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Unlike linear programming problems, integer programming problems are
very difficult to solve. In fact, no efficient general algorithm is known for
their solution. In this chapter, we review algorithms for integer program- 1
ming problems, we develop a duality theory tha: facilitates algorithmie
development, and discuss evidence suggesting that that these problems are

inhereatly hard.
There are three main categories of algorithms:

(a) Exact algorithms that are guaranteed to find an optimal solution,
but may take an exponential number of iterations. They include ]
cutting plane (Section 11.1), branch and bound and branch and cut 1

(Section 11.2), and dynamic programming methods (Section 11.3).

(b) Approximation algorithms that provide in polynomial time a sub- {
cptimal solution together with a bound on the degree of suboptimality

(Section 11.5).

(c) Heuristic algorithms thas provide a suboptimal solution, but with- #
cat a guerantee on its quality. Although the running time is not 4§
guaranteed to be polynomial, empirical evidence suggests that some
cf these algorithms find a good solution fast. As examples we intro- 1
duce loca. search methods (Section 11.6), ard simulated annealing 4

(Section 11.7).

Duality theory is central to linear programming. Integer program- i
ming also has a duality theory, presented in Secticn 11.4, which provides _'
bounds on the optimal cost. These bounds are very useful in exact al- §
gorithns, as they can be used to avoid enumerating too many feasible §
solutions, and in approximation algorithms, as they provide performance }

guarantees.

Civen our inability to solve integer programming problems efficiently, {

it is nasural to ask whether such problems are inherently hard. Complexity

theory, reviewed in Section 11.8, offers some insights on this question. It

provides us with a class of problems with the followng property: if a poly-
nomial time algorithm exists for any problem in this class, then all integer
programming problems can be solved by ax efficiens algorithm, but this is
considered unlikely.

11.1 Cutting plane methods
We comsider the integer programming problem

minimize ¢'x

subjectto Ax = b
x>0
X integer,

(11.1)
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and its linear programming relaxation

minimize ¢'x
subject to  Ax
x

b (11.2)
0.

vl

The main idea in cutting plane methods is to solve the integer programming
problem (11.1} by solving a sequence of linear programming problems, as
follows. We first solve the linear programming relsxation (11.2). and find
an optimal solution x*. I x* is integer, then it is an optirpal solu.tlon to the
integer programming problem (11.1). If net, we find an mequa‘.ht.y that .all
integer solutions to (11.1) satisfy, but x* does not. We add thl?, inequality
to the linear programming problem to obtain a tighter relaxation, and we
iterate this step.

A generic cutting plane algorithm . -
1. Solve the linear programming relaxation (11.2}. Let x* be an
optimal solution.
2. If x* is integer slop; x* is an optimal solution to (11.1).
3. If not, add a linear inequality constraint to (11.2) that all integer
solutions to {11.1) satisfy, but x* does not; go to Step 1.

Note that this method is just a variation of the cutting plane algo-
rithm introduced in Seciion 6.3. As in that section, the main idea‘is to
generate a violated constraint, whenever the relaxed problem gives rise to
an infeasible solution. The performance of a cutting plane method depends
critically on the choice of the inequality used to “cut”. x*. We reviev:z next
ways to introduce cuts tkat give rise to particular cutting plane algorithms.

Example 11.1 (An example of a cut) Let x* be an optimal basic feasible
solution to {11.2) with at least one [ractional basic variable. Let N be the set
of indices of the nonbasic variables. Consider any solution to the mFeger pro-
gramming problem such that z; = 0 for all i € N. Then, it is a SOlutl.OIl to .the
linear programming problem as well, and it must be the same as the basic feasible
solution x*. Since x* is not feasible for the integer programming problem, then
all feasible integer solutions satisfy

Z z; =2 1.
JEN

This is the inequality that we add to the relaxation (11.2). Note that all integer
solutions to (111) satisfy it, while the optimal solution x* to the relaxation

violates it.
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The Gomory cutting plane algorithm

'The first finitely terminating algorithm for integer programming was a cut- i
ting plane algorizhm proposed by Gomory in 1958, waich uses some detailed §

informeation from the optimal simplex tableau.

