumer; this justifies the narme of this problem.

Variants of the network flow problem

There are several variants of the network flow problem all of which can
be shown to be equivalent to each other. For example, we have already |
mentioned that every network flow problem is equivaleni to a transportation }
problem. We now discuss some more examples.

(a} Every network flow problem can be reduced to one with exactly one |
source and exactly one sink node. This is illustrated in Figure 7.6.

Sec. 7.2

(b}

(c]

Formmulation of the network flow problem 275

Figure 7.6: (a) A netwak with three source nodes. (b) A net-
work with only one source node. The costs of the new arcs are zero.
Because of the way that thz arc capacities uo; are chosen (uo: = b;,
i =1,2,3), exactly b; units must flow on each arc (0,1),¢=1,2,3.
The reduction to a networs with a single sink node is similar.

Every network flow problem can be reduced to one without sources
or sinks. {Problems in which all of the supplies are zero are called
circulation problems.) Consider, without loss of generality, a network
with a single source s and a single sink t. We introduce a new arc (t,9)
whose capacity u, is equal to by and whose unit cost is ;5 = —M,
where M is a large number; see Figure 7.7. Since M is large, an
optimal solution to the drculation problem will try to set fis to bs,
which has the same effext as having a supply of b; at node s. If
an optimal solution to the circulation problem does not. succeed in
setting fi, to bs. this means that there is no way of shipping b, units
of flow from s to ¢, and the original problem is infeasible.

Node capacities. Suppose that we have an upper bound of g; on the
total flow that can enter a given node 4; for example, if i is a source

xeuwruoneziwndo Jeaul|

276 Chap. 7 Network flow problems

Uy ™ by

Figure 7.7: (a) A network. (b) An equivalent circulation problem.

node, we may have a constraint

b + Z Fii Lgi

JeI(3)

By splitting node ¢ into two nodes 7 and ¢/, and oy letting g; be the]
capacity of arc (4,1'), we are back to the case where we only have arc }

capacities; see Figure 7.8,

Figure 7.8: Transformation of a node capacity into an arc capacity.

(d) Lower bounds on the arc flows. Suppose that we add constraints of]

the form fi; > d,;, where d;; are given scalars. The resulting problem
can be reduced to an equivalent problem in whica every d;; is equal
to zero. Exercise 7.7 provides some guidance as to how this can be
accomplished.

Sec. 7.2 Formulaiion of the network flow problem 277

A concise formulation

We now discuss how to rewrite the network flow problem, and especially the
flow conservation constraint, in more economical matrix-vector notation.
We assume that A = {1,...,n} and we let m be the number of arcs. Let
us fix a particular ordering of the arcs, and let f be the vector of flows that
results when the components f;; are ordered zccordingly. We define the
node-arc incidence matriz A as follows: its dimensions are n x m (each row
corresponds to a node and each column to an arc) and its (¢, k)th entry a;;
is associated with ths ith node and the kth arc. We let

1, if i is the start node of the kth arc,
A = -1, if i is the end node of the kth arc,
0, otaerwise.

Thus, every column of A has exactly two nonzero entries, one equal to
+1, and one equal to —1, indicating the start and the end node of the
corresponding arc.

Example 7.1 Consider the directed graph of Figure 7.2 and let us use the
following ordering of the arcs: (1,2),(2,1),(3,2),(4,3),(1,4),(1,3),(3,5). The
corresponding node-are incidence matrix is

1 - 0 0 1 1 0

-1 -1 0 0 0 0

A= 0 1 1 -1 0 -1 1
0 0 0 1 -1 0 0

0 0 0 0 0 0 -1

Let us now focus on the ith row of A, denoted by a] (this is the
row associated with node ¢). Nonzero entries indicate the arcs that are
incident to node #; such entries are +1 or —1 depending on whether the arc
is outgoing or incoming, respectively. Thus,

alf = > fi;— > L
JEO() JEL(Z)

and the flow conservation constraint at node ¢ [cf. Eq. (7.1)] can be written
as

or, in matrix notation,

where b is the vector (b1,...,b,).

We observe that the sum of the rows of A is equal to the zero vec-
tor; in particular, the rows of A are linearly dependent. Thus, the matrix
A violates one of the basic assumptions underlying our development of the

xeuwruoneziwndo Jeaul|

278 Chap. 7 Network flow problems §

simplex method. As discussed in Chapter 2 (¢f. Theorem 2.5 in Section 2.3),§
either the problem is infeasible or we can remove some of the equality cons
straints, without affecting the feasible set, so that the remaining constrainte
are linearly independent. We revisit this issue in the next section. .

Circulations

We close by introducing some elementary concepts that are central to mand)
network flow algorithms.
Any flow vector f {feasible or infeasible) that satisfies

Af=0,

is called a circulafion. Intuitively, we have flow conservation within the

network and zero external supply or demand, which rneans that the .‘\'

“circulates” inside the network.

Let us now consider a cycle C. We let F and B be the set of forward

and backward arcs of the cycle, respectively. The flow vector h® with

components

1, if(i,j)€F,

hi; =¢ —1, if(44)€ B,

0, otherwise. _

is called tke simple circulation associated with the cycle C. It is easily seen

that h® setisfies 1

Ah® =0, (7.3)

and is indeed a circulation. The reason is that any two consecutive arcs onf

the cycle are either similarly oriented and carry the same amount of flow;

or they have the opposite orientation and the sum of the flows that they}

carry is ecual to 0; in either case, the net inflow to aay node is zero; se
Figure 7.9 We finally define the cost of a cycle C to be equal to

DR I
(ijleF (i.J)EB
If £ 5 a flow vector, C is a cycle, and § is a scalar, we say that the;
flow vector £ 4 6h€ is obtained from f by pushing @ units of flow around;

the cycle C. Note that the resulting cost change is 8 times the cost ¢/hC]
of the cycle C. 3

7.3 The network simplex algorithm

In this section, we develop the details of the simplex method, as applied to;
the uncapacitated network flow problem

minimize c'f

subject to Af

f

v I
oo

Sec. 7.3 The network simplex algorithm 279

Figure 7.9: A cycle and the corresponding simple circulation.
Arcs (4,3} and (1,5) are backward arcs and carry a flow of —1.
Note that flow is conserved at each node.

where A js the node-arc incidence matrix of a directed graph G = (N, A).
(Capacitated problems are briefly discussed at the end of this section.)
The network simplex algorithrr is widely used in practice, and is included
in many commercial optimization codes, due to its simplicity and eficiency.
In particular, it tends to run an order of magnitude faster than a general
purpose simplex code applied to a network flow problem.

Due to our restriction to uncapacitated problems, we are dealing with
a linear programming problem in standard form. We let m and n be the
number of arcs and nodes, respectively. We therefore have m flow variables
and n equality constraints which, unfortunately, is the exact opposite of
the notational conventions usec in earlier chapters.

There are two different weys of developing the network simplex meth-
od. The first is to go through the mechanics of the general simplex method
and specialize each step to the present context. The second is to develop the
algorithm from first principles and then to point cut that it is a special case
of the simplex method. We take a middle ground that proceeds along two
paralle] tracks; each step is justified from first principles, but its relation to
the simplex method is also explained. The end result is an algorithm with
a fairly intuitive structure.

Throughout this section, the following assumption will be in effect.

Assumptaon 7.1
(a) WeBaveE,ENb =0, =
(b) . The gaph G i ‘connécted.. .

Part (a) of this assumption is natural, because otherwise the problem
is infeasible. Part (b) is also natural, because if the graph is not conmected,

xeuwruoneziwndo Jeaul|

280 Chap. 7 Network flow problems | Sec. 7.3 The network simplex algorithm 281

then the problem can be decomposed into subproblems that can be treated :
independently.

As rnoted in Section 7.2, the rows of the matrix A sum to the zero]
vector and are therefore linearly dependent. In fact, the last constraint]
(flow conservation at node n) is a consequence of the flow conservation;
constraints at the other nodes, and can be omitted without affecting t
feasible set. Let us define the iruncated node-arc incidence matriz A
be the matrix of dimensions (n — 1) x m, which consists of the first n — ¥}
rows of the matrix A. Any column of A that correspoads to an arc of the
form (i,n) has a single nonzero entry, equal to 1, at the ith row. Similarly
any colwmn of A that corresponds to an arc of the form (n, %) has a single
nonzero entry, equal to —1, at the ith row. Allother columns of A have twa
nonzero entries. Let b = (b1,..., b 1). We replace the original equality
constraint Af = b by the constramt Af = b. We vill see shortly thay
under Assamption 7.1, the matrix A has linearly independent rows. 1

Example 7.2 Consider the node-arc incidence matrix A in Example 7.1. The

associated matrix A is given by Figure 7.10: A networs and a set of n — 1 arcs (indicated by

thatched lines) that form a tree. By setting the arc flows outside

1 -1 0 0 1 1 0
- -1 1 -1 0 o 0 0 the tree to zero, we obtair fiz = 2, fazs = 2 and f43 = 2. We then
A O 0 1 -1 -1 1 use conservation of flow at node 3, to obtain fus = 2. We also have
0 0 0 1 =1 0 0 fs6 = 1 and far = 0. Using conservation of flow at node 6, we

. 1 obtain fss = 1. Note that this is a feasible tree solution.
It can be verified that the matrix A has full rank. For example, the third, fourth}

sixth, and seventh columns are linearly independent.

{b) Use the flow conservation equations to determine the flows on the arcs
incident to the leaves, and continue by proceeding from the leaves
towards the roor.

Trees and basic feasible solutions

We now introduce an important definition.)
It should be pretty obvious ffom Figure 7.10 that once a tree is fixed,

a corresponding tree solution is uniquely determined. Nevertheless, we
provide a rigorous proof.

Definition 7.1 A fow vector f is called a tree solution if it can
constructed by the following procedure.

(a) Pick a set T C A of n— | arcs that form a tree when tbe
direction is ignored. ;
(b) Let fi; =0 for every (4,5} ¢ T
(c) Use the flow conservation equation Af = b to determine the flow,
variables f;;, for (i,5) € T

A tree solution that also satisfies £ > 0, is called a feasible treg
soluticn.

Theorem 7.3 Let T C A be a set of n — | arcs that form a tree
when their direction is ignored. Then, the system of linear equations
Af = b, and fi; =0 for all l§,7) ¢ T, has a unique solution.

Proof. Let B be the (n — 1) x (i — 1) matrix that resulis if we only keep
those n — 1 columns of A that correspond to the arcs in 7. Let fr be the
subvector of £, of dimension n — 1, whose entries are the flow variables f;;,
{,7) € T. We need to show that the linear system Bf; = b has a unique
solution. For this, it suffices to show that the matrix B is nonsingular.
Let us assume that the nydes have been renumbered so that numbers
increase along any path from a Jeaf to the root node n. Let us also assign

Step {c) in the above definition can be carried out using the following'.
systematic procedure, lustrated in Figure 7.10:

{a) Cal node n the roof of the tree.

xeuwruoneziwndo Jeaul|

282 Chap. 7 Neiwork flow problems |

1 0 0 0 00 0
0 L 0 0 00 0O
0 0 1 0 00 0
0 0 0 -1 00 0
-1 0 0 0 10 0
0 -1 0 0 -11 0
| 0 0 -1 1 00 -1

Figure 7.11: A numbering of the nodes and arcs of a tree, and
the corresponding B matrix.

to every arc (¢,j) € T, the number min{7, j}; see Figure 7.11. Such af
renumbering of nodes and arcs amounts to a reorderng of the rows and}
columns of B but does not affect whether B is singular or not. i

Wita the above numbering, the ith column of B corresponds to thej
ith arc, which is an arc of the form (i,) or (4,1}, with § > . Thus, any]
nonzero eatries in the ith column will be in row 4 or j. Since j > ¢, no
nonzero eatry can be found above the diagonal. We conclude that B is)
lower triaagular and has nonzero diagonal entries. This implies that B has |
nonzero dsterminant and is nonsingular, which completes the proof. O

We note an important corollary of the proof of the previous theorem.

Corollary 7.1 If the graph G is connected, then ihe matrix A has
linearly independent rows. . - _ |

Proof. T the graph G is connected, then there exists a set of arcs 7 C A |
that form a tree, when their orientation is ignored (cf Theorem 7.2). Let §
us pick such a set T and form the corresponding matrix B, as in the proof |
of Theorem 7.3. Since the (n — 1) x (n — 1) matrix B is nonsingular, it }
has linearly independent columns. Hence, the matrix A has n — 1 linearly §
independent columns and, therefore, has n — 1 linearly independent rows.

a

With our construction of a tree solution, the cdlumns of B are the _
columns of A corresponding to the variables f;;, for (4,5) € T, and are
linearly independent. In general Linear programming terminology, B is a

Sec. 7.3 The network simplex algorithm 283

basis matrix. Since the remairing varisbles fi5, (4,7) € T, are set to zero,
the resulting flow vector f is tke basic solution corresponding to this basis.
Thus, a tree solution is a basic solution, and a feasible tree solution is a
basic feasible solution. In fact, the converse is also true.

- Theorem 7.4 A fow vector is a basic solution if and only if it is
. tree solution. e S

Proof. We have already argued that a tree solution is a basic solution.
Suppose now that a flow vector f is not a tree solution. We will show that it
is not a basic solution. Note that if Af # b, then f is not a basic solution
by definition. Thus, we only need to consider the case where Af = b. ,

Let § = {(4,7) € A| fi; # 0}. If the arcs in the set § do not form a
cycle, then there exists a set T of n— 1 arcs such that § C T, and such that
the arcs in T form a tree [cf. Assumption 7.1(b} and Theorem 7.2]. Since
fi = 0 for all (3,7} ¢ T, the fow vector f is the tree solution associated
with T, which is a contradiction.

Let us now assume that the set, § containg a cycle C and let h® be
the simple circulation associated with C. Consider the flow vector £ + hC,
We have Af = b and Ah® = 0, which implies that A(f + h®) = b.
Furthermore, whenever fij = 0 the arc (4, } does not belong to the cycle
C, and we have hg- = 0. We se= that all constraints that are active at the
vector f are also active at the vector £ + hC, Thus, the constraints that
are active at f do not have a unique solution, and f is not a basic solution

{cf. Theorem 2.2 and Definition 2.9 in Section 2.2). See Figure 7.12 for an
illusiration. O

Figure 7.12: (a) Part of & flow vector that satisfies Af = b. This
flow vector is not a tree solution because the acs (2,1), (3,1), and
(3,2) form a cycle C and carry nonzero flow. .b) The flow vector
f + h®. Active constraints {arcs that carry zero flow) under f
remain active under £ + h® ‘

xeuwruoneziwndo Jeaul|

284 Chap. 7 Network flow problems ;

"o summarize our conclusions so far, we have established the follow- |
ing: .
(a) Basic (feasible) solutions are (feasible) tree sclutions and vice versa,
{b) Every basis matrix is triangular when its rows and columns are suit-
ably reordered. E

{¢) Given a basis matrix B, the vector of basic variables B~'b can bej
easily computed, without the need to maintain B~ in a tableay.

As in the case of general linear programming problems, a basic feasible
solution can be degenerate. This happens if the Aow on some arc (¢,7) &
T turrs out to be 0. In this case, the same basic feasible solution may;
correspond to several trees. For example, the tree shown in Figure 7.10 leads]
to a degenerate basic feasible solution, because fg; = 0. A different trea)
that would yield the same basic feasible solution is obtained by replacing§
arc (6,7) by arc (5,7). \

Change of basis f

We wil now develop the mechanics of a change o basis. Recall that in}
a general linear programming problem, we first chosse a nonbasic variable]
that enters the basis, find how to adjust the basic variables in order t0]
maintan the equality constraints, and increase the value of the entering
variable until one of the old basic variables is about to become negative. Wej
specialize this procedure to the network cese. Picking a nonbasic variable
is the same as choosing an arc (4, 7) that does not belong to T. Then, the?
arc (4, /) together with some of the arcs in T form a cycle. Let us choose!
the orientation of the cycle so that (i, §) is a forward arc. Let F and B be]
the sets of forward and backward arcs in the cycle, respectively. If we are §
to increase the value of the nonbasic variable fij tc some 8, the old basic]
variables need to be adjusted in order not to violate the fiow conservation 1
constraints. This can be accomplished by pushing 9 units of flow around
the cycle. More precisely, fy, is increased idecreased) by # for all forward]
(backward) arcs of the cycle. The new flow variables fre are given by

) fre+8, H(kOEF,
fre =< fu—8, if (k,€) € B, 7.4) 4
Jre, otherwise, 3

We set # as large as possible, provided that all arc flows remain nonnegative. J
It is clear that the largest possible value of 8 is equal to

8" = min , (7.5) |
(i fre {7.5) :
except f B is empty, in which case we let * = cc. A varisble Sre that §
attains the minimum in Eq. (7.5) is set to zero and exits the basis. If]
fre = G for some arc (k,f) € B (which can happen if we start with a

Sec. 7.3 The network simplex algorithm 285

degenerate basic feasible solution), then the change of basis occurs without
any change of the arc flows. (For the example shown in Figure 7.10, if fsr
enters the basis, fg7 exits the basis and 0* =0.)

Calculation of the cost change

The cost change resulting fiom the above deseribed change of basis, is equal

to .
5*- Z Cre — Z Cre . (76)

(k£)EF (k.£}cB

Naturally, the variable f;; should enter the basis only if the value of the
expression {7.6) is negative

From the development of the simplex method for general linear pro-
gramming problems, we know that if the variable that enters the basis takes
the value &, then the cost changes by #* times the reduced cost of the en-
tering variable. Comparing with Eq. (7.6), we see that the reduced cost z;;
of a nonbasic variable f;; is given by

Cij = Z Cre — Z ke, (7.7)

(k,£jEF (k,0)eB

which is simply the cost of the cycle around which flow is being pushed.

We will now derive an alternative formula for the reduced costs that
allows for more eficient computation. Recall the general formula € =
¢ — p’A for determining the reduced costs, where p is the dual vector
given by p’ = ¢zB~!, B is the current basis matrix, and cp is the vector
with the costs of the basic variables. The dimension of p is equal to the
mumber of rows of A, which is n — 1, and we have one dual variable p;
associated with each node i # n. Suppose that (i, 5) is the kth arc of the
graph. Then, the kth entry of the vectors € and ¢ is equal to ¢;; and ¢,
respectively. The kth entry of p’ Ais equal to the inner product of p with
the &th column of A. From the definition of the node-arc incidence matrix,
the kth column of A has an entry equal to 1 at the ith row (if i < n), and
an entry equal to —1 at the jth row (if 7 < n). We conclude that

G — (p’l _pj)7 if 7’1..7 7& Ty
Ci; = €5 = Dis lfj =n, (78)
Cij +pj, if 2 =n.

Equation (7.8) can be written more concisely if we define p,, = 0, in which
case we have

€ij = ¢ci; — (P: — Ps)s V(i) eA (79)

It remains to compute the dual vector p’ = ¢zB~! associated with

the current basis. Since the reduced cost of every basic variable must be

xeuwruoneziwndo Jeaul|

286 Chap. 7 Network flow problems]

equal to zero, Eq. (7.9) yields

Pi—p; = ¢&;, V(i j)eT, N

n = 0. |‘7.10)]

The system of equations (7.10) is easily solved using the following proees 1
dure. We view node n as the root of the tree and set p, = 0. We thenj

go down the tree, proceeding from the root towards the leaves, with a uew
component of p being evaluated at each step; see Figure 7.13. '

Overview of the algorithm

We start with a summary of the network simplex algorithm and then pro+§
ceed to discuss some issues related to initialization and termination.]