We solve the standard form linear programmiag problem (11.2) with
the simplex method. Let x* be an optimal basic feasible solution and let
B be an associated optimal basis. We partition x into a subvector xg ]
of basic variables and a subvector x of nonbasic variables. Recall from
Chapter 3 that a tableau provides us with the coeflicients of the equation ]
B~'Ax = B7!b. Let N be the set of indices of nonbasic variables. Let }
Ay be the submatrix of A with columns A,, i € N. From the optimal :_

tableau, we obtain the coefficients of the constraints

XB +B_1ANXN =B b,

Let @; = (B™'A;), and @ = (B~ 'b),. We consider one equality from §

3

the optimal tableau, in which @;y is fractional:

xr; + E Eijxj = a;n.
JEN

Since z; > 0 for all j, we have

Ty —+ ZLEUJE}' S i + z Eﬁjl‘j = aio.

JEN jEN

Since x; should be integer, we obtain

2t Y |@yl7; < @)
JEN
This inequality is valid for all integer solutions, but i; is not satisfied by x*.
The reason is that &} = 80, } = 0 for all nonbasic j € N, and {T;p] < @i
(since @y was assumed fractional),

It has been shown that by systematically adding these cuts, and us-
ing the dual simplex method with appropriate anticycling rules, we obtain
a finitely terminating algorithm for solving general integer programming
problems. See Section 5.1 on how to apply the dual simplex method, when
new inequality constraints are added. In practice, however, this me:hod
has not been particularly successful.

Examgple 11.2 (Illustration of the Gomory cutting plane algorithm)
We consider the integer programming problem

minimize 1 — 2z

subject to —4x; + 6x2 < 9
1 + x££ 4
1,T2 Z 0

x1, Tz .nteger.
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2

Figure 11.1: The Gomory cutting plane algorithm for Example
11.2. The shaded region is the feasible set of the linear program-
ming relaxation.

We transform the problem in standard form

minimize T — 213

subject to —4x; + B2 + z3 =9
rn + T + 1 = 4
X1y --3T4 2 0
Z1,...,T4 iNTEgEr.

We solve the linear programming relaxation, and the optimal solution (in terms
of the original variables) is x' = (15/10,25/10). One of the equations in the
optimal tableau is

LI S
T2+ 10°3 105~ 10
We apply the Gomory cutting plane algorithm, and we find the cut
z2 < 2.

We augment the linear pregramming relaxation by adding the constraints zz +
x5 = 2, 5 > 0, and we find that the new opt:mal solution is x% = (3/4,2). One
of the equations m the optimal tableau is

1 6:.:
X1 — 4*.’133 + —xz5 = —4.
We add a new Gomory cul

zy — 23+ x5 <0,
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which, in terms of the original variables 1, z3, is

—3z1+ 522 < 7.

We add this constraint, together with the previously adled constraint z3 < 2,
and find that the new optimal solution is x* = (1,2). Since the solution x® ia |

integer, it is an optimal solution to the original problem; see Figure 11.1.

A difficulty with general purpose cutting plane algorithms is that the?
added irequalities cut only a very small piece of the feasible set of the ]
linear programming relaxation. As a result, the prastical performance of §
such algorithms has not been impressive. For this reason, cutting plane
algorithms with deeper cuts have been designed. These cuts utilize the ]
structure of the particular integer programming problem. We illustrate i

such methods with an example.

Example 11.3 (The weighted independent set problem) Given an undi- §
rected greph G = (N, £} and weights w; for each i € NV, the weighted independent
set problem asks for a collection of nodes § of maximum weight, so that no two
nodes in § are adjacent. We let z; = 1 if node ¢ is selecied in the independent i

set, and z; = 0, otherwise. The problem can then be formulated as follows:
maximize Z WhiT;
i=1
subject to  x; +x; < 1, (,,7) €&,
xz; € {0,1}, ieN.

A collection of nodes U such that for any ¢, € U we have (4,5) € &, is :
called a digue. Clearly the following inequality is valid for all feasible solutions !

to the independent set problem:

Zzi <1, for any clique U.
ieU

A set of nodes U = {iy,..., i} is called a cyele if the only edges joiring
nodes in U are {i1,42}, {{2,43},...,{ix,4:1}. For any cycle U of odd cardinality,
there can be no more that (|U| - 1) /2 nodes in an independent set; otherwise,
two of these nodes will be adjacent. Therefore, the inequelity

Zmi < MTMI, for any cycle U such that |U] is odd,

ieU
must hold.

The inequalities we derived above utilize the particular combinatorial struc-
ture of th: maximum independent set problem. If we use these inequalities in the
generic cutting plane method we described, the performaice of the algorithm is
greatly erhanced. However, given an x*, we must search for a violated inequality
of either type, which can be difficult. i
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11.2 Branch and bound

Branch and bound uses a “divide and conquer” approach to explore the
set of feasible integer solutions. However, instead of exploring the entire
feasible set, it uses bounds on the optimal cost to aveid exploring certain
parts of the set of feasible integer solutions.

Let F' be the set of feasible solutions to the problem

minimize ¢'x
subject to x € F.

[For example, F cculd be the set of integer feasible solutions to the problem
(11.1).] We partition the sef F’ into a finite collection of subsets Fy, . .., F,
and solve separately each one of the subproblems

minimize ¢'x
subjectto xeF;, i=1,...,k

We then compare the optimal solutions to the subproblems, and choose
the best one. Each subproblem may be almost as difficult as the original
problem and this suggests trying to solve each subproblem by means of the
same method; that is, by splitting it into further subproblems, etc. This is
the branching part of the method and leads to a tree of subproblems; see
Figure 11,2,

Figure 11.2: A tree of subproblems: the feasible set F is parti-
tioned into Fy and F%; also, F: is partitioned inte F3 and Fi.

We also assume that there is a fairly efficient algorithm, which for
every F; of interest, compnutes a lower bound b(F;) to the optimal cost of
the corresponding subproblem; that is,

) < min ¢'x.
b(F;) < min c

The basic idea is that while the optimal cost in a subproblem may be
difficult to compute exactly, a lower bound might be a lot easier to obtain.
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A popular method to obtain such a bound is to use the optimal cost of the §
linear programming relaxation. 3

In the course of the algorithm, we will also occasionally solve certain
subproblems to optimality, or simply evaluate the cost of certain feasibley
solutiens. This allows us to maintain an upper bound U on the optimall
cost, vhich could be the cost of the best feasible solution encountered thusi
far, :

The essence of the method lies in the following observation, [f the]
lower bound b(F;) corresponding to a particular subproblem satisfies b(F;) >
U, then this subproblem need not be considered further, since the optimal §
soluticn to the subproblem is no better than the best feasible soluticn en-
countered thus far. ‘.

The following is a high-level description of the resulting algorithm. 3
At any point, the algorithm keeps in memory a set of outstanding (active) ‘
subpreblems and the cost I7 of the best feasible solution so far. Initially, U 1
is set either to oo or to the cost of some feasible solution, if one happens to §
be avalable. A typical stage of the algorithm proceeds as follows.

~A generic branch and bound algorithm
1. Select an active subproblem F.

2. If the subproblem is infeasible, delete it; otherwise, compute b(IF
for the corresponding subproblem.

3. If (F;) > U, delete the subprobler. .
4. Ifb(F;} < U, either obtain an optimal soluticn to the subproblem;

or break the corresponding subproblem into ‘urther subproblerns,
which are added to the list of active subproblems. '

There are several “free parameters” in this algorithm. The best §
choices are usually dictated by experience.