The simplex method for uncapamtate& tietwork flow probl

1. A typical iteratmn sts.rts thh a ba,sm feasaé)le solutxon f
ated with a tree 7.

2.; To compute ‘the dual veemr p, solve the system of equ

»(7 10}:, by proeggding fﬁém the mot tewards "t;he leaves.

5
-vo«m‘ = 7

t&%{'g {immé brought mto the tiaéis

Mew*"

*;Eﬁhe“entmg,,a’m (t,}) and the arcs in. T fonn a umque cycteaa
- all ares’ i’:i»tﬁe cycie are oriented the same way as (3,4, then i
;’qptmnﬂ cost 15 —0q a\u& the algerithm temnnates .

_/ Let Bbe the set. ofams in the cycle that are onented in
.+ . oppuosite direction from (i,). Let 6* = miny hep fre, and pu
... 8" units of flow around the cycle. A new flow vector is determiné

“according to Eq. (7.4). Remove from the basis one of the oid b
. variables whose new value is emxal to 2070, . .

In the case where finding an initial basic feasisle solution is difficult, §
we may need to form and solve an auxiliary problem For example, for each 1
pair of source and sink nodes, we may introduce an auxiliary arc; finding }
a basic feasible solution in the presence of these arcs is straightforward. 3
Furtheimore, if the unit costs ¢;; of the auxiliary arcs are chosen large 3
enough, solving the auxiliary problem is equivalent to solving the original §
problem. i

The network simplex algorithm is similar to :he naive implementa-
tion described in Section 3.3. Because of the specia, structure of the basis 3
matrix B, the system ¢ = p’B can be solved on the fly, without the need
to maintain a simplex tablean or the inverse basis matrix B~1. For a rough }

Sec. 7.3 The network simplex algorithm 287

Figure 7.13: Once p; is computed, p; and px can also be com-
puted, because we have p; — p; = ci; and px — pi = cx;. Starting
from the roo: and continuing in this fashion, all dual variables can
be computed.

count of the computational requirements of each iteration, we need O(n)
computations to evaluate the dual vector p, O(m) computations to evalu-
ate all of the reduced costs, and another O(n} computations to effect the
change of basis. Given that m > n — 1, the total is O(m), which compares
favorably with the O(mn) computational requirements of an iteration of
the simplex method for gerecral linear programming problems. In practice,
the running time of the network simplex algorithm is improved further by
using a somewhat more clever way of updating the dual variables, and by
using suitable data structutes to organize the computation.

All of the tteory in Chapters 3 and 4 applies to the network sim-
plex method. In particular, in the absence of degeneracy, the algorithm
Is guaranteed to terminate after a finite number of steps. In the presence
of degeneracy, the algorithm may cycle. Cydling can be avoided by using
either a general purpose anticycling rule or special methods. If the optimal
cost is —oo, the algorithm serminates with a negative cost directed cycle.
(The simple circulation h® associated with that cycle is an extreme ray of
the feasible set, and ¢’h® < 0.) If the optimzl cost is fnite, the algorithm
terminates with an optimal flow vector f and an optimal dual vector p. In
practice, the number of iterations is often O(m), but there exist examples
involving an exporential number of basis chaages.

Example 7.3 Consider the uncapacitated network problem shown in Figure
7.14(a); the numbers next to each arc are the corresponding costs. Figure 7.14(b)
shows a tree and a corresponding feasible tree solution. Arc (4,3) forms a cycle
consisting of nodes 4, 3, and 5. The reduced cost T43 of f43 is equal to the cost of

xeuwruoneziwndo Jeaul|

288

Chap. 7 Network fow probIems.._i

Figure 7.14: (a) An uncapacitated network flow problem. Arc
cests are indicated next to each arc. (b) An iniial feasible tree
sclution. The are flows are indicated next to each are. (¢)-(d) Fea-
sible tree solutions obtained after the first and the second change
of basis, respectively.

Sec. 7.3 The network simplex algorithm 289

that cycle, which is c4z + cas — c45 = —1. We let arc (4, 3) enter the tree. Pushing
flow along the cycle atterpts to reduce the flow along the arc (4,5). Since this
was zero to start with (degeneracy), we have 8" = 0; the arc (4,5) leaves the tree
and we obtain the fzasible tree solution indicated in Figure 7.14{(c). The reduced
cost associated with arc (1,2) is c12 + c24 + ca3 — c13 = —1, and we let that arc
enter the tree. We can push up to one unit of flow along the cycle 1,2,4,3,1, that
is, until the flow along arc (1.3) is set o zero. Thus, 8" = 1, the arc (1,3) leaves
the tree, and we obtain the feasible tree solution indicated in Figure 7.14(d). It is
not hard to verify that all reduced costs are nonnegative and we have an optimal
solutiomn.

Integrality of optimal solutions

An important feature of network flow problems is that when the problem
data are integer, most quantities of interest are also integer and the simplex
method can be implemented using integer (as opposad to floating point)
arithmetic. This allows for faster computation and, equally important, the
issues of finite precision and truncation error disappear. The theorem that
follows provides a summary of integrality properties.

Theorem 7.5 Consider an uncapacitated network flow problem and
assume that the underly.ng graph is connected. '

(a) For every basis matrix B, the ratrix B~ has integer entries.

(b) If the supplies b; arz integer, then every basic solution has iziteger
coordinates. ,

(c) If the cost coefficients c;; are integer, then every dual basic solu-
tion has integer coordinates. -

Proof.

(a) As shown in the proof of Theorem 7.3, we can reorder the rows and
columns of & basis matrix B so that it becomes lower triangular and
its diagonal entries aie either 1 or —1. Therefore, the determinant of
B is equal to 1 or —1. By Cramer’s rule, B~! has integer entries.

(b) This follows hy inspecting the nature of the algorithm that determines
the values of the basdc variables (see the proof of Theorem 7.3), or
from the formula fr = B~ 1b.

{¢) This follows by inspecting the nature of the algorithm that determines
the values of the dual variables, or from. the formula p’ =cx B!, []

‘We now have the following important corollary of Theorem 7.5.

xeuwruoneziwndo Jeaul|

290 Chap. 7 Network flow problems

Corollary 7.2 Consider an uncspacitated network fow probless, and. .
assume that the optihal cost is finmite. -~ 7l 11 STIEE

- (a) - If all supplies by aze integer, there exists. an jotoger.optipal fow:
R R S SRR REREERPECE LIPS ST A At ISR EEEE
(k) I ail cost coeflicients ¢;; are integer, there exists an integer opti-s
~" mal solution to the dual problem. ' 1ottt e

‘‘‘‘‘

&

The simplex method for capacitated problems

We will now generalize the simplex method to the case where some of the
arc capacities are finite and we have constraints of ths form

dij < fiy <wy, (i,j) €A

There arz only some minor differences from the discussion earlier in this
section. For this reason, our development will be less formal.
Cousider a set ' C A of n—1 arcs that form a tree when their direction

is ignored. We partition the remaining arcs into two disjoint subsets D and
U. We let fi; = di; for every (i,7) € D, f;; = uy; forevery (i,7) € U, and 4

then solve the flow conservation equations for the remaining variables f;;,

(,7) € T. The resulting flow vector is easily shown to be a basic solution,
and all basic solutions can be obtained in this manuer; the argument is 1

gimilar tc the proofs of Theorems 7.3 and 7.4.

Given a basic feasible solution associated with the sets T, D, and U,
we evaluzte the vector of reduced costs using the sams formulae as befare,
and then examine the arcs outside T'. If we find an are (¢,j) € D whose
reduced cost is negative, we push as much flow as possible around the cycle
created by that arc. (This is the same as in our previous development.)
Alternatively, if we can find an arc (4,7) € U with positive reduced cost,
we push s much flow as possible around the cycle created by that arc, but
in the opposite direction. In either case, we are dealing with a direction of
cost decrease. Determining how much flow can be pushed is done as follows.
Let F' bethe set of arcs whose flow is to increase due to the contemplated
flow push; let B be the set of arcs whose flow is to deciease. Then, the flow
increment is limited by 0%, defined as follows:

8" = min {(Jﬁ)‘é‘B{f“ —dge}, (kIE)HelF{uH - fke}} . (7.11)

By pushing 6* uniss of flow around the cycle, there wil be at least one arc
{k,£) whose flow is set to either di, or uge. If the arc {k, £} belongs to T, it
is removed from the tree and is replaced by (4, 7). The other possibility is
that (k,£) = (4, 7). (For example, pushing flow around the cycle may result
in f;; being reduced from u;; to di;.} In that case, the set T remains the

Sec. 7.4 The negative cost cycle algorithm 291

same, but (4, j) is moved from U to D, or vice versa. In any case, we obtain
a new basic feasible solution. (In the preserce of degeneracy, it is possible
that the new basic feasible solution coincides with the old one, and only
the sets T', 12, or U change.) To summarize, the network simplex algorithm
for capacitated problems & as follows.

The simis’iéx method for capacitated network flow problems
1. A typical iteratior starts with a basic feasible solution f associ-
ated with a tree T, and a partition of the remaining arcs into
iwo sets D, U, such that fi; = dy; for (i,5) € D, and fi; = u;;
for (i,7) € U. - N TR
2. Solve the system of equations (7.10) for py, . ++1+Pn, by proceeding
from the root towards the leaves. ~ oot
8. Compute the redused costs &; = ¢ ~ (p; = 2;). of all ares (i, j) £
T. Mg, > 0 forall (3,5) € D, and z;; < 0 for all (i,7) € U,
the current basic Jeasible solution. is optimal and the algorithm
lerminates. - {‘;:{:::“&ii =
4. Let (i;5) be an arc such that &, < 0-and {3,5) € D, or such
that &; > 0 and (4,5) € U. This arc (%) together with the
tree T forms a unique cycle: Choose the otientation of the cycle
as follows. If (4, 5)-€ D, then {i,5) should be a forward arc. If
(i, 7)) e, then (#,7) should be a backward arc. .
5. Let F'and B be tte forward and backward arcs, respectively, in
_the cycle. Determine #* according to Eq. {7.11), Compute a new
flow vector, with components fiy, by letting

| feet0r, ik DeF,
Soe =€ fuo — 0%, if (k,£) ¢ B,
& fiets otherwise.

Finally, update the sets T', D, U.

7.4 The negative cost cycle algorithm

The network simplex algorithm incorporates a basic idea, which is present in
practically every primal method for network flow problems: given a current
primal feasible solution, find an improved one by identifying a negative cost
cycle along which flow can be pushed. QOne advantage of the simplex method
is that it searches for negative cost cycles using a streamlined and efficient
mechanism. A potential disadvantage is that a change of basis can be
degenerate, with no flow being pushed, and without any cost improvement.

In this section, we prasent a related, but different, algorithm, where
every iteration aims at a nonzero cost improvement. In particular, at every

xeuwruoneziwndo Jeaul|

292 Chap. 7 Network flow problems]

(&)

(b)

Figure 7.15: (a) A portion of & netwark, together with the values
of some of the flow variables. (b} The new arc flows after pushing
¢ units of flow around the cycle C.

iteration we push some flow around a negative cost cycle. The algorithm '
termingtes wher no profitable cycle can be identified. The method is jus- §
tified by a key result that relates the absence of profitable cycles with

optimality.

Motivation

Consider the portion of a network shown in F igure 7.15(z). Could the

flow vector £ given in the figure be optimal? The answer s no, for the

following reason. Suppose that we push & units of flew along the indicated |
cycle, where § is a positive scalar. Taking into account the direction of the]
arcs, the new flow variables take the values indicated in Figure 7.15(b). In {
particular, the flow on every forward arc is increasec by & and the flow on :
every backward arc is reduced by 6. Flow conservation is preserved, and

as long 1s § < 2, the constraints 0 < fij < wy; are respected, and the new 3

Sec. 7.4 The negative cost cycle algorithm 293

flow is feasible. The charge in costs is
c126 + 332(—5) + 346 + 614(—5) = —6,

which is negative, and f cannot be optimal. As this example illustrates, a
flow f can be improved i’ we can identify a cycle along which flow can be
profitably pushed.

Description of the algorithm

In this subsection, we present the algorithm of inlerest after developing
some of its elements. We assume that we have a network described by
a directed graph ¢ = (A, A), supplies b;, arc capacities u;;, and cost
coefficients ¢;;. Let C be a cycle, and let F and B be the sets of forward and
backward arcs of the cycl, respectively. Let h® be the simple circulation
associated with this cycle, that is,

1, if(i,j) e F,
hG=< -1, if(i,j) € B,
0, otherwise.

Let f be a feasible low vector and let § be a nonnegative scalar. If
we change f to f + §h®, we say that we are pushing & units of flow along
the cyele C. Since f is feasible, we have Af = b; since Ah® = 0, we obtain
A(f + 6h®) = b, and the flow conservation constraint is still satisfied. Tn
order to maintain feasibility, we also need

0< fij + éhg < gy,

that is,
0

0

fii + & < uyy, if (1,7) € F,
fig = 8 L uy, if (i,) € B.

Since § > 0 and 0 < f;; < wuyy, this is equivalent to

IA A

6 < uy— fi, if (i,7) € F,
6 < fi, if (1,7) € B.

Thus, the maximum amoint of flow that can be pushed along the cycle,
which we denote by §(C), is given by

If the set B is empty and if ui; = oo for every arc in the cycle, then there
are no restrictions on 8, and we set §(C) = o00. If fi; < u;; for all forward
arcs and f;; > 0 for all backward arcs, then §(C) > 0, and we say that the

xeuwruoneziwndo Jeaul|

294 Chap. 7 Network flow problems

cycle is unsaturated. For the cycle considered in Figure 7.15(a), we have
HC) =2.

We now calculate the cost change when we push a unit of flow aloag
a cycle C. Using the definition of hC, the cost change is

E Cij — _S_ Cij,

(i.j)eF (2.4} B

the cost of cyele C.

We zan now propose an algorithm which at each iteration looks for a
negative cost unsarurated cycle and pushes as much flow as possible along
that cycle.

Negative cost cycls algorithm -
1. Start with a feasible flow f.
2. ' Search for an unﬂa:urated cycle thh neg&m'e cost

8. Ifno unsaturated .cycle with negatwe cost can he found, the
- _akoﬁthmwmﬂaﬁes [

4] If 4 ;negaﬁ;ue mst imsatuéﬁed eycie C is founfi then: L
: ftg”’f If ﬁ(fC} € oo,.txmstmﬁn the new feaszble ﬂow £ +6(C)hC,

Py
®
[
o
e
&
i
-

S ib} If 6601} 69; the al?gorithm térmma.tea and t;he o;mma_l
‘ cost is —o0.

5
at
%,
- e

There are a few different issues that need to be discussed:
(a) How do we start the algorithm?
{b) How do we search for an unsaturated cycle with negative cost?

{c) If the algorithm terminates, dees it provide us with an optimal soh-
tion?

{d) Is the algorithm guaranteed to terminate?

These issues are addressed, one at a time, in the subsections that follow.

Starting the algorithm

As discussed in Section 7.2, every network flow problem can be converted
into an equivalent problem with no sources or sinks. For the latter problem,
the zero flow is a feasible solution that provides a starting point. As an
alternative, a feasible flow (if cne exists) can be consiructed by solving a
suitable maximum flow problem {Exercise 7.21).

Sec. 7.4 The negative cost cycle algorithm 295

The residual network

Suppose that we have a network G = (N, .A) and a ‘easible flow f. The
residual network is an auxiliary network G = (A, .4) with the same set of
nodes, but with different arcs and arc capacities. It is a convenient device
to keep track of the amount of flow that can be pushed along the arcs of
the original network.

Consider an arc (i, 7}, with capacity u, and let f;; be the current
flow through that arc. Then, f;; can be increased by up to wy; — fij, or
can be decreased by up to f;;. We represent these options in the residual
network by introducing an arc (7, j) with capacity w; — fi;, and an arc
(4,¢), with capacity fi;. Any flow onthe arc (j,4) in the residual network is
to be interpreted as a corresponding reduction of the flow on the arc (i,7)
of the original network.

We assign costs to the arcs of the residual network in a way that
reflects the cost changes in the original network. In particular, we associate
a cost of ¢;; with the arc (4 j} of the residual network, and a cost of —c¢;;
with the arc (4,4) of the residual network. [This is because a unit of flow
on the arc (7, 1) corresponds to a unit reduction of the Aow on the arc (i, §)
of the original network, and a cost change of —¢;;.] All supplies in the
residual network are set to zero, which implies that every feasible flow is a
circulation. Finally, we delete those arcs of the residusl network that have
zero capacity.

The construction of the residual network is shown in Figure 7.16. As
seen in the figure, the residual network may contain two arcs with the same
start node and the same enl node. In particular, the presence of two arcs
from ¢ to j indicates that we can push flow from i to j either by increasing
the value of f;; or by decreasing the value of f;;. Strictly speaking, this
violates our original definiton of a graph, but this turns out not to be a
problem.

Let f be a feasible flow in the original network and let £+ be another
feasible flow in the original retwork. The flow increment f can be associated
with a flow vector f in the residual network as follows.

(a) I Tij > 0, we let the flow fij on the corresponding arc (¢,7) in the
residual network be equal to f;;. Feasibility in the original network
implies that f,; < u;; — fi;, and f;; satisfies the capacity constraint
in the residual network.

(b) If f;; < 0, we let the flow f3: on the corresponding arc (7,1) in the
residual network be equal to —f,;. Feasibility in the original net-
work implies that —f . < fi; and therefore f;; satisfies the capacity

constraint in the residual network.

All variables f;; that are nct set by either (a) or (b) above are left at zero
value. See Figure 7.17 for an illustration.

xeuwruoneziwndo Jeaul|

296

(a)
(b)

()

Chap. 7 Network flow problems |

0< fig<ty

Figure 7.16: (a) Each arc of the original netwcrk leads to two
ares in the residual network. (b) A network and an associated
feasible flow. (c) The corresponding residual network, Note that
zero capacity arcs have been deleted.

We make the following observations:
‘We have fij > 0 for all ares in the residual network.

The flow f in the residual network is a circulaticn. This is because in :

the original network, we have Af = b = A(f +). Hence, Af =

which means that with the flow vector f, the net flow into any node i i |
is zero. Because of the way f was constructed the net flow into any |

node of the residual network must also be zero.

The cost of f in the residual network is equal to E(i, 7 cij?{j, which ig

the cost of f in the original network. This is beceuse for each arc with :

Tu > 0, we have an equal flow f” in a corresponding arc (¢, j} in the

residual network, and the latter arc has unit cest ¢;;. Furthermore, }§
for each arc with f” < 0 in the original network, we have a flow }

fJt = 7U in a corresponding arc (j,¢) in the rsidual network, and |

Sec. 7.4 The negative cost cycle algorithm 297

Figure 7.17: In this igure, the numbers next to each arc indicate
arc flows. (a; A feasibe flow £ in a network. (b} Another feasible
flow f +¥. (c) The flow increment F. Note that it is a circulation.
{d) The fiow in the residual network (only arcs with nonzero flows
are shown).

the latter arc has unit cost —e;;. Since (—ey)sz = c,-jfz-j, we see that
fi; and fj; incur the same cost.