(a) There are different ways of choosing an active subproblem. Two ex- §
treme choices are “breadth-first search” and “lepth-first search.”

(b) There may be several ways of obtaining a lower bound b(F;) on the }
optimal cost of a subproblem. One possibility that we have already |
mentioned is to consider the linear programming relaxation. We con-
sider other possibilities in Section 11.4.

{¢) There are usually several ways of breaking a problem into subprob- 3
lemns. ‘

As an illustration, we use as a lower bound ¥ F;) the optimal cost

of the linear programming relaxation whereby the integrality constraints
are ighored. If an integer optimal solution to the 1elaxation is obtained,
then it is automatically an optimal solution to the corresponding integer
programming problem as well, and there is no need for expanding into
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Figure 11.3: Branch and bound in Exemple 11.4.

further subproblems. We only need to update U (if the cost of this optimal
solution is better than the previous value of U), a.nd.we can delete 1_:he
current subproblem. If the optimal solution x* to the linear l?rogr?n.lmmg
relaxation is not integer we choose a component z; for which x} is not
integer and create two sthproblems, by adding either of the constraints

x; < |xy), or x> [x}].

(Note that both constraints are violated by x*. If x* is the ‘unique optlmal
solution to the linear prozramming relaxation, then the optimal cost m.the
relaxation of either of the new subproblems will be strictly largef.) Given
that a subproblem differs from its parent only in the fact thaF a single new
constraint has been added, we can solve the linear programming rela:iatlon
of a subproblem by means of the dual simplex method, st.artmg from x*. We
may then expect than an optimal solution to the new l.mear‘programmmg
problem will be obtained after only a small number of iterations.

Example 11.4 {Illustration of branch and bound-)-We solve the problem
of Example 11.2 by branch and bound; see Figure 11.3. Imtllally,.U =1 oo, We solve
the linear programming relaxation and the optimal solution is x* = (1.5,2.5).
Then, b(F) is the optimal cost of the relaxation, i.e., ¥F) = —3.5. We create
two subproblems, by adding the constraints z3 = 3 (subproblem -Fl), or 2z <2
{subproblem F%), The active list of subproblems is {F1, Fz}. The linear prograin-
ming relaxation of subproblem F is infeasible and, therefore,‘ we can delete t.hlS
subproblem from the activa list. The optimal solution to the linear programming
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relaxatior of subproblem F3 is x* = (3/4, 2), and thus b(F) = —3.25. We further 1
decompose subproblem F3 into two subproblems. since either z; > 1 (subproblem:
F3), or z; < 0 (subproblem Fj). The active list of subprdblems is now {Fs, F4}.]
The optinal solution to the linear programming relaxaticn of Subproblem F;

® = (1,2), which is integer and therefore, U = —3. We delete subproblem Y
from the active list. The optimal solution to the linear programming relaxation §
of subproslem Fj is x* = (0,3/2), and thus b(F) = —3. Since b(Fy) > U, we do
not need to further explore subproblem Fy. Since the active list of subproblems
is empty, we terminate. The optimal integer solution is x* = (1, 2). 1

Example 11.5 (A branch and bound method for the directed traveling §
salesman problem) Given a directed graph G = (N, A) with n nodes, and a§
cost ¢;; for every arc, we want to solve the traveling salesman problem on G using
branch and bound. The objective is to find a tour (a directed cycle that visits all §
nodes) of minimum cost. We let z;; equal to 1, if 4 and j are consecutive nodee ”
in a tour, and 0, otherwise. The optimal cost in the problm

n n
minimize E E CijTij

i=1 j=1

subject to Z.’D;‘j =1, i=1..,n,
ZJJQ‘:I, i=1,...,n,
=1
X35 S {071}:

provides ¢ lower bound on the cost of an optimal tour, because every tour must
satisfy the above constraints. We recognize this as an assignment problem. How- §
ever, not every feasible solution to the assignment problem corresponds to a tour, |
and for this reason the optimal costs for the two problems are not the same. In |
particular, an optimal solution to the assignment problem may correspond to a
collection of “subtours”; see Figure 11.4. ;

Suppose now that we use the assignment problem t< obtain a lower bound 4
on the cost of the traveling salesman problem. If the optimal solution to the |
assignmert problem corresponds to a tour, such a tour is optimal for the traveling ]
salesman problem. If not, we split the problem into subproblems. Each additional -
subproblen involves a single additional constraint of the form z;; = 0. This is
equivalent to prohibiting (i, j) from being consecutive nodes in a tour, and can
be also accomplished by setting ¢;; to a prohibitively high value. Note that
adding such a constraint to the traveling salesman or to the assignment problem,
still leaves us with a traveling salesman or assignment problem, respectively.
Therefore, all subproblems constructed in the course of the branch and bound
algorithm will also correspond to instances of the travelng salesman problem
and lower bounds can be obtained by solving the related assignment problems.
The only remaining issue is how to decide which constraiits z;; = 0 to add. A
natural alternative is to choose one or more subtours and let each subproblem
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Figure 11.4: Consider a dirscted traveling salesman problem
with seven podes. The vector x corresponding to these two sub-
tours is a feasible solution to the assignment problem.

prohibit one of their arcs. For exampile, if the optimal solution to the assignment
problem is as in Figure 11.4, we can create subproblems by adding one of the
constraints £12 = 0, 23 = 0, T34 =0, £41 =0, x56 = 0, Tev = 0, 75 = 0. If the
current assignment problem tas a unique optimal solution, this solution is made
infeasible by the constraints that are added during branching. For this reason,
the optimal cost in each subpioblem is strictly larger, and improved lower bounds
are obtained.

It should be clear that the success of branch and bound methods
depends critically on the awailability of tight lower bounds. (In Section 11.4
we introduce a duality theory for integer proegrammirg that leads to such
bounds.) While the branch and bound algoritam may take exponential time
in the worst case (see Exercise 11.4), it often produces acceptable solutions
in a reasonably short amownt of time, especially when tight lower bounds
are available.

Branch and cut

Another variant of the method, often called branch and cut, utilizes cuts
when solving the subproblems. Tn particular, we augment the formulation
of the subproblems with additional cuts, in order to improve the bounds ob-
tained from the linear programming relaxations. We illustrate the method
with an example.

Example 11.6 (Illustration of branch and cut} We solve the problem of
Example 11.2 by branch and ¢ut. We first solve the linear programming relaxation
and find the optimal solution x' = (1.5,2.5). As before, we create subproblems
F, (corresponding to @z > 3) and F: (corresponding to 2 < 2). We delete
subproblem Fy, because its linear programming relaxation is infeasible. In order
to solve subproblem Fu, we add the constraint —z; + 22 < 1 which is satisfied
by all integer solutions to subproblem F:. The optimal solution to the linear
programming relaxation is now x = (1,2), which is integer, and thus we terminate
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with th: optimal solution. Note that by adding the cut —z1 +z, < 1, we avoide ..
further enumeration. This is typical in branck and cu;. If we can add “dee

cuts, we can accelerate branch and bound considerably. However,

finding suc}
cuts is nontrivial.