The preceding arguments can be reversed. That is, if we start with a

feasible circulation f in the esidual network, we can construct a circulation
fin the original network such that f+f is feasible and such that ¢'F is equal
to the cost of f in the residual network.

We finally note that every unsaturated cycle in the original network
corresponds to a directed cyele in the residual network in which all arcs have
positive capacity and vice versa. Furthermore, the costs of these cycles in
their respective networks are equal. We conclude that the search for neg-
ative cost unsaturated cycles in the original network can be accomplished
by searching for a negative cost directed cycle in the residual network. In
Section 7.9, we show that the problem of finding negative cost directed
cycles in a graph can be solved in time O(n®); hence, the computational

requirements of each iteration of the negative cost cycle algorithm are also
O(n?).

xeuwruoneziwndo Jeaul|

298 Chap. 7 Neiwork flow problems

Optimality conditions

We now investigate what happens at termination of the negative cost cycle §
algorithm. If the algorithm terminates because it discovered a negative cost i,.
cycle with {(C) = oo, then the optimal cost is —oc. In particular, the flow
f+6hC isfeasible for every § > 0, and by letting § become arbitrarily large, |
the cost of such feasible solutions is unbounded below. 1

The algorithm may also terminate because no unsaturated negative |
cost cyclecan be found. In that case, we have an optimal solution, as shown §
by the next result.

Proof. One direction is easy. If C is an unsaturated cycle with negative 3
cost, then f 4+ §(C)h® is a feasible flow whose cost is less than the cost of 1
f, and so f is not optimal. &

For the converse, we argue by contradiction. Suppose that f is a §
feasible flow that is not optimal. Then, there exists another feasible flow |
f + T whose cost is less, and in particular, ¢'f < 0. As discussed in the
preceding subsection, it follows that there exists a feasible (in particular, -
nonnegative) circulation f in the residual network whose cost is negative. To 1
prove that this circulation implies the existence of a nsgative cost directed |
cycle in the residual network, we need the following important result. '

Lennm '! 1 (l‘-’law éecampositxon theorem) Lef > 0 be ananze«
10 circulation: - Then, ‘there exist simple c:rculatxons | LI .8 mm}w
‘ ‘Lng xmf‘? &u'wardarcs, and pomtjve scaiars al, ,ah, such that

L _wﬁzx'Ea.,-f,i.

' Furthe:more, 1f £is. an mteger vector, t;hen eacb a4 can be chosen m
be an znteger. o

Proof. See Figure 7.18 for an illustration.) If f is the zero vector, the '
result is trivially true, with £ = 0. Suppose that f is ronzero. Then, there 1
exists some arc (i, j) for which f;; > 0. Let us traversearc (%,). Because of
flow conservation at node j, there exists some arc (j,}) for which fjx > 0. |
We then traverse arc (7, k) and keep repeating the same process. Since there |
are finitely many nodes, some node will be eventually visited for a second]
time. At that point, we have found a directed cycle with each arc in the 1
cycle carrying a positive amount of flow. Le: f! be the simple circulation §

Sec. 7.4 The negative cost cycle algorithm

Figure 7.18: Illustretion of the flow decomposition theorem.
The numbers next to each arc indicate the value of the correspond-
ing arc flows. Arcs with zero flow are not shown. {a) A nonneg-
ative circulation £. (b) The circulation e;f'. (c¢) The remaining
flow £ — a1f!. (d) The circulation a2f?. (e) The remaining flow
f—aif! — aof? is a simole circulation and we let asf® be equal to
it.

xeuwruoneziwndo Jeaul|

300 Chap. 7 Network flow problems |

corresponding to that cycle. Let a1 be the mininum value of f;;, where i
the nminimum is taken over all arcs in the c¢ycle, and consider the vector 3
f =1 — a,f'. This vector is nonnegative because of the way that a; was]
chosen. In addition, we have Af = 0 and Af ! = 0, which implies that
Af = 0 and f is a circulation. By the deﬁmtlon ofa;, there exists scme arc.
{k, £y on the cycle for which fi, = a; and fkg = 0. Therefore, the number of
positive components of f is smaller than the number of positive components |
of f. We can now apply the same procedure to f, to obtain a new simple]
circulation £2, and continue similarly. Each time, the number of arcs that |
carry positive flow is reduced by at least one. Thus, after repeating this }
procedure a finite number of times, we end up with the zero flow. When *'
this kappens, we have succeeded in decomposing [as a nonnegative linear
comtination of simple circulations. Furthermore, since all of the cycles]
constructed were directed, these simple circulations involve only forward {
arcs. i

If f is integer, then a; is integer, and f is ¢lso an integer vector. It §
follows, by induction, that if we start with an integer flow vector f, all]
flows produced in the course of the abcve procedure are integer, and all §
coefficients a; are also integer. This concludes the proof of Lemma 7.1. 3}

We now apply Lemma 7.1 to the residual network. The circulation F §
can be decomposed in the form 1

f = Z aé?i,

wher: each fi is a simple circulation involving only forward arcs, and each j
a; is positive. Since f has negative cost, at least one of the circulations £
must also have negative cost; hence, the residua. network has a negative }
cost directed cycle. As discussed in the preceding subsection, this implies 1
that the original network contains a negative cost unsaturated cycle, and }
the groof of Theorem 7.6 is now complete. ‘

Termination of the algorithm

Before concluding that the algorithm is correct, we need 2 guarantze that
it will eventually terminate. This is the subject o’ our next theorem.

Theorem 7.7 Suppose that all arc capacities u;; are integer or in-
finite, and that the negative cost cycle algorishm is initialized with |
an integer feasible flow. Then, the arc flow variables remain integer
throughout the algorithm and, if the optimal cost is finite, the a.1g0~
rithm terminates with an integer optimal solution.

Sec. 7.5 The maximun flow problem 301

Proof. If the current flow I is integer, then §(C) is integer or infinite, for
every cycle C. Hence, the flow obtained after one iteration of the algorithm
must also be integer, and integrality is preserved.

At each iteration, before the algorithm terminates, we have a cost
reduction of §(C)|c’h®], where C is the negative cost cycle along which
flow is pushed. Since #(C) > 1, this is no smaller than » = minp [¢'h”|,
where the minimum is taken over all negative cost cycles D. Thus, each
iteration of the algorithm reduces the cost by at least v, which is positive.
It follows that if the optimal cost is finite, the algorithm must terminate
after a finite number of iterations. O

Note that Theorem 7.7 establishes an integrality property of optimal
solutions. This is the same conclusion that was reached in Corollary 7.2(a),
for standard form problems.

Surprisingly, and unlike the simplex methoc, if the arc capacities
are not integer, the algo-ithm is not guaranteed to terminate, even if the
optimal cost is finite. One possibility is that the algorithm makes an infinite
number of steps, each step results in lower costs, but the cost reductions
become smaller and smaller, and the cost of the current flow does not
converge to the optimal cost. Tt turns out that finite termination can be
guaranteed under specia. rules for choosing between negative cost cycles.
Two possible rules that are known to lead to finite termination are the
following:

{a) Largest improvement rule: Choose a negative cost cycle for which
the cost improvement §(C)|c’h®| is largest. Unfortunately, finding
such a cycle is difficult. See Exercise 7.16 for an upper bound on the
number of iteratiors.

{b) Mean cost rule: Choose a negative cost cyele for which |¢'h®|/k(C)
is largest, where k(C) is the number of arcs in cycle C. Tt turns out
that the search for such a cycle is not too difficult (Exercise 7.37).

When the optimal cost is —oo, the algorithin may fail to terminate
after a finite number of iterations, even if the arc capacities are integer. For
this reason, one should verify that the optimal cost is finite before starting
the algorithm; & simple criterion is developed in Exercise 7.17.

7.5 The maximum flow problem

In the maximum flow problem, we are given a directed graph G = (V,.4)
and an arc capacity bound u;; € [0, o] for each arc (3, j) € A. Let s and £ be
two special nodes, called the source and sink node, respectively. The prob-
lem is to find the largest possible amount of flow that can be sent through
the network, from s to £ We will see shortly that this is a special case of
the general network flow problem. On the other hand, special purpose al-
gorithms are possible, because of the simple structure of the problem. The

xeuwruoneziwndo Jeaul|

302 Chap. 7 Network flow problems |

maximum flow problem arises in a variety of applications. Some are rather ;
obvious (e.g., maximizing throughput in a logistics network), while others}
are less expected; see the example that folows.

Example 7.4 (Preemptive scheduling) We are given m identical machines]
and n jobs. Each job j must be processed for a total of pj periods. (We assume;
that each p; is an integer.) However, we allow preempticn. That is, the processing§
of a job can be broken down and can be carried out by different machines in
differest periods. Each machine can only process one job at a time, and a job{
can only be processed by a single machine at a time. In addition, each job #4
is assoriated with a release time r; and a deadline d; processing cannot starg’
before period r;, and must be completed before period d;. Naturally, we assume]
that r;+p; < d; for all jobs j. We wish to desermine aschedule whereby all joba)
are processed, without violating the release times and deadlines, or show that noj
such schedule exists. 3

We will now construct a maximum flow formulation of the problem. The
first step is to rank all the release times and deadlines in ascending order. The re-}
sulting ordered list of numbers divides the tims horizon nto a number of nonover-]
lapping intervals. Let Ty; be the interval that starts in the beginaning of period & §
and ends in the beginning of period {. Note that during each interval Tii, the set?
of jobs that can de processed does not change. In particular, we can process any |
job j that has been released (r; < k) and its deadline has not yet been reached]
{{ < d;). For a concrete exampie, suppose that we have four jobs with releagse
times 3, 1, 3, 5, and deadlines 5, 4, 7, 9. The ascending list of release times and j
deadlines is 1,3,4,5,7,9. We then obtain five intervak, namely, Tis, Thq, Tas, §
T57) and TTQ. .

We construct a network involving a sowrce node ¢, a sink node ¢, a node
corresponding to each job j, and a node corresponding to each interval Ty, The ;
arcs and their czpacities are as follows. For svery job j, we have an arc (s,7),
with capacity p;. We interpret the flow along this arc as the number of periods }
of processing that job 7 receives. For every node Ty;, weintroduce an arc {1k, 1),
with cepacity m(l — k). The flow along this arc repiesents the total number 3
of machine-periods of processing during the interval Ty;. Finally, if a job j is 3
available for processing during the interval T, that is, if ri k<l <dy, we §
introduce an arc (§, Tr:), with capacity ! — k. The flow along this arc represents §
the number of periods that job j is processed during thisinterval. See Figure 7.19 §
for an illustration. It is not hard to show that every feasble schedule corresponds }
to a flow through this network, with value Z?:I p;, ard conversely. Therefore, ‘
the scheduling problem can be solved by solving a maximum flow problem, and 1
checking whether the resulting maximum flow value is «qual to 22:1 Py '

Mathematically, the maximum flow problem can be formulated as
follows '
maximize b,
subject to Af = b
bt = _bs
bi - U, Vi ?é 8, ta
0 < fij < uyy,

Sec. 7.5 The maximum flow problem 303

Figure 7.19: The structure of the network asseciated with the
preemptive scheduling problem. The number next to each arc in-
dicates its capacity. The arc from node § to node (k,!) is present
only if r; <k <1l <d;.

Note that, in contrast to the network flow problems considered earlier,
b, is a variable to be optimized. Any flow vector f satisfying the above
constraints is called a feasible flow and the corresponding value of b, is
called the value of that flow.

The maximum flow problem can be reformulated as a network flow
problem, as follows (see Figure 7.20 for an illustration). We let the cost
of every arc be equal to zero and we introduce a new infinite capacity arc
(t,s), with cost ¢, = —1. Minimizing 3 (ij) €3 fi In the new network is
the same as maximizing tte flow f;, on the new arc. Since the flow on the
arc (t, s) must return from s to ¢ through the original network, maximizing
Jis is the same as solving the original maximum flow problem.

‘:ix:-i) .ufsé@ R

Figure 7.20: Reformulation of the maximum flow problem as a
network flow problem

Once the maximumn flow problem is formulated as a network fow
problem, the negative cost cycle algorithm of Section 7.4 can be applied, and
this is one way of deriving tae main algorithm in this section {Exercise 7.18).
However, our derivation will be self-contained.

xeuwruoneziwndo Jeaul|

304 Chap. 7 Network flow problems

Figure 7.21: Let all arc capacities be equal t> 1. The numbers
next to each arc indicate the values of the arc flows. Note that
up to one unit of additional flow can be pushed along the path
indicated by thatched arcs.

Consider she flow illustrated in Figurs 7.21. Its value can be increased

by pushing additional flow along the path consisting of the arcs (s, 2), (1,2),
(1,£). Note that arc (1,2) is a backward arc of that path; pushing & units 3
of flow along ths path, reduces the How along arc (1,2) by 6. The definition
that fcllows deals with paths of this type, through which additional flow]
can be pushed. ‘

Definition 7.2 Let f be a feasible flow vector. An augmenting pathz
is a path from s to t such that f;; < u;; for all forward arcs, and fis > 0%
for &ll backward arcs on the path.

Suppose that we have a feasible flow and that we have found an ;
augmenting path P. We can then increase the flow along every forward
arc, decrease the flow along every backward arc by the same amount, and]
still sasisfy all of the problem constraints; we then say that we are pushing }
flow along the path P, or that we have a jflow augmentation. The amount 4
of flow pushed along P can be no more than §(P), defined by

5(P) = mi in (i — fis ; 7.13) §
(P) mm{(gljl)lgﬁ,(uj Jii)s (HBfJ} ()5

where ' and B are the sets of forward and backward arcs, respectively,
in the augmenting path. If the augmenting path consists exclusively of 3
forward arcs, and if all arcs on the path have infinite capacity, then there is §
no limit on the amount of flow that can be pushed, and we have §(P} = oo
For the example in Figure 7.21, we have §(P) = 1. ,

We now introduce a natural algorithm for the maximum flow problem. §

Sec. 7.5 The maximum flow problem 305

The Ford-Fulkerson algorithm
_1; Start with a feasible flow f.
 Search for an augmenting path.
3. If no augmenting path can be found, the a.lgorithm terminates.
4. If an augmenting path P is found, then:
(a) If §(P) < oo, push 6(P) units of flow along P, and go to
Step 2.
(b) If {(P) = o, the algorithm terminates.

If the algorithm terminates because 5{(P) = oo, we have found an
augmenting path without capacity limitations and, using that path, an
arbitrarily large amount of flow can be sent to the sink.

We now address the termination properties of the algorithm.

Thecrem 7.8 Suppose that all arc capacities u;; are integer or infi-
nite, and that the Ford-Fulkerson algorithm is initialized with an inte-
ger flow vector. Then, the arc flow variables remain integer throughout
the algorithm and, if the optimel velue is finite, the algorithm termi-
nates after a finite nurmber of steps.

Proof. This result can be derived as a corollary o Theorem 7.7 in Sec-
tion 7.4. For a self-contained proof, note that if we have an integer feasible
flow, and if all arc capacities are integer or infinite, then §(P) is integer or
infinite. Thus, integrality of lows is maintained throughout the algorithm.
Every iteration of the algorithim increases the value of the flow by at least
1 [since 8(P) is integer|. Hence, either the value of the flow increases to
infinity, or the algorithm must terminate. |

Example 7.5 Consider the network shown in Figure 7.22(a} and let us start
with the zero flow. The pati consisting of the thatched arcs in Figure 7.22(b) is
an augmenting path, with é(P) = 1. After a flow augmentation, we obtain the
flow indicated. The path censisting of the thatched ares in Figure 7.22(c) is an
augmenting path, with §(P} = 1. By continuing similarly, and after a total of
four flow augmentations, weobtain the flow shown in Figure 7.22(e), whose value
is equal to 6. At this point, no augmenting path can be found. In fact, this flow
must be optimal because the total capacity of the arcs leaving node s is equal to
6, and this is a bottleneck that cannot be overcome.

If the arc czpacities are rational numbers, the algorithimn is again gnar-
anteed to terminate after a finite number of iterations. This is because we
can multiply all arc capacities by their least common denominator, and

xeuwruoneziwndo Jeaul|

306 Chap. 7 Network flow probleng

I A

aREseh e RABIGABEE
45

Figure 7.22: Hlustration of the Fora-Fulkerson algorithm. The
mmbers next to the arcs in part {a) are arc capacities. We start
with the zero flow. (b)-(e) In each case, we identify the augmenting
indicated in the figure, and push as much flow as possible. The
mumbers next to the arcs correspond to the arc flows after the flow
augmentation. The flow indicated in part {e) is optimal.

Sec. 7.5 The maximum flow problem 307

obtain an equivalent problem with integer arc capacities. However, if the
grc capacities are not rational, there exist examples for which the algo-
rithm never terminates. In sarticular, even though the value of the flow is
monotonically increasing, its limit can be strictly less than the optimal.

For the non-rational case, the Ford-Fulkerson algorithm can be made
to terminate after a finite number of iterations, if one uses special methods
for choosing an augmenting path. For example, if ore looks for an aug-
menting path with the least possible number of arcs, then the algorithm
can be shown to terminate after O(|A| - ||} iterations.

If the algorithm does ;erminate, it provides us with an optimal solu-
tion. This fact can be obtamed as a corollary of the optimality conditions
in Section 7.4. A self-contained proof using different ideas will be provided
shortly. However, we will fitst discuss some issues related to the search for
an augmenting path.

Searching for an augmenting path

The search for an augmenting path can be carried out in a fairly simple
manner, using a method known as the labeling algorithm.

Suppose that we have a feasible flow f. Consider a path from the
source s to some node k, such that f;; < w;; for all forward arcs on the
path, and f;; > 0 for all backward arcs on the path; we say that this is an
wnsatyrated path from s tok. Such a path can be used to push additional
flow from node s to node k, without violating the capacity constraints.
Note that an unsaturated path from s to ¢ is the same as an augmenting
path.

Let us say that a node 7 is labeled if we have determined that there
exists an unsaturated path from s to 7.

{(a) Suppose that node # is labeled, that we have an unsaturated path P
from s to 4, and that (i, j) is an arc for which f;; < u;;. We may then
append arc (4, §) to the path P, and obtain an unsaturated path from
s to j. Thus, node j can also be labeled.

(b) Similarly, if we have an unsaturated path P from s to ¢, and if (,1) is
an arc for which f;; > 0, we may append arc (7, %) to P (as a backward
arc), and obtain an unsaturated path from s to j. Then, node j can
be labeled.

The process of examining all nodes j neighboring a given labeled node i,
to determine whetaer they can also be labeled, is called scanning node 4.
We now have the following algorithm, where I is the set of nodes that have
been labeled but not yet scanned.

xeuwruoneziwndo Jeaul|

308 Chap. 7 Network flow problems |

The labeling algor:thm

only labeled node. St
2. A typical iteration starts with a set I of labeled, hut not 3
scanned nodes. ¥t € I ar if I = @, the algorithm. terminat
Otherwise, choose a node i € T to be scarned, ami J:ezmwé
from the set 1. Examine all arcs of the form (i, j} or (4} .
8. If (i,5) € A, fij < uij, and j is unlabeled, then label , and aﬁ
j to the set I.
4. If (j,i) € A, f; > 0, and § is unlabeled, then label j, and adé 7
to the set 1. :

Note that a node enters the set I only if it changes from unlabeled:

to labeled. Therefore, a node can enter the set I at most once. Since each]
iteration removes a node from the set I, the algorithm must eventuallye

terminste. We distinguish between two different possibilities.

(a) Suppose that the algorithm terminates becamse node ¢ has been la-§

beled. Then, there exists an unsaturated pathfrom s to ¢, that is, an
augmenting path. That path can be easily recovered if we do some;
extra bookkeeping in the course of the labeling algorithm, as follows.

Whenever a node j is labeled while scanning a previously labeled node
i, we record node 7 as the parent of 7. At the end of the algorithm,

w2 may start at node t, go to its parent, then to its parent’s parent,

etc., until we reach node s; the resulting path is an augmenting path

from s to 1.

(b) The second possibility is that the algorithm terminates because the}
set I is empty. We will now argue that this implies that there exists;
no augmenting path. Let S be the set of labeled nodes at termination, |
and suppose that there exists an augmenting path. Since s € 5 and$

t ¢ 8, it follows that there exist two consecutive nodes ¢ and § on]

tle augmenting path, such that i € § and 7 ¢ S, Since ¢ and § arej
consecutive nodes of an augmenting path, we have either (4, j) € A
and fi; < wyj, or (4,4) € A and f;; > 0. In ether case, we see that]
node j should have been labeled at the time that node ¢ was scanned._

This is a contradiction and shows that no augmenting path exists.

Example 7.6 Consider the network shown in Figure 7.23. The labeling algo~]

rithm operates as follows:
1. I={s}. Node s is scanned. Nodes 1, 2 are labeled.
2. I={1,2}. Node 1 is scanned. Node 4 is labeled.
3. I={2,4}. Node 4 is scanned. No node is labeled.
4. I={2}. Node 2 is scanned. Node 3 is labeled.

Sec. 7.5 The maximum flow problem 309

2 u=4

f=

Figure 7.23: The network in Example 7.6 together, with a fea-
sible fow.

5. I ={3}. Node 3 is scanzed. Node t is labelsd.

Since node t is labeled, we conclude that there exists an augmenting path, which
can be obtained by backtrackiig, as follows. Node ¢ was labeled while scanning
node 3. Node 3 was labeled while scanning node 2. Node 2 was labeled while
scanning node s. This leads us to the augmenting path s,2, 3, ¢.

We conclude our analysis of the labeling algorithm with a brief dis-
cussion of its complexity. Every node is scanned at most once, and every
arc is examined only when one of its end nodes is scanned. Thus, each
arc is examined at most twice. Examining ar arc entails only a constant
(and small} number of arithmetic operations. We conclude that the com-
putational complexity of the algorithm is proportional to the number of
arcs.

We now formally record our conclusions so far.

Theorem 7.9 The Iabeling algorithm runs in time O([.Al) (At termi-
nation, the node ¢ is labekd if and on!y if them ex;sbs an augmentmg
path o : :) "’

Cuts

We define an s-t cut as a subset S of the set of nodes A, such that s € §
and £ ¢ S. In our context, the nodes s and ¢ are fixed, and we refer to S
as simply a cut. We define the capacity C(S) of a cut S as the sum of the
capacities of the arcs that cross from S to its complement, that is,

C(S) = Z ‘M,‘j

{(i.4)EA | i€8, j¢S}

xeuwruoneziwndo Jeaul|

310 Chap. 7 Network fow problems |

Wi

b A s B

Figure 7.24: Theset 5 = {s,1,2,3} is a cut. The capacity of
this cut is was + w14 + uas + uss.

(see Figure 7.24). Any flow from s to ¢ must at some point cross an are}
(¢,7) with i € S and j ¢ §. For this reason, the valus v of any feasible flow}
satisfies

v £ C(8), (7.141%

for every cut. Ir essence, each cut provides a potertial bottleneck for th‘
maximtm flow. Our next result shows that the value of the maximum flow$
is equal to the tightest of these bottlenecks. :

Theoremtio B
(a). If the Ford-Fulkerson algorithm terminates because no augmerits
.. ing path can be found, then the current flow is optimal.

(b) (Max-flow min-cut theorem) The value of the maximum fi
is equal to the minimum cut capacity.

Proof. (a) Suppose that the Ford-Futkerson algarithm has terminated
because it failed to find an augmenting path. Let & be the set of labeled §
nodes at termination. These are the nodes i for which there exists an
unsaturated path from s to . Since the search for an augmenting path ;
starts by labeling node s, we have s € 5. On the other hand, since no ;
augmenting path was found, node t is not labeled. Therefore, the set Sis a !
cut. For every arc (7,7) € A, with i € S and j ¢ S, we must have fi; = u;;. |
(Otherwise, node j would have been labeled by the labeling algorithm.) 3
Thus, tie total amount of flow that exits the set S is equal to C'(S). In 1
addition, if (i,7) € A, with ¢ ¢ § and j € S, then f;; = 0. (Otherwise,

node ¢ would have been labeled by the labeling algotithm.) Thus, the flow }
crossing from S to its complement cannot return to S, and must exit at]
the sink node t; see Figure 7.25. This establishes that the value of the |

Sec. 7.5 The maximum dow problem 311

/\

Figure 7.25: Let § and S be the sets of labeled and unlabeled
nodes, respectively, at termination of the Ford-Fulkerson algorithm.
Since j is not labeled, we must have fi; = u.;. Since k is not
labeled, we must have fry = 0. In particular, all flow moves from s
to the rest of S, then t» nodes in §, and finally exits at ¢.

flow from s to t, when the Ford-Fulkerson algerithm terminates, is equal to
C(S). Since the value of the maximum flow can be no higher than c(S)
[cf. Eq. (7.14)], we conclude that at termination of the Ford-Fulkerson
algorithm, an optimal flow & obtained.

(b) If the optimal value of the flow is infinite, it is not hard to see that
there must exist a directed path P from s to t (consisting only of forward
arcs}, such that every arc in P has infinite capacity. For every cut S, there
is an arc {i,j) on the path P such that i € § and j ¢ S. Since that arc has
infinite capacity, we conclude that C(S) = co. Since this is true for every
cut, we conclude that the minimum cut capacity is infinite and equal to the
maximum flow value.

Suppose now that the optimal value, denoted by v*, is finite. This
implies that there exists an >ptimal solution, that is, a flow whose value is
v*. Let us apply the Ford-Fulkerson algorithm, starting with an optimal
flow. Due to optimality of the initial flow, no flow augmentation is possible,
and the algorithm terminates with the first iteration. Let S be the set of
labeled nodes at termination, as in part (a). From the argument in the
proof of part (a}, it follows that C'(S) = v*. On the other hand, we have
vt < C(8') for every cut §'. It follows tha: C(S) is the minimum cut
capacity and is equal to the value of a maximum flow. O

The proof of the max-flow min-cut theorem did rely on the details
of the Ford-Fulkerson algorithm. Oa the other hand, since this theorem
relates the optimal values of two optimization problems, one being a mini-
mization and the other beiny a maximization problem, it is reminiscent of

xeuwruoneziwndo Jeaul|

312 Chap. 7 Network flow problems

the duality theorem. Indeed, the max-flow min-cut theorem can be proved
by constructing a suitable pair of linear programming problems, dual to
each other, and then appealing to the duality theorem (Exercise 7.20).

The complexity of the Ford-Fulkerson algorithm

We close with a discussion of the computaticnal complexity of the Ford- i
Fulkerson algorithm. We assume that every arc capacity is either integer or]
infinite, and that the maximum flow value is finite. Let U be the largest of]
those arc capacities that are finite. The capacity of any cut is either infinite §
or bounded above by |A| - U. If the maximum flow value is finite, there
exists at least one cut with finite capacity, and the value is bounded above '
by |.A|-U. Therefore, there can be at most, [A|-U flow augmentations. Since |
each flow augmentation involves O(|A|) computations (to run the labeling §
algorithm), the overall complexity of the algorithm is O i(|A32-U) Under the |
stronger assumption that all arcs outgoing from node s have finite capacity,
the maximum flow value can be bounded above by [N - U, by focusing on |

these arcs. The complexity bound then becomes O(|A - [N - U).

The linear dependence of our complexity estimate on U is unappeal- §
ing, espedally if [/ is a large number. Exercise 7.25 develops a related |
algorithm whose complexity is proportional tc the logarithm of U. The key 1
idea is to scale the arc capacities, leading to a new problem with smaller !
arc capacities, which is easier to solve, and whose optimal solution provides 4

a near-opiimal solution to the criginal problem.

There is an alternative methed that eliminates the dependence on '

U altogether. As mentioned earlier, if we always choose an augmenting
path witt the least possible number of arcs. the nunber of iterations is

O(|A| - |¥1), which implies that the complexity is O(| A2 - |N]). With

proper implementation, this complexity estimate can be further reduced.

7.6 Duality in network flow problems

Tn this section, we examine the structure of the dual of the network flow |
problem. For simplicity, we restrict ourselves to the uncapacitated case. We §
provide interpretations of the dual variables, of complementary slackness, |
and of the duality sheorem. Throughout this section, we let Assumption 7.1 §
be in effect; that is, the network is assumed to be connezted and the supplies :

satisfy >, 0 =0.

The dual problem

The dual of the uncapacitated network flow problem i
maximize p’b
subject to p'A <c'.

Sec. 7.6 Duality in network flow problems 313

Due to the structure of A, the dual constraints are of the form
Pi —Pj < Cij, (4,5) € A

Suppose that {p1,...,pn) is adual feasible solution. Let # be some scalar
and consider the vector (p1 +6,...,p, +8). It is clear that this is also a
dual feasible solutior. Furthermore, using the equality Zz‘e b= 0, we

have n R
Z(p1'+9)bi = Zpibi—FGZbi = Zpib,‘,.
i=1 i=1 =1 =1

Thus, adding a constant to all components of a dual vector is of no conse-
quence as far as dual feasibility or the dual objective is concerned. For this
reason, we can and will assume throughout this section that p, has been
set to zero. Note that this is equivalent to eliminating the (redundant} flow
conservation constraint for node n.

According to the duality theorem in Chapter 4, if the original problem
has an optimal solution, so does the dual, and the optimal value of the
objective function is the same for both problems. The example that follows
provides an interpretation of the duality theorem in the network context.

Example 7.7 Suppose that we are running a business and that we need to
transport a quantity & > 0 of goods from each node + = 1,...,n — 1, to node
7 through owr private network. The solution to the corresponding network flow
problem provides us with the best way of transporting these goods.

Consider now a transportation services company that offers to transport
goods from any node ¢ to node 2, at a unit price o p;. If (#,7) is an arc in our
private network, we can always transport some goods from i to j, at a cost of
¢i; and then give them to the transportation services company to transport them
to node n. This would cost us =; + p; per unit of goods. The transportation
services company knows b and c. It wants to take over all of our transportation
business, and it sets its prices so that we have no incentive of using arc (¢, 7). In
particular, prices are set so that p; < ¢;; + p;, and p,. = 0. Having ensured that
its prices are competitive, it now tries to maximize its total revenue Z'.’fll pibi.
The duality theorem asserts thai its optimal revenue is the same as ourigptimal
cost if we were to use our private network. In other words, when the prices are
set right, the new options opened up by the transportation services company will
not result in any savings on our part.

Sensitivity

We now provide a sensitivity interpretation of the dual variables. In order
to establish a connection with the theory of Chapter 5, we assume that we
have eliminated the flow conssrvation constraint associated with node n,
and that the remaining equality constraints are linearly independent.
Suppose that f is a nondsgenerate optimal basic feasible solution, as-
sociated with a certain tree, and let p be the optimal solution to the dual.

xeuwruoneziwndo Jeaul|

314 Chap. 7 Network flow problems §

Consider some node i # n and let p; be the associated dual variable. Lety
us change the supply b; to b; + ¢, where ¢ is a small positive number, whilej
keeping the supplies bo,...,b,—1 unchanged. The condition Siib= |
then requires that b, be changed to b, — ¢, but this only affects the nthy
equality constraint which has already been omittel. As long as we insigh
on keeping the same basis, the only available option is to route the suppli
increment ¢ from node i to the root node n, along the unique path dete
mined by the tree. Because of the way that dual variables are calculated
[cf. Eq. (7.10) in Section 7.3], the resulting cost charge is precisely ep;. Th !
is in agreement with the discussion in Chapters 4 aad 5, where we saw that]
a dual variable is the sensitivity of the cost with respect to changes in thel
right-tand side of the equality constraints. 3

By following a similar reasoning, we see that if we increase b; by eg
decrease b; by ¢, keep all other supplies unchanged, and use the same basis,g
the resulting cost change is exactly e(p; —p;), in the absence of degenerac &
and for small e. We conclude that, in the absence of degeneracy, p, — pj
is the marginal cost of shipping an additional unit of flow from node i tag
node 7.

Complementary slackness

The complementary slackness conditions for the minimum cost networ .{
flow problem are the following:
(a) It p; # 0, then [Af]; = b;. This condition is automatically satisfied
by any feasible flow f.

(b} It f;; > 0, then p; —p; = cij- This condition is interpreted as follows.:;‘
We have p; — p; < c¢;j, by dual feasibility. If ; — p; < ¢;;, then there ;

is a way of sending flow from ¢ to j, which is less expensive than using }

arc (i, j}. Hence, that arc should not carry any flow.

From Theorem 4.5 in Section 4.3, we know taat f is primal optimal]
and p is dual optimal if and only if f is primal feasiblz, p is dual feasible, and f
complementary slackness holds. Consider now Figure 7.26, which captures :
the dual feasibility constraint p; — p; < ¢;;, the nonnegativity constraint
fij 2 €, and the second complementary slackness condition. We then obtain _
the folowing result. |

Theorem 7.11 For any uncapacitated network dow problem, the foI-«
lowing are equivalent.

(a) The vectors £ and p are optimal solutions to the primal and the:
dual problem, respectively.

{b) The vector f satisfies the flow conservation equatzon Af = b, and

for every arc (4,7), the pair: (p, - i, fi,) satrsﬁes the relations
indicated by Fxgure 7’26

Sec. 7.6 Duality in network flow problems 315

Figure 7.26: Iustration of the complementary slackness condi-
tions. For any arc (%, §), the pair {p; —p;, fi;)} must lie on the heavy
line.

A circuit analogy

We now draw an analogy between networks, as defined in this chapter,
and electrical circuits. We visualize each node in the network as a place
where several “wires” meet, and each arc as a two-terminal circuit element
through which current may flow. Let us think of f;; as the current on arc
(t,7), and let b; be the current pumped into the circuit at node , by means
of a current source. Then, :he flow conservation equation Af = b amounts
to Kirchofl’s current law. _et us view p; as an electric potential. In these
terms, Figure 7.26 specifies a relation between the “potential difference”
P — p; across arc (1,7) ard the current through that same are. Such a
relation is very much in the spirit of Ohm’s law {potential difference equals
current times resistance) except that here the relation between the potential
difference and the current ‘s a bit more complicated.

In circuit terms, Theorem 7.11 can be restated as follows. The vectors
f and p are optimal solutions to the primal and dual problem, respectively,
if and only if they are equal to an equilibrium state of an electrical circuit,
where each circuit element is described by the relation specified by Fig-
ure 7.26. I circuit elemen:s with the properties indicated by Figure 7.26
were easy to assernble and calibrate, we could build a circuit, drive it with
current sources, and let it come to equilibrium. This would be an analog
device that solves the network flow problem. While such devices do not
seem promising at present, the conceptual connections with circuit theory
are quite deep, and are vslid in greater generality (e.g., in network flow
problems with a convex nonlinear cost function).

xeuwruoneziwndo Jeaul|

316 Chap. 7 Network flow problems

7.7 Dual ascent methods*

In this section, we introduce a second major class of algorithms for the]
networz flow problem, based on dual ascent. These algorithms maintain
at all times a dual feasible solution which, at each iteration, is updated in }
a direction of increase of the dual objective {such a direction is called a §
dual ascent direction), until the algorithm terminates with a dual optimal §
solution. Algorithms of this type seem to be among the fastest available,
In this section, we only consider the special case where all arc capacities are
infinite; the reader is referred to the literature for extensions to the general |
case.

Fecall that the dual of the network flow probem takes the form

T
maximize Z Piby

i=1
subject to p; < ¢y + py, (i,j) € A
Given a dual feasible vector p, we are interested i1 changing p to a new .
feasible vector p + 0d, where 8 is a positive scalar, and where d satisfies]
d’'b >) (which makes d a dual ascent direction). '
Let § be some subset of the set A' = {1,...,n] of nodes. The elemen-{
tary direction d¥ associated with S is defined as the rector with components |

4S5 — 1, if i € 5,
: 0, ifigs.

Moving along an elementary direction is the same aspicking a set S of nodes
and rasing the “price” p; of each one of these nodes by the same amount. §
A remarkable property of network flow problems i that the search for a
feasible ascent direction can be confined to the set of elementary directions,
as we now show.

T:heorem 7.12 Let- p be a feasible solution to .thé dual ..prableix;'
Then, either p is dual optimal or there exists some S C N and someé
8>, such that p+ 8d” is dual feasible and (d°)'b > 0.

Proof Let § C A and consider the vector d5. We start by deriving §
conditions under which p+@d? is feasible for some @ > 0. We only need to §
check whether any active dual constraints are violated by moving along d¥. :
Note that the dual constraint corresponding to an arc (i,7) € A is active §
if and only if p; = ¢;; + p;, in which case we say that the arc is balanced. §
Clearly, if (i,7) is a balanced arc and if 4 € S, raising the value of p; will |
violate the constraint p; < ¢;; + p;, unless the valueof p; is also raised. We §
conclude that dual feasibility of p + 8d?, for some # > 0, amounts to the

Sec. 7.7 Dual ascent methods™ 317

B> 0

By> O

by> 0 (a)

by + by + by

Figure 7.27: (a) A network with some source nodes and some
sink nodes, and in which we have only kept the balanced arcs.
{b} A corresponding maximum flow problem; all arcs have infinite
capacity with the exception of the arcs (s,%) and (4,t), where 1 is
a source and j is a sink in the criginal network. There is a feasible
solution to the problem in (a) if and only if the optimal value in
the maximum flow problem in (b} is equal to V = b; + b3 1 bs.

following requirement:
if i € § and (¢,) is balanced, then j € S. {7.15)

Let @ = {i € N | b; > 0} be the set of source nodes and let
Q- ={i€ N |b; <0} be the set of sink nodes. Let V = }7.., b; be the
total amount of flow that has to be routed from the sources to the sinks.
Our first step is to determine whether the entire supply can be routed to the
sinks using only balanced arcs. This is accomplished by solving a maximum
flow problem of the type shown in Figure 7.27.

Let us run ihe labeling algorithm, starting from a maximum flow f.
Since we already have a maximum flow, no augmenting path is found and
node ¢ remains unlabeled, We partition the set {1,...,n} of original nodes
into sets § and S of labeled and unlabeled nodes, respectively. Then, the
situation is as shown in Figure 7.28(a).

xeuwruoneziwndo Jeaul|

318

Chap. 7 Network flow problems :

Figure 7.28: The cut obtained at termination of the labeling
algorithm, for the network involving only balarced arcs. (a) If a
source node 4 is not labeled, we must have f.; = b; and arc (s, i)
is saturated. If a sink node j is labeled, we must have Jie = 1b;
and arc (f,t) is saturated, because otkerwise node ¢ would also be
labeled. If (4, 7) is a balanced arc and if i € S, then we must also
have § € S, because otherwise node J would have been labeled
(recall that arc capacities are infinite]. If (¢,) is a balanced arc
and i is not in §, j can be either in $ or cutside S;if 5 € S, we must
have fi; = 0, because otherwise node i would have been labeled.
(b} Interpretation of the variables A, B, C, .

Sec. 7.7 Dual ascent methods* 319

Let

A= Z Fsis C= Z fjt,

1EQL 1S jeQ_rs
B= > fu D=} fis
1EQL NS jEQ_NS

see Figure 7.28(h) for an nterpretation. The total flow F that leaves node
s is equal to A+ B. On the other hand, all of the flow must at some point
traverse an arc that starts in {s} U S and ends in {{} US. By adding the
flow of all such arcs, we obtain F = B 4+ C. We conclude that A = C, or

Z foi = Z Fie.

EQLNS jeqg_ns

For every labeled sink node j € @. N S, we have f;; = |b;| = —b;, because
otherwise node ¢ would have been labeled, which shows that

D fa= 3 byl

e NS j€@-_ns

We finally note that

@Yb=3"b= 3 b—- > |bl> X fu- Y Il=o0.

€S 1EQ4NS i€Q-nNS iI€Q4 NS j€eQ_ns

We distinguish between two cases. If (d5)'b > 0, we have a dual
ascent direction, as desired. On the other hand, if (d°)'b = 0, we must
have fy; = b; for every i € Q4 N 8. Since we also have f,; = b; for every
i€ @y NS, it ‘ollows that the value of the maximum flow is equal to
V= Ei€Q+ bi, and we have a feasible solution to the original (primal)
network flow problem. In addition, since positive flow is only carried by
the balanced arcs, complementary slackness holds, and we have an optimal
solution to the primal and the dual problerc. O

Theorem 7.12 leads to a general class of algorithms for the network
flow problem.

xeuwruoneziwndo Jeaul|

320 Chap. 7 Network flow problem

Dual ascent algorithm
1. A typical iteration starts with a dual feasible solution p
2. Search for a set S C N with the pmperty '

and such that 215511 > 0. If no such set S emsts,
aptimal and the algorithm terminates. :

3. Update p to p +0*d”, where §” is the largest value for w
p + 6d° is dual feasible. If §* = oo, the algorithm termi
otherwise, go back to Step 2.

The value of 8" in the dual ascent algorithm is easily determined,
follows. We consider each constraint p; < ¢;; + p;. The possibility thaf
p + 0d® may violate this constraint arises only if i € 5 and j ¢ S. For suchy
pairs (%,7), we need p; + 6 < ¢;; + p;, and we obtain 3

8" = min Cij +p; — i) 7.16,
{(i)eA | ies j¢S}(4P =) ('

increase. this 1mp11es tha.t the optimal dual cost is +oc and, in partlcula.r,
the prmral problem is infeasible.
Our next results deals with the finite termination of the algorithm.

Theorem 7.13 Suppose that the optimal cost is finite. If the o
coeffidents ¢;; are all integer, and if the dual ascent algorithm is inf
tialized with an integer dual feasible vector, it terminates in a fini
number of steps with a dual optimal solution.

Proof. Suppose that the algorithm is initialized with an integer vector
p. Then, the value of 0* is integer. (It cannot be infinite, because the+
dual optimal cost would also be infinite, which we assumed not to be the 3
case.) Let v = mins(d®)b, where the minimum is taken over all S fo
which (d%)’b > 0. Clearly, v is positive. Since 8* is integer, every iteratio
increases the duel objective by at least v. It follows that the algorithm
must temminate after a finite number of steps.]
1

There are several variations of the dual ascent slgorithm which differ §
primarily in the method that they use to search fo- an elementary dual }
ascent drection. If the set S is chosen as in the proof of Theorem 7.12, we §
have the so-called primel-dual method. (When spedalized to the assign- !
ment preblem, it is also known as the Hungarian method.) It can be verified |

Sec. 7.7 Dual ascent methods* 321

that the primal-dual methoed uses a “steepest” ascent direction, that is, an
elementary ascent direction that maximizes (d¥)'b (Exercise 7.30). On the
other hand, the sc-called relaration method tries to discover an elementary
ascent direction ¢° as quickly as possible. In one implementation, a one-
element set S is tried first. If it cannot provide a direction of ascent, the
set is progressively enlarged until an ascent direction is found. In practice,
a greedy search of this type pays off and the relaxation method is one of
the fastest availahle methods for linear network flow problems.

In all of the availabe dual ascent methods, the search for an ele-
mentary ascent direction is streamlined and organized by maintaining a
nonnegative vectar f of promal flow variables. Throughout the algorithm,
the vectors f and p are such that the complementary slackness condition
(ci; + pj — Pi) fi; = 0 is enforced. (That is, flow is only carried by balanced
arcs.) If such a complementary vector f is primal feasible, we have an opti-
mal solution to both the primal and the dual. For this reason, dual ascent
algorithms can be alternatively described by focusing on the vector f, and
by interpreting the different steps as an effort to attain primal feasibility.
(This is also the historical reason for the term “primal-dual.”)

The primal-dual method

In this subsection, we consider in greater depth the primal-dual method.
We do that in order to develop a complexity estimate, and also to illustrate
how a network algorithm can be made more efficient by suitable refinements.

The primal-dual method is the special case of the dual ascent algo-
rithm, where the set S is chosen exactly as in the proof of Theorem 7.12. In
particular, given a dual fezsible vector p, we form a maximum flow prob-
lem, in which cnly the balanced arcs are retained, and we let S be the set
of nodes in {1,...,n} that are labeled at termination of the maximum flow
algorithm. We then update the price vector from p to p + 0*d?®, form a
new maximum flow problem, and continue similarly.

We provide some observations that form the basis of efficient imple-
mentations of the algorithm.

(a) The maximum flow end the current dual vector satisfy the comple-
mentary slackness condition (¢i; + p; —p;) fi; =0. This is because in
the maximum flow problem, we only allow flow on balanced arcs.

(b) If we determine a marimum flow and then perform a dual update, the
complementary slackness condition {c;;+p; —p;) fi; = 0 is preserved.
Suppose that an arc ¢, j) carries positive flow in the solution to the
maximum flew problem under the old prices. In particular, (4, §) must
have been a balancec arc before the dual update. Note that § € S
if and only if j € §. (If i € S, then j gets labeled because the arc
capacity is infinite; i’ j € S, then i gets labeled because f;; > 0.)
This implies that p; and p; are changed by the same amount, the arc
(¢,J) remains balanced, and complementary slackness is preserved.

xeuwruoneziwndo Jeaul|

322 Chap. 7 Network flow problem .--.

(c) An important consequence of observation (b) s that subsequent to &
dial updaze, we do not need to solve a new maximum flow problen
from scratch. Instead, we use the maximum flow under the old pri
as an initial feasible solution to the maximum fow problem under thi
new prices. Furthermore, the nodes that were labeled at terminatio
of the maximum flow algorithm under the old prices, will be labelad
a1 the first pass of the labeling algorithm under the new prices. [T
is because if node j got its label from a node 7 through a balance®
arc (4,7} or (4,1), then p; and p; get raised by the same amount}
the arc (4,7) or {j,i) remains balanced, and taat arc can be used ta
lzbel j under the new prices.] Our conclusion is that subsequent to &
daal update and given the current flow, we do not need to start th
labeling algorithm from scratch, but we can readily assign a label t
all nodes that were previously Iabeled. ’

(d) A dual update {with 8* < o) results in at least one unlabeled nodey
becoming labeled. Consider an arc (i,7) withi € §, j £ §, and suchy
that 8* = ¢;; + p; — p;. Such an arc exists by the definition of 6*.3
Subsequent to the dual update, this arc beccmes balanced. At the]
first pass of the labeling algorithm, node j will inherit a label from¥

node 7.

The preceding observations lead to a new perspective of the primal-3
dual method. Instead of viewing the algorithm as 1 sequence of dual up- §
dates, with maximum flow problems solved in between, we can view it as ;
a sequence of applications of the labeling zlgorithm, resulting in flow aug- }

mentations, interrupted by dual updates that create new labeled nodes.

At the beginning of a typical iteration, we have a price vector, a flow]
vector that only uses balanced arcs, and a set of labeled nodes; thess are
nedes to which additional flow can be sent, using only balanced arcs. We

distingnish two cases:

(a) I node t is labeled, we have discovered an augmenting path and we
a‘e niot yet at an optimal solution to the maximum flow problem. We *;
push as much flow as possible along the augmenting path. At this §
point, we delete all labels and start another round of the labeling j

agorithm, to see whether further flow augmentation is possible.

{b} If node ¢ is not Jabeled, we have a maximum flow and we perform

a dual update. Right after the dual update, we resume with the

lebeling algorithm, but without erasing the old labels. Recall that 1

a dual update results in at least one new beanced arc (4, j), with
myde 1 previously labeled and node j previously unlabeled. Node
1 remains labeled and 7 will now become labzsled. Since every dual
update results in an additional node being labeled, node ¢ will become
Izbeled after at most n dual updates, and a flow augmentation will
take place.

We can now get an upper bound on the running time of the algerithm.

Sec. 7.7 Dual ascent methods® 323

Let, as before, V be the sum of the supplies at the source nodes. Assuming
that all supplies are integer, there can be at most V flow augmentations.
Since there can be at most n dual updates between any two successive ow
augmentations, the algorithm terminates ater at most nV dual updates.
If at each dual update we determine #* using Eq. (7.16), we need O(m)
arithmetic operations per dual update, and the running time of the algo-
rithm is G(mnV) = O{n'B), where B = max; |b;{. With a more clever
way of computing 0%, the running time can be brought down to O(n*B)
(Exercise 7.28). For the assignment problem, we have B = 1, and we obtain
the so-called Hungarian method, which runs in time O(n®).

Example 7.8 We go throigh an example of the primal-dual method. Consider
the network shown in Figwe 7.29(a), and let us start with the dual vector p =
{1,1,1,1,0). It is casily checked that we have g; < ¢.; + p; for all arcs (4, 4), and
we therefore have a dual feasible solution. The balanced arcs are (1,4}, (2,4),
{3,5). In Figure 7.29(b), we form a maximum flow problem involving only the
balanced arcs. We solve this problem using the Ford-Fulkerson algorithm. At
termination, we obtain the labels and the flows shown in Figure 7.29(c). {Node
2 inherits a label from node 4.) The set of labeled nodes is § = {1,2,4} and
the corresponding elementary direction is d° = (1,1,0,1,0). The only arc (4, 5)
with i € S, § € S, is the arc {2,5), and Eq. (7.16) yields 8" = 2. The new dual
vector is p+6*d% = (3,3,1,3,0). The arc {2,5) has now hecome balanced and all
nodes that were labeled remain labeled. Since node 2 is labeled, and arc (2, 5) has
become balanced, node 5 gets labeled. Finally, because arc (5,¢) is unsaturated
(fs: = 2 < 3 = |bs)), node £ also gets labeled. At this point, we have identified a
path through which additional flow can be shipped, namely the path s,1,4,2,5,t.
By shipping one unit of flow along this path, the value of the fiow becomes 8.
We now have a feasible solition to the original primal sroblem, which satisfies
complementary slackness, and is therefore optimal. If primal feasibility had not
been attained, we would erase all labels and rerun the labeling algorithm, in an
attempt to discover a new rugmenting path.

Comparison with the dual simplex method

Network flow preblems (lice all linear programming problems} can be solved
by the dual simplex method. This is also a cual ascent method, in the sense
that it maintains a dual feasible solution and keeps increasing the dual
objective. Furthermore, it can be verified that dual updates in the dual
simplex method only takeplace along elementary directions (Exercise 7.31).
On the other hand, the cual simplex method can only visit basic feasible
solutions in the dual feasible set. In contrast, the methods considered in
this section, have more directions to choose from and do not always move
along the edges of the dual feasible set.

A key difference between the dual simplex method and the dual ascent
methods of this section is in the nature of the auxiliary flow information

xeuwruoneziwndo Jeaul|

324 Chap. 7 Network flow problems |

Figure 7.29: Tllustration of the primal-dual method in Example 7 8.

Sec. 7.8 The assignment problem and the auction algorithm 325

that they employ. In the dual simplex method, we maintain a basic solution
to the primal; in particular, the flow conservation constraints are always
satisfied. If the basic solution is infeasible, it is only because some of the
nonnegativity constraints are violated. In contrast, with the dual ascent
methods of this section, auxiliary flow variables are always nonnegative,
but we allow the Jow conssrvation equations to be violated.

7.8 The assignment problem and the auction
algorithm

The auction algorithm, which is the subject of this secsion, is a method that
can be used to solve general network flow problems. We restrict ourselves
to a special case, the assignment problem, because it results in a simpler
and more intuitive form of the algorithm. The auction algorithm resembles
dual ascent methods, except that it only changes the price of a single node
at a time. Given a nonoptimal feasible solution to the dual, it is sometimes
impossible to find a dual ascent direction involving a single node. For this
reason, a typical iteration may result in a temporary deterioration (i.e.,
decrease) of the dual objective. Aslong as this deterioration is kept small,
the algorithm is guaranteed to make progress in the long run, and can be
viewed as an approximate dual ascent method. Our presentation bypasses
this approximate dual ascent interpretation, for which the reader is referred
to the literature.
The problem

k13 ™
minimize E E cij fiz

i=1j=1
n

subject to Z_f;‘j:]., i=1,...,n,
i=1
T
Efij:l’ i=1,...,n,
j=L
fiz =20, Vi

is known as the assignmeat problem. One interpretation is that there are
n persons and n projects and that we wish to assigr. a different person to
each project while minimising a linear cost function of the form 3" (i.5) i Fii»
where f;; = 1 if the ith person is assigned to the jth project, and fi;=0
otherwise. With this interpretation, it would be natural to introduce the
additional constraint f;; € {0,1}. However, this is unnecessary for the
following reasons. First, the constraint f;; < 1 is implied by the constraints
that we already have. Second, Corollary 7.2 implies that the assignment

xeuwruoneziwndo Jeaul|

326 Chap. 7 Network fow problems

problem always has an integer optimal solution. In particular, if we solve

the assignment problem using the simplex method or the negative cost cycle |
algorithm, the optimal value obtained for each variable f;; will be zero or }

one.

Let us now digress to mention an interesting special case of the as- 3
signiment problem. Suppose that the cost coefficients c;; are either zero or |
one. The resulting problem is called the bipartite matching problem and §
has the following interpretation. We have ¢;; = 0 if and only if person 7 is
compatible with project j and we are interested in finding as many com- §
patible person-project pairs as possible. If the optimal value turns out to |
be 0, we say that there exists a perfect matching. Besides being an assign- §
ment problem, the bipartite matching problem is also a special case of the ;
max-flaw problem (send as much flow as possible from persons to projects

using only zero cost arcs) and as such it can be also solved using maximum

flow algorithms. There are even better special purpose algorithms, which §

can be found in the literature.

Duality and complementary slackness

We forn the dual of the assignment problem. We associate a dual variable r; ‘
with each constraint E;”:l fi; = 1, and a dual variable p; to each constraint]

>y fi = 1. Then, the dual problem takes the form

n n
maximize Zri-}- E Py
i=1 g=1

subject to ; +p; < ¢, V1, .

It iz clear from the form of the dual constraints that once the values of |
P1y...,0n are determined, 2?21 1; 15 maximized if we set each r; tc the |

largest value allowed by the constraints r; + p; < ¢;;, which is

T = j:I[l]iIl n{C,;j —p_;,} (7.17) 1

This lezds to the following equivalent dual problem:

maximize ij + Z:n‘un{c,”“T -p;i} (7.18) .'

1=1 i=1

Note that this is an unconstrained problem with a piecewise linear concave |

objective function.

Sec. 7.8 The assignment problem and the auction algorithm 327

We now consider tke complementary slackness conditions for the as-
signment problem, which are the following:

(a) flow must be conserved;
(b) lffw > 0, then r; +p; = ¢ij-

Using Eq. {7.17) to eliminate r;, the second complementary slackness
condition is equivalent to

if f; >0, then p; —¢;;=-r; = mgx{pk —cih (7.19)

Condition (7.19) admits the following interpretation: each project k carries
a reward pp and if person ¢ is assigned to it, there is a cost ;. The
difference pr — ¢ is viewed as the profit to person i derived from carrying
out project k. Condition (7.19) then states that each person should be
assigned to a most profitable project.

Auction mechanisms

We recall that a pair of >rimal and dual solutions is optimal if and only
if we have primal and dual feasibility, and complementary slackness. Hav-
ing defined r; according to Eq. (7.17), dual feasibility holds automatically.
Thus, the problem boils down to finding a set of prices p; and a feasible
assignment, for which the condition (7.19) holds. This motivates a bidding
mechanism whereby persens bid for the most profitable projects. It can be
visualized by thinking about a set of contraetors whe compete for the same
projects and therefore keep lowering the price (or reward) they are willing
to accept for any given project.

Naive auction algorithm

1. Bidding phase. Given a set of prices p1,...,p, for the different
projects, and s partisl assignment of persons to projects, each
unassigned persou finds a best project j, that maximizes the
profit p; — ¢;;, and “bids” for it, by é.cceptmg a Eower price. In
particular, the price is lowered by -~ -

(proﬁt of the best project) (proﬁt: of %he second best project).

«««««

2. Foilowmg the blddmg phase, there us aﬁmment phase during
which every project is asmgned to the lowest; bidder (if any). The
new pricz of each project is set to t&g@ Mﬁe of the lowest bid.

The ok:l hoider of the project: (i:f anv} beoomes unassigned.

@,.«

xeuwruoneziwndo Jeaul|

328 Chap. 7 Network flow problems

Example 7.9 Consider an assignment problem involving three persons and
three objects; see Figure 7.30. Suppose that all p; are equal to one, that per- }
son 1 is assigned to project 1, person 2 is assigned to object 2, and person 3 is 4
unassigned.

Person 3 computes the profits of the different projects; they are 1 —0 =1
for the first and second project, and 1 —1 = for the third project. Person 3 bids I‘
for the second object. The bid for project 2 cannot be lower than one, because
that would make project 2 less profitable than project 1. Hence, the bid is equal §
to one. Pemson 3, as the sole bidder, is assigned project 2, and person 2 becomss 1
unassigned However, there is no price change. In the next iteration, person 2 !
who is unassigned goes through a similar process, and bids for project 2. The 3
price is agein unchanged, and we end up in exactly the same situation as when }
the algorithm was started.

As Bxample 7.9 shows, the naive auction algorithm does not always
work. The reason is that if there are two egually piofitable projects, a §
bidder cammot lower the price of either, and the algorithm gets deadlocked. j
However, the algorithm works properly after a simple modification. Let us 4
fix a positive number €. The bid placed for a project is lower by ¢ than
what it would have been if we wished that project to ramain the best one; A
as a result, the project comes short, by ¢, of being the most profitable one. 1
A complete description of the algorithm is given below.

“ 1. A typmal iteration starts with a set of prices py,...,p, for the
different piojects, a set S of assigned ‘persons, a.mi a project ji?
asiigned to each person i € § (that is, fi;, =], zeS) (At the

- beginning of the algorithm, the set .S is empty.) - :
2. Esch unassigned person i ¢ S finds a best pm]ect k; by mas+
. . imrizing the proﬁt Py = cq, over all k. Let k| beasecond beag

. Pl'Bjth that i8, " ¢

ﬂ?he auction agonthm

o - c;k;‘apk;m-cae,. for aﬂ bk b
Let
‘ (Pm Gak.} (Pk' &k'
n -,_Persons "blds p;;i ﬁkf—sforpw}act z. S
_8: Every project for. which: theré. s at least’ cme b:d is ass;gngd o
"+ 8 jowest bidder;. the old: hiolder of the project, (if any) becomes
-ugasslgaesi The new price: p;. .of leach project’that: bﬁmmvefﬁ
tleast ane: b;& x.s aet to thehvaiué éf :he; eq% bid: o

bk

Sec. 7.8 The assignment problem and the auction algorithm 329

Figure 7.30: An assimment problem. The costs ¢;; and ¢ for
the first two projects are zero, for every i. The costs c;z for the
third project are equal to one, for every i.

Example 7.10 We apply the auction algorithm to the problem considered in
Example 7.9. Once more, we assume that persons 1 and 2 are assigned to projects
1 and 2, respectively, and the initial prices are all equal to 1. Person 3 chooses to
bid for project 2 and decreases its price to 1 —¢. Person 2 becomes unassigned and
computes the profits of the different projects; they are: 1-0 =1, (1—€}-0 = 1—¢,
and 1 — 1 = 0, respectively. Prmoject 1 is the most profitable. Its price is to be
brought down so that its profit becomes equal to the profit of the second best
project, minus e. Therefore, the bid is equal to 1 — 2e.

At the next iteration, pemon 1, who is unassigned, bids for project 2 and
brings its price down to 1 — 3e. The same process is then repeated. At each itera-
tion, projects 1 and 2 have prices that are within € of each other. An unassigned
person always bids for the one that has the larger price, and brings its price down
by 2e. After a certain number of iterations, the prices of projects 1 and 2 be-
come negative. At that point, project 3 finally becomes profitable, receives a bid,
becomes assigned, and the algorithm terminates.

Note that a bid pushes the price of a project below the level at which
that project would be the most profitable. For this reason, petsons will
not, in general, be assigned to their most profitable project, and the com-
plementary slackness conditions fail to hold. On the other hand, since
persons may underbid only by ¢, the complementary slackness conditions
are close to being satisfied. This motivates our next definition.

Deﬁmtion 7. 3 Consider 8 sec Ofpnceg p.,. ﬁiﬁéftmf e .em

xeuwruoneziwndo Jeaul|

330 Chap. 7 Network flow problems |

The following result deals with a key property ol the auction algo- J
rithm. ;

Proof. Tae condition is satisfied initially, before any person is assigned.]
Whenever a person i is assigned a project j;, the price is chosen so that the !
profit p;, — ¢i;, cannot be smaller than the profit of ary other project by}
more than g, assuming the other prices do not change. I the prices of some §
other projects do change, they can only go down, and project j; is again §
guaranteed to be within e of being most profitable. As long as a person
holds the same project, the price of that project cannot change, and its
profit stays constant. In the meantime, the prices of any other projects can _'
only go down, thus reducing their profits, which means that the person still{
holds a preject whose profit is within e of the maximum profit. 034

We also have the following result that ensures the finite termination}
of the algorithm,

Thaqrem 1’2.’15 ‘I"he auctxou aigontbm tenmnates alter a ﬁmte ny

Proof. The proof rests on the following observations:

{a} Omnce a project receives a bid, it gets assigned to seme person. Oncea
project is assizned, it may be later reassigned to snother person, but |
it wil never become unassigned. Thus, if all projects have received }
at least one bid, then all projects are assigned and, consequently, all §
perscns are also assigned.

(b} If all persons are assigned, no person bids and the algorithm termi- :
nates. j

(c) If ths algorithm does not terminate, then some project never geis
assigned. Such a project has never received a bid and its price is
fixed at its initial value.

(d) If the algorithm does not terminate, some project receives an infinite]
number of bids. Since every successive bid lowers its price by at least |
¢, the price of such a project decreases to —oco.

Using observetions (¢) and (d), a project that has never received a |
bid must eventually become more profitable than any project that receives]
an infinite number of bids. On the other hand, for a project to receive an §
infinite number of bids, it must remain more profitable than any project
that has mot receivad any bids. This is a contradiction, which establishes |

Sec. 7.8 The assignment problem and the auction algorithm 331

that every project will eventually receive a bid. Using observations (a) and
(b}, the algorithm must eventually terminate with all persons assigned to
projects. d

The preceding proof generalizes to the case where some assignments
are not allowed, which is the same as setting some of the coefficients ¢;;
to infinity. However, a slightly more involved argument is needed (see
Exercise 7.32).

At termination of the auction algorithm, we have:

(a) primal feasibility (all persons are assigned a project);

(b) dual feasibility [if we define r; = maxy{px — e}, we have a dual
feasible solution};
(c) e-complementary slackness (Theorem 7.14).
If we had complementary slackness instead of e-complementary slackness,
linear programming theory would imply that we have an optimal solu-
tion. As it turns ou:, because of the special structure of the problem,
e-complementary slackness is exough, when ¢ is sufficiently small.

Theorem 7.16 If tke cost coefficients ¢;; are fntegér and if -
0<e<l/n, '

the auction algorithni terminates with an optimal solution.

Proof. Let j; be the projeci assigned to person i when the algorithm
terminates. Using e-complementary slackness, we have

Pj; — Cij, = meX{Pj —eir—¢€, Vi

By adding these inequalities over all 4, and rearranging, we obtain

mn

E : €ij;

i=1

IA

Zn: (sz - max{pj Cij }) + ne

I
™:=1I

3}) + ne.

(le + mjiﬂ{cij —-r

=1

Let z be the cost of an optimal assignment. The sum in the right-hand
side of the above equation is the same as the dual objective function
[cf. Eq. (7.18)] and by weak daality, it is bounded above by the optimal
cost z. This implies that

k]
Zci-?" Lz4+ne<z+ 1.
i=1

xeuwruoneziwndo Jeaul|

332 Chap. 7 Network flow problems

On the otler hand "
Z Cigg 2 %
i=1

by the definition of z. Since z and all ¢;;, are integer, ve conclude that

n
E :Ciji =z,
i=1

and optimality has been established.

Discussion

Let us assume, for simplicity, that ¢;; > 0 for al<, j, and let C = max; ; ¢,]
Suppose that the algorithm is initialized with all projects having the samé]}
prices. If some project has received C/e or more bids, then its price is lower?
than the price of any project that has not received any bids, by at least C.3
(This is because each bid lowers the price by at least ¢.) At that point, a;
project that has nct received any bids would become more profitable. i
conclude that every project receives at most C/¢ bids. The total numb '
of bids is at most nC/e. Since there is at least one bid at each iteratio:
this is alsca bound on the number of iterations. Finally, the computational}
effort per ‘teration is easily seen to be O(n?). If we let be slightly smallery
than 1/n, the version of the auction algorithm that we have described hereg
runs in time O(ntC). ‘

The auction algorithm can be sped up using the idea of e-scaling.:
One first uses a relatively large value of ¢, and obtains a solution which is§
optimal within ne. (The proof is the same as the proaf of Theorem 7.16.) §
Then, the obtained prices are used to start another solution phase, with a
smaller value of ¢, ete. This device leads to better theoretical running time |
estimates and also to improved performance in practice.]

7.9 The shortest path problem

The shortsst path problem is an important problem that arises in a multi- 5
tude of applications in transportation networks, communication networks, |
optimal control, as well as a subproblem of more complex problems. As |
will be seen shortly, it can be posed as a network flow problem. However, }
practical methods for solving the shortest path problem do not rely on |
the netwark flow formulation. Instead, they are centered around a set of |
optimality conditions, known as Bellman’s equation, which are intimately }
related to the subject of dynamic programming (see Section 11.3). We will ?
use duality to derive Bellman’s equation, and we will then proceed to de- §
velop a suite of algorithms. Some of these algorithms are of a somewhat ad §
hoc nature, but they are quite efficient in practice. :

Sec. 7.9 The shortest path problem 333

Throughout this section, the words walk, path, and cycle will always
mean directed walk, path, and cycle, respectively; that is, all arcs are tra-
versed in the forward direction. This should not lead to any confusion,
because in this section we never need to consider walks, paths, or cycles
that are not directed.

Formulation

We are given a directed graph G = (N, .A) with n nodes and m arcs. For
each arc {(i,7) € A, we are also given a cost or length ¢;; in general, the
numbers ¢;; are allowed to be negative. The length of a walk, path, or cycle
is defined as the sum of the leagths of its arcs. A path from a certain node
to another is said to be shorted if it has minimum length among all possible
paths with the same origin and destination. A shortest walk from a node
to another is defined similarly. A shortest walk and a shortest path from
one node to another are not necessarily the same. In particular, if there
exists a cycle with negative length, we can construct walks whose length
converges to —oo (we can traverse the cycle several times before reaching
the destination). On the other hand, the length of any path is bounded
below by —nC', where C' = max; ;)c 4 |c;;]- If all cycles have nonnegative
length, there is no incentive 10 go around a cycle and, for this reason, a
shortest path is also a shortes; walk. Conversely, any cycles contained in a
shortest walk must have zero length; by removing such cycles, we obtain a
shortest path.

The shortest path problam can be posed in a few different ways; for
exsmple, we might be interested in a shortest path from a given origin to
a given destination, or we might be interested in shortest paths from each
of 2 number of selected origins to each of several destinations. We will
focus on the problem of finding a shortest path from all possible origins to
a particular destination node, which is called the all-to-one shortest path
problem, as well as on the prodlem of finding shortest paths for all possible
origin destination pairs, which is called the all-pairs shortest path problem.

Before continuing, we introduce two mora concepts that will prove
useful. Consider a tree, and suppose that all arcs are assigned directions
80 that we have a (directed) path from every node 7 # 7 to node n. Such
a directed graph will be callec an intree rooted at node n; see Figure 7.31.
If it happens that for every i £ n, the path from ¢ to n along the tree is a
shortest path, we say that we have a lree of shortest paths.

Relation to the network flow problem

We consider here the all-to-one shortest path problem. For concreteness,
we assume that node n is the destination node. We also assume that there
exists at least one path from every node 7 # n to node n, which means that
the all-to-one shortes: path problem is feasible. Finally, and withont loss of

xeuwruoneziwndo Jeaul|

334 Chap. 7 Network flow problems

Figure 7.31: An intree rooted at node 6.

generality, we assume that there are no outgoing arcs from node n. These §
assumptions will remain in effect throughout this section. -

We view the graph G as a network of infinite capacity arcs. Suppose]
that each one of the nodes 1,...,n — 1 is a source nods, with unit supply, §
and that node n is the only sink node, with a demand of n — 1. If we pose
the problen of minimizing 3, .\ 4 ¢i;fi; over all feasible flow vectors, it]
should be clear tha: for every node i other than n, one unit of flow should;
be shipped from node ¢ to node n, at least cost. As long as there a.rel
no negative length cycles, this should be dore along a shortest path. If
on the other hand, there are negative length cycles, the optimal cost inj
the network flow problem is —co, because we could “push” an arbitrarily
large amount of flow around such a cycle. This discusson is refined in the
following theorem. '

"I‘I_'lebrem 7.17 Consider the shortest path problem in a directed gra]
with n nodes and the associated network flow problem. We assume tha
there is a path to node n from every other rode, and that node n has
no outgoing arcs.
(a) If there exists a negative length cycle, the optimal cost in the
network flow problem is —oo. ’
{b) Suppose that all cycles have nonnegative length. If a feasible
tree solution is optimal, then the corresponding tree is a tree ofl
shortest paths.
(c) Suppose that all cycles have nonaegative length. If we fix p,, t
zero, the dual problem has & unique solution p*, and p} is th
shortest path length from node 4.

Proof. Part (a) is trivial. For part (b}, we first note that in a feasible tree |
solution, all arcs in the tree must be oriented from the leaves towards the]
root and tierefore form an intree rooted at node n. This is because if some

Sec. 7.9 The shortest path problem 335

arc (4,J) in the tree is pointing away from the root, the Aow on that arc
must be negative, contradicting feasibility. If for some node i there exists
a path from ¢ to n whose lergth is smaller than that of the path on the
tree, the feasible tree solutior is not optimal, because some flow could be
redirected to that path. Thus, an optimal feasible tree solution provides us
with a tree of shortest paths and this proves part (b).

Let p; = 0 and let (p},...,p,_;) be the vector of dual variables
associated with an optimal feasible tree solution. For each arc on the tree,
we have pf = ¢;; + p}. Since &ll arcs are oriented towards the root, we can
add the equalities p; = ¢;; + p} along a path contained in the tree, and
conclude that p} is the length of the path from node i to node n. Note that
this is a shortest path, since we are dealing with an optimal feasible tree
solution. Thus, p; is the shoriest path length.

We finally note that every feasible tree solution is nondegenerate.
This is because any arc (4, j) on the tree must carry the supply at node 1.
1t follows that the dual problem has a unigue solution. O

The connection between shortest paths, network flows, and linear
programming duality is illustrated by our nex: exampls, which arises in
practical context.

Example 7.11 (Project management) A project consists of a set of jobs
and a set of precedence relations In particular, we are given a set A of job pairs
(¢,4) indicating that job ¢ cannct start before job j is completed. Let ¢; be the
duration of job {. We wish to id:ntify the least possible duration of the project.
We will show that this can be accomplished by solving a shortest path problem.

In addition to the original jobs, we introduce two artificial jobs s and t, of
zero duration, that signify the beginning and the completion of the project. We
augment the set A by introducing the additional precedence relations (s,7) and
{i,t) for all jobs 4. Let p; be the time that job i begins. A precedence relation
{7,7) € A leads to a constraint ; 2 pi + ¢, that is, project j cannot begin before
the completion time p; + ¢, of pioject i. The project duration is p; — ps and the
minimal project duration is obtained by solving the following problem:

minimize g — ps

subject to z; —p: 2 ¢, V(i) € A

The dual of this problem is
maximize Z ¢ fig
(i,71eA

S k- Y fi=t Vi,

{ilG.reA} {il{z.5)€A}
fiis =20, v (i,5) € A

Here, b, = —1, b = 1, and b, =0 for ¢ # s,¢. This is a shortest path problem,
where each precedence relation (¢,7) € A correspends to an arc with cost of
—¢i. It is natural to assume thai the set of arcs A does not contain any cycles,

subject to

xeuwruoneziwndo Jeaul|

336 Chap. 7 Ne'work flow problems |

because otherwise the project cannot be completed. In that case, the network isj
guaranteed to have no negative cost cycles.

Bellman’s equation

Recall that by = --- = b, = 1. Under the conventim p, = 0, the duaf
problem is of the form ;
n—1
maximize Z i
i=1

subject to p; < ¢+ py, v (i,7) € A

It is evident that if all components of p, except for g;, are fixed to some}
values, the remaining component p; should be set to the largest value al-
lowed by the constraints, that is, mingeoqy{cik + px}- [Recall that O(%)
the set of endpoints of arcs that are outgoing from node 4] We conclude]
that the optimal solution p* to the dual problem, which is the same as thg
vector of shortest path lengths, satisfies ‘
i =kren(%){cik +pi}, i=1,...,n—1, (7.20)4
where p:, = 0. This is a system of n — 1 nonlinear equations in n — 14
unknowns, and is known as Bellman’s equation. It has a rather intuitivey
interpretstion: suppose that we are interested in patls that start at node
i, but that we also impose the additional constraint that the path rnust|
start with the arc {i,k). Then, the best we can do is to find a shortest}
path from node k to n, for a total length of ¢;; + py. However, since the
first node k is of oar own choosing, we should make an optimal choice of K,
and therefore the length of a shortest path is minge o {cix +p}}. The key'§
idea behind Bellman’s equation is the so-called principle of optimality: if |
a shortest path from i to n goes through an intermediate node k, then the |
portion of the pata from % to n is also a shortest patk.]
Wehave argned that the shortest path lengths satisfy Bellman’s equa- 4
tion. Thus, one possible method of computing shortest path distances is by §
trying to solve Belman’s equation directly. However, some care is needed,
because Bellman's equation may have several soluticns, and only one of
them will give us she correct shortest path lengths; an example is given in 3
Figure 7.32. Tt turns out that the shortest path lengths are the unique so- 1
lution to Bellman’s equation if all cycles have positive lengths. If all cycles]
have nonnegative length, we can only assert that the shortest path lengths 4
are the lergest solution to Bellman’s equation (Exercise 7.33). '

The Bellman-Ford algorithm

A common method for solving a system of equations of the form x = F(x)
is to use the iteration x := F(x). If we attempt to solve Bellman’s equation }

Sec. 7.9 The shorvest path problem 337

Figure 7.32: Consider a graph with three nodes and let the
arc lengths be as indicated. The shortest path lengths to node 3
are p; = p5 = 1. Bellman’s equation is of the form p; = p: and
pz = min{pi1, 1}. It is easily seen that p; = p> = [is & solution to
Bellman's equation for every § < 1. Note that the shortest path
lengths are the largest soution to Bellman's equation.

in this fashion, we obtain the Bellman-Ford algorithm. In the discussion
that follows, we again assume that node n has no outgoing arcs.

Let p;(t) be the length cf a shortest walk from nods 4 to node n that
uses at most t arcs; we let p;(t) = oo if no such walk exists. We use the
convention p,{t) = 0 for all {, and p{0) = o for all § # n. Note that
pi(t+1) < p;(t) for all ¢ and t. because as ¢ increases, there are more walks
to choose from. A shortest walk from node ¢ to node n that uses at most
t 4 1 arcs, consists of an initial arc (i, k) and a walk from node & to node n
that consists of at most ¢ arcs. Of course, the latter walk should be chosen
as short as possible and its length is therefore pi(f). Since node k should
also be chosen in the most prefitable fashion, we have

(t+ 1) = mi : t)}, i=1,....n—1,

it +1)= min {ew +pult)} n

and this equation defines the Bellman-Ford algorithm. We now discuss the
termination properties of the algorithm.

(a) Suppose that there are 10 negative length cycles. Then, there exists
a shortest walk, which is also a shortest path, and has at most n — 1
arcs. In particular, p;(n-1) = p!. Allowing for a walk with » or more
arcs cannot reduce the total length, and we have p;(n) = pi(n — 1)
for all nodes.

(b) Suppose that there exists a negative length cycle. Suppose for a
moment, that we also heve p(n) = p(n—1). This implies that p(t} =
p(n) for all t > n and the length of any walk is bounded below.
However, in the presence of negative length cycles, there exist walks
whose length tends to —oo. This is a cortradiction and proves thut

p(n) # p(n — 1),
By comparing the two cases just discussed, we see that no more than
n iterations are needed. If p(n) = p{n — 1), then p(xn)} is the vector of
shortest path lengths. (An example is given in Figure 7.33.) If on the ocher
hand p(n) # p(n—1), we conclude that there exists a negative length cycle.

xeuwruoneziwndo Jeaul|

338 Chap. 7 Network flow proble; nq

Figure 7.33: We apply the Bellman-Ford algorithm to the graph
shewn. Node 4 is the destination node. We have p4(t) = 0 for all

t, and
pi0) = o0, pi(1) =00, p(2) =9, m@3 =9,
p{0) = oo, m(l) = 7, m(2) =7, pA3) =T,

pa(0) = oo, pa(l) = L, p3(2) = 1, ps(3) = L

‘We cobserve that p(3) = p(2) and, therefore, p{2) is equal to the
shortest path length vector p*.

The computational complexity of the algorithn is O(mn) beca y
there are at most n iterations and at each iteration, ezch arc is only exang
ined once.

We have focused so far on the computation of the shortest pat]
lengths rather than the shortest paths, The reason is taat once the shortes
path lengths are available, shortest paths can be detarmined fairly casil§
(Exercise 7.34). The task of finding shortest paths is made even easier if i
the course of the algorithm, we maintain some information that allows
10 backtrack and recover a shortest path. This is done as follows. For eve
node i, we keep a record of a successor node s(i), chosen as the first nodd
in a path whose tctal length is equal to the current estimate p;(t) availabld
at node i. Determining a successor node with such & property is simpl
whenever we have p; (¢ + 1} < p;(¢), we delete the old successor of i, if a
and let si7} be such that p;(t + 1) = ci5() + Py (1)- ;

As noted earlier, the Bellman-Ford algorithm provides us with 4
method for checking whether there are any negative length cycles. DBeg
sides detecting the existence of a negative length cyck, some application]
such as the negative cost cycle algorithm of Section 7.4, require the con
struction of a negative length cycle. This can be accomplished as followd]
Consider a node 4 for which p;{n) < p;(n — 1}. By starting at node i and
going from each node to its successor, we obtain a wak with n arcs whos _'
length is p;{n). Since there are only n nodes in the graph, this walk m
comtain a cycle. Suppose that this cycle has nonnegative length. Let u

Sec. 7.9 The shortest path problem 339

delete the arcs on the cycle and we are left with a walk with fewer than n
arcs whose length is no greater than p;(n). This contradicts the inequality
pi(n) < piln— 1). We conclude that by tracing the successors of node i, we
will discover a negative length cycle.

Label correcting methods

Label correcting methods are a general class of shortest path algorithms,
that have proved to be very efficient in practice. They are similar in spirit to
the Bellman-Ford algcrithm, but they are more flaxible, hence the potential
for improved performance.

The key idea is to maintain at each node j, a label p; equal to the
length of the shortest walk from j to n discoversd thus far. Given a walk
from j to n, of length p;, there exists a walk from 4 to n of length ¢;; + p;.
Thus, each time that p; is revsed downwards (“corrected”), we also have
an opportunity to revise downwards the labels of all nodes ¢ that have an
outgoing arc to node j (the predecessors of j}. The algorithm maintains
a list S of all nodes whose labels have been revised downwards, and such
that the revision has not yet been propagated to their predecessors. (The
list S plays a role similar to the list of labeled but not yet scanned nodes
in the labeling algorithm of Sestion 7.5.)

Label correcting algorithm
The algorithm is initialized with § = {n}, p, = 0, and p; = oo for
every i # n. A typical iteration is as follows.
1. Remove a node j from. 5.
2. For every node ¢ # n such that (4, 7) is an arc, do the following.
Let p; := min{p;, ¢ij +p;}- If the new value of p; is smaller, add
node ¢ to the set S.
3. If 8 is empty, the algarithm terminates. Otherwise, go back to
Step 1.

The label of a node is always equal to the length of some waltk to
node n. {Except when the label is infinite, indicating that a path has not
yet been discovered.) This is easily shown by induction. Indeed, assuming
this to be true before an update, the new label min{p;, ¢;; + p;} is either
equal to the length p; of a previcusly identified walk, or is equal to the
length ¢;; + p; of a walk that starts with arc (¢, j) and follows a previously
identified walk from § to n.

We now establish the finite termination of che algorithm. We assume
that all cycles have nonnegatve length. Let p? be the first finite label
assizned to node i. Any walk from i to n whose length is less than p?,
consists of a path from ¢ to n, an arbitrary number of zero length cycles,

xeuwruoneziwndo Jeaul|

340 Chap. 7 Network flow problems

and a bounded number of positive length cycles. Since zero length cyclegf
have no effect on :he length of the walk, the possible values of p; that are
smaller than pY, are finitely many. This implies thet there can only byl
finitely many downward revisions of each label. After some point, therd
will be ne more revisions, and each iteration will only result in the removel
of some rode fror: S. It follows that S eventually becomes empty and th
algorithm terminates. 3
‘We conclude our analysis, by analyzing the comectness of the algos
rithm. :

Theorem 7.18 Suppose that there exists a path fom every nt
“node n, and that all cycles have nonnegative length. Then, the
correcting algorithm eventually términates with the label Pi of
node equal to the shortest path length p}. e

Proof. Consider a shortest path i;,s,...,4 = n from some node i; to)z
By the definition of the algorithm, we have p, = 0 =p%, at all times. A{
the first iteration of the algorithm, we have § = {n}, the predecessors of #§
are examned, and we set p;,_, = c;,_,n, which is equal to p;,_,- {This .
because the last arc of a shortest path is itself a shortest path)

Corsider now an intermediate node i in the path, and suppose tha i
the final label p;, is equal to p} . Since p,, was initislly infinite, its lab of
has changed at least once. The last time that p;, was changed, and was s
to p} , ncde i entered the set S. When at some later iteration, iy exi
S, pi,_, was set to min{p;,_,,¢;, s, +p} }. This is less than or equal]
t0 ¢y i+ 7, = P, _,- On the other hand, p;, , is the length of somej
walk, and can be no smaller than p; . We have therefore completed an)
inductive proof that p;, = p;, for all k.

The practical efficiency of label correcting methods is highly depen-
dent on the rule used to select a node from the list 5. It is interesting tof
note that for certain rules, including some that have been very successful
in practice, the worst-case complexity is exponential in n. The reader is]
referred to the literature for a more detailed discussion. |

Dijkstra’s algorithm

Dijkstra’s algorithm is an alternative to the Bellman-Ford algorithm and §
label correcting msthods. We will see shortly that Dijkstra’s algorithm is}
more effident, but can only be applied if all arc lengrhs are nonnegative, §
which will be assumed throughout this section. The key idea in Dijkstra’s]
algorithm s to identify the nodes in the order of the corresponding shortest
path lengths, starting with a node for which the shertest path length is§
smallest. [n order to simplify the presentation, we assume that ¢ij is defined §

Sec. 7.9 The shortest path problem 341

for every pair (i,7) of distinct nodes (with ¢ # n), but may be equal to
infinity for some pairs.

Our first step is to show that a node £ with a smallest shortest path
length is easy to find. Nonnegativity of the arc lengths is crucial here.

— .
Theorem 7. 19 Suppose that ¢;; > 0 for all i, 7. Let i ;é n- be such

that

= minh
Cén t;énc“‘

- Then, p; = Cen and p; S pi for allk # n.

Proof. Any path to node n has a last arc (¢, n) whose length c;,, is at least
¢m. Thus, g5 > egp for all k¥ £ n. For node £, we also have Pp < cpp. We
conclude that p} = ¢y < pf for all k #n.

Suppose that £ and p} have been determined as in Theorem 7.19, and
comsider an arbitrary node i. One of the options available at that node
is to traverse the arc (4,£) and visit node £. Once at node ¢, we should
traverse arc (f,n), because this is a shortest path from £ to n. Thus, once
an arc (i,f) is traversed, the ‘raversal of arc (£,n) can be assumed to be
automatic. We can therefore replace the two arcs (i, £) and (£,n) by a single
arc (i,n)" of length c;s + ¢4n; once we do that for every i # £, n, node ¢ can
be taken out of the picture. Note that a node i may now have two direct
arcs to node n, the original arc (i, n} as well as the new artificial arc (4,n)".
Naturally, any shortest path would only use the least expensive of the two.
We therefore remove (i, n)" and replace ¢;,, by

min{cin, Ci + Con }.

We are left with a new shortest path problem with one node less. We
apply the same process to the new shortest pata problem. Fach iteration
evaluates the shortest path lergth for one more node and, therefore, after
1 — 1 iterations, the algorithm terminates.

The resulting algorithm s summarized next.

Dijkstra’s algorithm
1. Find a node £ # n such that ¢z, < ¢ for all g # . Set p} = cop.
2. For every node i # £, n, set
Cin i min{cm,ct-e + em}

3. Remove node ¢ from the graph and app]y the same steps to the
new graph.

xeuwruoneziwndo Jeaul|

342 Chap. 7 Network flow problems |

Figure T.34: (a) A graph with arc lengths. The arcs that are
1ot shown have infinite length. (b) The graph cbtained after one
‘teration of Dijkstra’s algorithm.

Example 7,12 We apply Dijkstra’s algorithm to graph shown in Figure 7.34(3),;,
with node n = 4 being the destination node. We have ¢ = 3 and p} = 1.
The folowing arc lengths are modified: 14 = min{co 94 1} = 10 and ¢z =
min{7,3 + 1} = 7. We now eliminate node 3 and obsain the graph shown in
Figure 7.34(b). We obtain £ = 2 and p5 = 7. The arc length cis is modified '
by ¢14 = min{16,2 + 7} = 9. Node 2 is eliminated. Since node 1 is the only
nonterminal node left, pi is equal to the current value of ci14, which is 9. '

We now estimate the computational complesity of the Dijkstra al- §
gorithm. A typical iteration starts by comparing the coefficients ¢;, and §
this takes O(n) time. Having determined ¢, we need to update ¢;;, for each |
node i. We conclude that there are only O(n) arithmetic operations per |
iteraticn. The overall complexity is O(n?), which is one order of magnitude |
better than the Beliman-Ford algorithm. For a dense graph with Q(n?) |
arcs, aiy shortest path algorithm needs 2(n?) arihmetic operations be- |
cause, in general, every arc has to be examined at least once. Thus, for !
dense graphs, Dijkstra’s algorithm is the best possible. ‘

For sparse graphs, that is, when m is muca smaller than n, the
computational complexity of Dijkstra’s algorithm can be brought down i
to O{mlogn). Doing so requires keeping the coefficients e, in a suitable j
data structure that allows us to obtain the smallest such coefficient with }
minimsl work.

Reduction to the case of nonnegative arc lengths and |
the all-pairs problem

Suppose that some of the arc lengths are negative, but that all cycles have
nonnegative length. Let p! be the shortest path length from node ¢ to node

Sec. 7.10 The minimum spanning tree problem 343

n. From Bellman's equation, we have
pi < ci; + i, (7.21)

for all arcs (4,7). Let us now construct a new shortest path problem in
which the arc lengths c;; are replaced by new arc lengths €;;, defined by
Cij = Ciy + P —Bi-

Using Eq. (7.21), we have §; > 0 for all (i,j) € A. Under the new arc
lengths, the length of any path ¢;,...,%, from some node 4; to some other
node i, is given by

t—1 t—1 t—1
- _ o * kN ok x E o
C17f7+1 - (cl-ri-,+1 +pi,r+1 p‘i.,) - pit pll + Cl‘r’?‘fl'
=1 T=1 T=1

[n particular, for any given pair of nodes, a shortest path under the new
arc lengths is a shortest path under the old arc lengths, and conversely.
Since the new arc lengths are nonnegative, we are in a position to apply
Dijkstra’s algorithm.

If we are only interested in a single destination, the transformation
that we have just described is of no particular use. On the other hand, if
we are interested in the all-pairs problem, w2 can solve a single all-to-one
problem, using the Bellman-Ford algorithm, transform the arc lengths, and
finally solve n — 1 additional all-to-one problems (ore problem for every
possible destination) using Dijkstra’s algorithm. The overall complexity
is O(n*) + (n — 1) - O(n?) = O(n®). This is much better than applying
the Bellman-Ford algorithm n times, which would require Q(n*) time. For
sparse graphs, the running time can be brought down to G(nmlogn) by
using an efficient implementation of Dijkstra’s algorithm. An alternative
O(n?) algorithm for the all-pairs problem is developed in Exercise 7.38.

7.10 The minimum spanning tree problem

We are given a connected tndirected graph G = (N, £}, with n nodes. For
each edge e € £, we are alsc given a cost coefficient c.. {Recall that an edge
in an undirected graph is an unordered pair e = {¢, 7] of distinct nodes in
N A minimum spanning tree (MST) is defined as a spanning tree such
that the sum of the costs of its edges is as small as possible.

The minimum spanning tree problem arises naturally in many ap-
plications. For example, if edges correspond to communication links, a
spanning tree is a set of links that allows every node to communicate (pos-
sibly, indirectly) to every other node. Then, a minimum spanning tree
is a communication network that provides this type of connectivity, and
whose cost is the smallest possible. The minimum spanning tree problem

xeuwruoneziwndo Jeaul|

344 Chap. 7 Network flow problen}

also arises as a subproblem of more complex, seemingly unrelated, pro
lems. An example will be seen in Section 11.5, where it forms a basis for]
heuristic for the traveling salesman problem. ‘

Even though the MST problem is not a network flow problem, 9
include it in this ckapter, because of its graph-theoretic structure. We w
see that it can be solved by means of a simple greedy slgorithm. A gree
algorithm is one consisting of a sequence of choices that appear to be bd
in the short run. For certain problems, like the MST, short run opting
decisions turn out to be optimal in the long run as well. The algoritl
that we describe builds an MST by progressively adding edges to a currg
tree. At any stage, we have a tree and we add a least :xpensive edge th
connects & node in the tree with a node outside the tree.

Greedy algorithm for the minimum spanning tree proﬁ{

1. The input to the algorithm is a connected undirected graph
(N,£) and a coefficient c, for each edge e € £. The algorit
* i8 initialized with a tree (N}, &) that has a siagle node

edges (& is empty}

{ag}egsuchthatzéNkandjéNk Choosea.nedge
{z J} of. th»s type whose cost is smallest. Let B

MHZ =N U{s}

5;;.,.1 = & U{e’}

Since at each stage we connect a node in the current tree with a nod
outside the tree, no cycles are ever formed, and we always have a tred
The set A, has n elements and, therefore, (N, £,) is a spanning tree. ¥
remains to show that it is a minimum spanning tree. This is accomplished
by showing a somewhat stronger property. i

Theorem 7.20 For k = 1,...,n, the .E_ree (Ni, &) is part of so
MBST. That is, there exists an MST (N, £L) such thet & C &.

Proof. The proof uses induction on k. The result is trivially true foR
k =1, because the empty set £ is a subset of the edge set of any spanning
tree.

Suppose now that k& < n, and that £ is a subset of some MST £
[We are slightly abusing terminology by referring to £y instead of (N, £){
as a spanning tree.] Let e* = {i, 7} be the edge added to £; that is, i € M},
J & N, and Epyy = E U {e*}. Tf e* € &, then &1 is also a subset of
&, and the induction hypothesis is verified for k + 1, with £, = &/

Sec. 7.11 Summary 345

Suppose now that e* ¢ £.. Then, e*, together with Ek, forms a unique
cycle [Theorem 7. 1(d)). This cycle must contain a second edge (call it €)
with one endpoint in Ni and another outside Nj; see Figure 7.35. Since

Figure 7.35: The thicker edges correspond to a tree (N, &4)
involving 4 nodes. This is assumed to be part of an MST £,
which consists of all edges shown, with the excepticn of e*. If the
algorithm selects e”, its cost can be no greater than the cost of g,
and £4U {e*} is part of an alternative MST, in which 2 is replaced

by e”.

the algorithm selected e¢* rather than e to be added to &, we must have
Cer < cz. Let us now take the MST &y, delete edge €, and replace it by
e*. We obtain a new spanning tree, call it €41, and the cost change is
¢es — ¢z < 0. By the optimality of £k, we must have ¢.» = ¢, and both
spanning trees are optimal. We now note that £, is a subset of the MST
€111, and the induction is complete. O

Having proved the correciness of the algorithm, we now discuss its
computational complexity. We nave n — 1 iterations. At each iteration, we
need to examine each edge to see whether it is eligible for becoming part of
the tree, and we then need to find the least expensive one, which can all be
done in time O(n?). Thus, the overall complexity is O(n*). With a more
clever implementation, it can be brought down to O(n?); see Exercise 7.39.

7.11 Summary

Tn this chapter, we provided an overview of a broad range of topics related
to network flow problems, and we have covered most of the major available
methodologies.

Network flow problems are special cases of linear programming prob-
lems, and can be solved by applying general purpose methods, suitably

xeuwruoneziwndo Jeaul|

346 Chap. 7 Network flow problems}

tuned to exploit the network structure. For example, the primal or ;_,"
dual smplex method can be used. As we have pdinted out, the underly-§
ing network structure allows for simple and efficient rules for updating the
basic variables and the reduced costs. In addition, when the problem datg]
are integer, integer arithmetic can also be employed.
An important property of network flow problms that we discovered
in the course of our development, relates to integrality of basic solutions
Assuming that problem data are integer, we have shown that basic solug
tions to the primal and the dual have integer coordinates. The key reasoy]
behind this property is that the determinant of any basis matrix B has
unit magnitude. Unfortunately, there are only precious few classes of lineas
programming problems that have such remarkable properties.
Besides fine tuning the simplex method, we also developed some algo !
rithms that are specially tailored to network flow problems. These includeg
the negative cost cyele algorithm of Section 7.4 and the dual ascent meth4
ods of Section 7.7. These two methods are dual to each other in many
ways that can be made mathematically precise, bu; which are beyond ow
scope. Nevertheless, it is important to point out a common feature. In both
methods, a direction of improvement is identified by examining only a finite]
number of possible directions, which are independeat of the numerics} val4
ues of the input data. (In the negative cost cycle algorithm, the directiong]
considered correspond to simple circulations. In dual ascent methods, they
directions considered correspond to subsets of the set of nodes.) 3
Both the negative cost cycle algorithm and the dual ascent meshod
can be described at a high level of generaliry, while leaving a lot of freedom;
on how to choose a cycle or a dual ascent direction. By making some’
more specific choices, the worst-case number of iterations can be reduced. J
Furthermore, the search for a direction of cost improvement, carried out in §
the course of each iteration, usually has a lot of room for increased efficiency. §
(An example of this is our development of the primal-dual method, where :
the search for an ascent direction is implemented by means of an auxiliary ;
maximum flow problem and the labeling algorithm.! Such refinements lead }
to improved worst-case complexity bounds. It should be kept in mind, §
however, that worst-case complexity bounds may not accurately reflect the 3
performance of an algorithm in practice. _
The network flow problem contains some impcrtant special cases that’
can be solved by suitable special purpose algorithms. We saw the Ford-
Fulkerson algorithm for the maximum flow problem, the auction algorithm
for the assignment problem, and a number of (somewhat ad hoc) methods
for the shortest path problem. Auction algorithms can also be developed
for the general network flow problem, but this is s direction that we did 1
not pursue. '
The minimum spanning tree problem is somewhat disjoint from the 1
rest of the chapter. It was included because of its importance, and also i
becauss it shares an underlying graph-theoretic structure. :

Sec. 7.12 Exercises 347

7.12 Exercises

Exercise 7.1 (The caterer problem) A catering company must provide to a
client 7 tablecloths on each of N consecutive days. The catering company can buy
pew tablecloths at a price of 7 dollars each, or launder the used ones. Laundering
can be done at a fast service facility that makes the tablecloths unavailable for
the next » days and costs f dollars per tablecloth, or at a slower facility that
makes tablecloths unavailable for the next m days (with m > n) at a cost of g
dollars per tableclosh (g < f). The caterer’s problem is to decide how to meet
the client’s demand at minimim cost, starting with no tablecloths and under the
assumption that any leftover tablecloths have nc value.

(a) Show that the problem can be formulated as a network flow problem. Hint:
Use a node carresponding to clean tablecloths and a node corresponding to
dirty tablecloths for each day; more nodes may also be needed.

(b) Show explicitly the form of the network if N =5, n=1m =3.

Exercise 7.2 Consider a wood produet company that owns M forest units and
wants to find an optimal cutiing schedule over & period of K years. Forest unit
i is predicted to have a;; tons of wood available for harvesting during peried j.
The company wants to meet a demand of d; tons during year j. However, due to
capacity limitations, it can cnly harvest up to u; tons during that year. Weod
harvested in past years can >e stored and used to meet demand in subsequent
years, but there is a cost of ¢; for storing one ton of wood between year j — 1
and j. We also assume that wood that is available but not harvested during a
year remains available for harvesting in later years. Formulate the problem of
determining a minimum cost harvesting schedule that meets the demand as a
network flow problem.

Exercise 7.3 (The tournament problem) Each of n teams plays against
every other team a total of k games. Assume that every game ends in a win or a
loss {no draws) and let z; be ;he number of wins of team i. Let X be the set of all
possible autcome vectors (@1.. .., %,). Given an arbitrary vector (&1,...,%x), we
would like to determine whether it belongs to X, that is, whether it is a possible
tournament outcome vector. Provide a network low formulation of this problem.

Exercise 7.4 (Piecewise linear convex costs)

{a) Consider the capacitated network flow problem except that the cost at each
arc is a piecewise linear convex function of the flow on that arc. Show that
the problem can be recuced to one with linear costs, but in which we allow
multiple arcs with the same start node and end node.

{b) Show that a capacitated problem in which we have multiple arcs with the
same start node and end node can be reduced to a problem without any
such multiple arcs.

Exercise 7.5 (Equivalence of uncapacitated network flow and trans-
portation problems) Corsider an uncapacitated network flow problem and
assume that c;; > 0 for all arcs. Let $+ and S- be the sets of source and sink
nodes, respectively. Let d;; de the length of a shortest directed path from node
i€ 5, to node j € S_. We construct a transportation problem with the same

xeuwruoneziwndo Jeaul|

348 Chap. 7 Network flow problems |

source and sink nodes, and the same values for the supplies and the demands; :’j
For every source ncde ¢ and every sink node j, we introduce a direct link with]
cost di;. thow that the two problems have the same optimal cost.

Exercise 7.6 (Equivalence of capacitated network flow and transports
tion problems) Censider a capacitated network Aow problem defined by a grapl
G = (N, A) and the data u;;, cij, b:. Assume that the capacity wi; of every anl§
is finite. We construct a related transportation problem as follows. For every ar§
(i,J) € A, we form a source node in the transportation prcblem with supply uyl
For every node i € N, we construct a sink node with demand > {kl(ikycAy Wik —D :'
At every sipply node (4, §) there are two outgoing infinite capacity arcs: one goe
to demand node ¢, end its cost coefficient is 0; the other goes to demand node §
and its cost coefficient is ¢;;. See Figure 7.36 for an illustration.

Figure 7.36: The transportation problem in Exercise 7.6.

Show that that there is a one-to-one correspondence between feasible flo ;
in the two problems and that the cost of the two corresponding flows is the s

Exercise 7.7 (Lower bounds on arc flows) Consider a network flow pro¥§
lem in which we impose an additional constraint Jfis = dy for every arc (i,

Construct an equivalent network flow problem in which there are no no
lower bounds on the arc costs. Hini: Let f,-j = fi; — di; and construct a nel
network for the arc flows ?ij. How should b; be changed?

Exercise 7.8 Consider a transportation problem in which all cost coefficien|
¢ij are positive. Suppose that we increase the supply at some source nodes
the demand at some sink nodes. (In order to maintain frasibility, we assung
that the increases are such that total demand is equal to total supply.) Is)
true that the value of the optimal cost will also increase? Prove or providej
counterexample. 1

Exercise 7.9 Consider the uncapacitated network flow problem shown in F
ure 7.37. The label next to each arc is its cost. 3

{a) Whai is the matrix A corresponding to this problem?

(b) Solve the problem using the network simpex algorithm. Start with *.
tree indicated by the dashed arcs in the figure. 3

Sec. 7.12 Exercises 349

Figure 7.37: The retwork fow problem in Exercise 7.9.

Exercise 7.10 Consider the uncapacitated network flow problem shown in Fig-
ure 7.38. The label next to each arc is its cost, Consider the spanning tree
indicated by the dashed arcs in the figure and the associated basic solution.

(a) What are the values of the arc flows corresponding to this basic solution?
Is this a basic feasible solution?

(b) For this basic solution, find the reduced cost of each arc in the network.
(¢) Is this basic solution optimal?

(d) Does there exist & nondegenerate basic feasible solution?

(e) Find an optimal dual solution.

(f) By how much can we increase cs [the cost of arc (5,6)] and still have the
same optimal basic feasible solution?

(g) If we increase the supply at node 1 and the demand at node 9 by a small
positive amount 6, what is the change in the value of the optimal cost?

(h) Does this problem have a special structure that makes it simpler than the
general uncapacitated network flow problem?

Exercise 7.11 {Degeneracy in a transportation problem) Consider a
transportation problem with two source nodes s, , 82, ard n demand nodes 1, ..., n.
Al arcs (8:,4) are assumed to be present and to Lave infinite capacity. Let

;:D E/E?:] d; be the total demand. Let the supply at each source node he equal
o D/2.

(a) How many basic variables are there in a basic feasible solution?

(b) Show that there exists a degenerate basic feasible solution if and only if
there exists some set $ C {1,...,n} such that Yiesdi=D/2.

xeuwruoneziwndo Jeaul|

350 Chap. ¥ Network flow problems

Figure 7.38: The network flow problem in Exercise 7.10.

Exercise 7.12* (Degeneracy in the assignment problem) Consider the

polyhedron P C R defined by the constraints

k
ot =1, J=1...,k
=1
k
Zﬁj =1, i=1,... .k
=1

fo 20, Bhi=1,...k

(a) Shew that P has k! basic feasible solutions and that if k > L, every basic |

feasible solution is degenerate.

(b) Shoew that there are 2°7'k*~2 different bases that lead to any given basic
feasible solution.

Exercise 7.13 Suppose that we are given a noninteger optimal solution to an |

uncapacitated network flow problem with integer data.

(a} Shew that there exists a cycle with every a-c on the cycle carrying a positive
flow. What can you say about the cost of such a cycle?

(b) Suggest a method for constructing an irteger optimal solution, without
solving the problem from scratch. Hint: Remove cycles.

Exercise 7.14 (Decomposition of circulations) Let A be the node-arc in-
cidence matrix associated with a directed graph with m arcs. Suppose thet a

Sec. 7.12 Exercises 351

vector f satisfies AFf = 0. Show that there exists a nonnegative integer k& (with
k <m), cycles C1,..., Ck, and nonnegative scalars ay, . .. , @, such that:

@) f=%F ah%,

i=1
(ti) for every arc (k, £) on a cycle C, hfe' and fi; have the same sign.
Furthermore, show that if f is an integer vector, then the coeflicients ay, ..., ax

can be chosen to be integer. Hizf: Reverse the arcs that carry negative flow and
apply Lemma 7.1.

Exercise 7.15 (Flow decomposition theorem) State and prove a result
analogous to the flow decomposition theorem in Exercise 7.14, for the case of a
flow vector f that satisfies Af = b. Hint: Besides cycles, use paths as well.

Exercise 7.16 * (Negative tost cycle algorithm under the largest im-
provement rule) Consider the variant of the negative cost cycle algorithm in
which we always choose a cycle C' with the largest value of 8(C}Hc'h”|. Let £ be
the current flow and let f* be a1 optimal flow.

(a) Show that f* —F is equal to a nonnegative linear combination of at most
m simple circulations, whare m is the number of arcs. Furthermore, each
such simple circulation is associated with an unsaturatsd cycle. Hint: Use
the result in Exercise 7.14.

(b) Show that unde: the largst improvement rule, the cost improvement at
each iteration is at least {¢'f — ¢'f*}/m.
{c) Assuming that all problem data, are integer, show that the algorithm termi-

nates after O(mlog(mCU)) iterations, where C' and U are upper bounds
for [cy;| and wus;, respectively.

Exercise 7.17 Consider a network fow problem and assume that there exists
at least one feasible salution. We wish to show that the optimal cost is —oo if
and only if there exists a negative cost directed cycle such that every arc on the
cycle has infinite capacity.

(a) Provide a proof based on the flow decomposition theorem.

(b} For uncapacitated problems, provide a proof based on the network simplex
method.

Exercise 7.18 Show that there is a one-to-one correspondence between aug-
menting paths in the maximum flow algorithm and negative cost unsaturated
cycles in the network flow formulation of the maximum flow problem.

Exercise 7.19 Consider the maximum fow problem. Describe an algorithm
with O(|A|) running time that determines whether the value of the maximum
flow is infinite.

Exercise 7.20 (Duality and the max-flow min-cut theorem} Consider
the maximum flow problem.

{a) Let p; be a price variable sssociated with the flow conservation constraint
at noded. Let ¢;; be a pricevariable associated with the capacity constraint
at arc (4, 7). Write down a minimization problem, with variables p; and ¢,
whose dual is the maximum flow problem.

xeuwruoneziwndo Jeaul|

352 Chap. 7 Network flow problems §

(b) Show that the optimal value in the minimization problem is equal to the
milimum cut capacity, and prove the max-flow min-cut thecrem.]

Exercise 7.21 (Finding a feasible solution) Show that a feasible solution of
a capacitated network problem (if one exists) can be founc by solving a maximum]
fow protlem.

Exercise 7.22 (Connectivity and vulnerability) Ceusider a directed graph]
and let vs fix an origin node s and a destination node t. We define the connec-:
tivity of the graph as the maximum number of directed paths from s to £ that do
not share any nodes. We define the sulnerability of the graph as the minimum§
number of nodes (desides s and t) that need to be removed so that there exista
no directzd path from s to t. Prove that connectivity is equal to vulnerability.]
Hint: Convert the connectivity problem to a maximum fow problem.]

Exercise 7.23 (The marriage problem) A small vilage has n unmarried §
men, n uamarried women, and m marriage brokers. Each broker knows a subset §
of the men and women and can arrange up to b marriages between any pair of ;
men and women that she knows. Assuming that marriages are heterosexual and :'
that each person can get married at most once, we are imerested in determining §
the maximum number of marriages that are possible. Show that the answer can]
be found by solving a maximum flow problem.

Exercise 7.24 * (Kénig-Egervary theorem) Consider an m x n matrix}
whose entries are zero or one. We refer to a row or a column as a line. We§
say that a set of lines is a cover if every unit entry lies or one of the lines in the
set. A sel of unit entries are called independent if no two of them lie on the same
line. Prove that the maximum cardinality of an independent set is equal to the |
smallest cardinality of a cover. Hint: Formulate an appropriate maximum flow
problem.]

Exercise 7.25 (The scaling method for the maximum flow problem) 1§
This exercise illustrates the scaling method, a common tecinique for reducing the }
complexity of network flow algorithms.

Consider 2 maximum flow problem II. Let n be the rumber of nodes, let u;;
be the capacity of arc (%,), assumed integer, and let » be the value of a maximum _
flow. We construct a scaled problem I, in which the capacity of each arc (,7) 1
is |u:;/2), and we let v, be the corresponding optimal value. (The notation |a] |
stands for the largest integer & that satisfies k < a.)

(a) Cousider an optimal flow for the problem IT,, and multiply it by 2. Show :
that the result is a feasible flow for the original proslem II.

(b) Show that 2v, < v < 20, +n

{c) Consider running the Ford-Fulkerson algorithm on problem II, starting with
the feasible flow described in (a). How many flow augmentations will be §
needed, and what is the total computational effort? ‘

{d) Shew how to solve the maximum flow problem witk a total of O(n*logU)
arithmetic operations, where U is an upper bound on the capacities ;.

Sec. 7.12 Exercises 353

Exercise 7.26 * (Birkhofl-von Neumann theorem) A square matrix A is
called doubly stochastic if 3. ai; = 1 for all j, Z" L @i; = 1 for all 4, and all
entries are nonnegative. A matrix P is called a permutatwn matriz if each row
and each column has exactly one nonzero entry, which is equal to 1.

(a) Let P1,...,P: be perrtation matrices, and let Ay, .., Ax be nonnegative
scalars that sum to 1. Show that ZLI A;P; is doubly stochastic.

(b) Let A be a doubly stochastic matrix. Show that there exist permutation
matrices Py, ..., Pk, and nonnegative scalars A1, ..., Ax that sum to 1, such
that A = Zle A:P;. Hint: Consider the assignment problem.

Exercise 7.27 Consider the transportation preblem shown in Figure 7.39, and
solve it using the prmal-dual method. Use p = (1,1,0,0) to start the algorithm.

Figure 7.33: The transportation problem in Exercise 7.27. Arc
costs are shown next to each are.

Exercise 7.28 Ttis exercise develops a more efficient method for computing ¢*
in the primal-dual method. Let § be the set of nodes whose prices are to increase,
a3 in the description of the general dual ascent algorithm. For every j € S, let

97 = min Cij +p; —pi).
{Z_ESNMKM(i + P — pi)

(a) Show that 6" = min;gq#;.

(b) Suppose that some nodz k ¢ S satisfies §; = 8, so that node k enters the
set § subsequent to the price increase. Let

;= min (cis +p5 —Pi)s

g SU{k}.
{iesu{k]|(é.5)eA} i¢ k)

Show that 8; = min{0 cxj +p; — p}-
(¢} Explain how to carry out each dual update in time proportional to n times
the number of previously unlabeled nodes that become labeled.

(d} Show that the primal-dual method can be implemented so that it runs in
time O(n®B), where B = max; |b].

Exercise 7.29 Cuonsider a tipartite matching problem and suppose that every
node has the same degree d. Show that there exists a pe-fect matching. Hint:
Convert to a maximum flow problem and use the max-flow min-cut theorem.

xeuwruoneziwndo Jeaul|

354 Chap. 7 Nework flow problems .

Exercise 7.30* (The primal-dual method zs steepest dual ascent) Cone]
sider the daal ascent algorithm. Show that the choice of the set S in the primal-]
dual methed maximizes (d¥}'b over all sets S for which d° is a feasible direction.]

Exercise 7.31 (Dual simplex method for network fiow problems) Cono
sider the uncapacitared network flow problem.

(a) Show that every spanning tree determines a basic solution to the dual
problem.

(b} Given a basic fzasible solution to the dual problem, associated with a cert
tree, show that it is optimal if and only if the correspanding tree soluti
to the primal is feasible.

(c) If the tree solution in part (b) is infeasible, remove an arc that ca;
negative flow. Given that we wish to maintain dual fasibility, how sho
an arc be chosen to enter the tree?

(d) Notethat the entering arc divides the tree into two parts. Consider the dual
variables following a dual simplex update. Show that the dual variables ing
one part of the tree remain unchanged and in the ather part of the treeg
they are all changed by the same amount.]

Exercise 7.32 {Termination of the auction algorithm) Consider a varif
ation of th2 assignment problem in which we are given a subset .4 of the set -;‘_
person-project pairs, and we allow fi; to be nonzero only if {7,) € A. We mods
ify the bidding phase of the auction algorithm as follows. A person i takes intd
consideration only the profits p. — c;x of those projects k for which (4, k) € 44
Suppose that this form of the auction algorithm fails to terminate. Let I be thé
set of persons that bid an infinite number of times. Let J be the set of project$
that receive an infinite number of bids.

(a) Show thatifie I and {(i,j) € A, then 5 € J. E
{b) Show that the cardinality of I is strictly larger than the cardinality of J. ?_
(c) Show the problem must be infeasible. '

Exercise 7.33 (Shortest path lengths and Bellman's equation) Consid
the all-to-cne shortest path problem, and let p* be the vector of shortest paih
lengths.
(a) Show that if every (directed) cycle has positive length, then Bellman's
equasion has a unique solution, equal to the shortest path lengths.

(b) Show that if every (directed) cycle has nonnegative length, and if p is a
solution to Bellman’s equation, then p < p*. Hiné: Consider max{p;, p;}4

Exercise 7.34 (From shortest path lengths to shoriest paths} Suppose]
that all dirscted cycles in a directed graph have nonnegative costs. Furthermore,
suppose that the shortest path length p] from any node to node n is known.!
Provide an algorithm that uses this information to determine a shortest path
from node 1 to node n.

Exercise 7.35 (Convergence of the Bellman-Ford algorithm) This ex-|
ercise develops an alternative proof of the convergence of the Bellman-Ford algo-;
rithm. Assime that the length of every cycle is nonnegative. :

Sec. 7.12 Exercises 355

(a) Prove that p(t+ 1) < p{i} for all ¢,
(b) Prove that p(t) > p* for all ¢, and conclude that p(¢) has a limit,

(c) Prove that p(t) can take only a finite number of values and therefore con-
verges.

(d) Prove that the limit satisies Bellman’s equation.

(e) Prove that the algorithm converges to p*.

Exercise 7.36 (Minimization of the mean cost of a cycle using linear
programming) Consider a dirscted graph in which each arc is associated with
a cost ¢;;. For any directed cycl:, we define its mean cost as she sum of the costs
of its arcs, divided by the number of arcs. We are interested in a directed cycle
whose mean cost is minimal. We assume that there exists at least one directed
cycle.

Consider the linear programming problem

maximize A

subject to p; + A < p; + ¢y, for all arcs /4, 5).

(a) Show that this maximization problem is feasible.

(b) Show that if (A, p} is a fessible solution to the maximization problem, then
the mean cost o every ditected cycle is at least A.

(¢} Show that the maximization problem has an optimal solution.

(d} Show how an optimal solition to the maximrization problem can be used
to construct a directed cy:le with minimal mean cost.

Exercise 7.37 (Minimizaticn of the mean cost of a cycle using the
Bellman-Ford algorithm) Censider a directed graph in which each arc is as-
sociated with a cost ¢;;. For any directed cycle, we define its mean cost as the
sum of the costs of its arcs, divided by the number of arcs. We are interested in a
directed cycle whose mean cost 's minimal, We assume that there exists at least
one directed cycle.

(a) Consider the algorithm
pi(t+1) = min i+ pi{i for all ¢
() je (z) {C) pj()}i T al z,

initialized with £:(0) = 0 for all . Show that p;(f) is equal to the length of
a shortest walk that starts at ¢ and and traverses ¢ arcs.

(b) Prove that the optimal mean cycle cost A satisfies

A= mi1 1ax (p_%_i(n)—p,(k))j

i=1,..,n 0<k<n-1 n—k
where n is the number of nodes.

Exercise 7.38 (Floyd-Warstall all-pairs shortest path algorithm) Con-

sider the all-pairs shortest path sroblem and assume that there are no negative