11.3 Dynamic programming

In the previous section, we introduced branch and bound, which is an exact]
intelligent enumerative technique that attempts t¢ avoid enumerating g
large portion of the feasible integer solutions. In this section, we introducel
another exact technique, called dynamic programming, that solves integes
prograriming problems sequentially. 2

We illustrate the method by deriving a dynamic programming algo-3
rithm for the traveling salesman problem. We will then discuss genersky
principles on how to develop dynamic programming algorithms for gthe
integer programming problems. :

4
Examgple 11.7 (A dynamic programming algorithm for the traveling;,
salesmzn problem) Let G = (A, 4) be a directed graph with n nodes and let
ci; be the cost of arc (4, 7). We view the choice of a tour s a sequence of choic
we start at node 1; then, at each stage, we chocse which node to visit next, After §
a number of stages, we have visited a subset § of A and we are at a current node
k € 8. Let C(S,k) be the minimum cost over all patls that start at node
visit all nodes in the set § exactly once, and end up st node k. If we call (S, k)%
a stafe, this state can be reached from any state of the form (.S' \{k}, m), with. 3
m € S\ [k}, at a transition cost of c,,.. Thus, C(8, k) can be interpreted as the
least possible sum of transition costs, over all sequences of transitions that take }
us from state ({1}, 1) to state (S, k). Therefore, we have the recursion

& = i k mk |y i .
(S.)= min_ (0(5\{ Yom) + e k) kes (11.3)
and C({l}, 1) = 0. There are 2™ choices for S, O{n) choices for k, and a total
of O(n2’) states (5, k). Fach time that C(S, k) is evalusted for some new state

according to Eq. (11.3), O(n) arithmetic operations are needed. Therefore, with

O(n22") operations, we can obtain C({l,. . A k) for all k. The length of an
optimal tour is then given by

mkin (C({l, ., m}, k) + ckl),

This algerithm, aithough exponential, is much better then exhaustive enumera-
tion of all n! tours. Realistically, it can only be used tc solve instances of the
traveling salesman problem involving up to 20 nodes.

Mare generally, devising a dynamie programming algorithm for an
integer programming problem involves the following steps.
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491

Guidelines for constructing dynamic programming alfgzrﬂ-;lfms
| View th ib i nce of decisions
iew the choice of a feasible solution &s a sequle
o mg in stages, and so that the total cos: is the sum of the
" costs of individual decisions. o
2. Deﬁne the state as a summary of all relevant past decisions.

3. Determine which state transitions are possible. Lfet the fzolst of
. each state transition be the cost of the corresponding decision.
4 Write a recursion on the optimal cost from the origin state to a

destination state.

The most crucial step is usually the definition of a suitable state. Let
us apply the method to another problem.

A dynamic programming algorithm for the zero-one
knapsack problem

Let us consider the versior of the zero-one knapsack problem we intreduced
in Example 10.1:

n

maximize E C;Lj
i=1

subject to ij$j <K

j=1
T; € {0, 1}.

We assume that K and all ¢;, w; are positive integers. ‘We derive 3 dynarglstf
programming algorithm for the zero-one knapsack problem ]ﬁy tecr(;:elp >
ing it into stages. Insteal of picking a vector (z1,... ,zc(;a) ff:;r g,neoiteril e
i i in which decisions are ma :

visualize the problem as one in w ' _ one item at

i ; isi decided which ones out of the

me. After 4 decisions, we have :
?tetrlns are to be included in the knapsack, and have therefore detelegeg
values for the veriables zi,...,%;. At that point, the value accumulate

g i ig S e
S _ ¢;z; and the weigh: accumulated is ) ;Wi .

" Let W;(u) be the least possible weight that has to be accumu L
order to attain a total value of u using only items i the set {él, e i .Onl
Wi(u) = oo, if it is impaossible to accumulate a total value of u us1fg f;
th:e first ¢ i;,ems. We us® the convention Wy(0) = 0, and Wg(u) 1 oos, i
u # 0, which reflects the fact that the value accumulated using no item
ZETO. ,We then have the following recursion:

Wz-+1(u) =min {Wi(u), W,;(u - Ci+1) 4wy } (11.4)

. . a
In words. this recursion means the following. If we w1§h to a.ccull'm;.lateas
total vah;e of u, using seme of the first 4 + 1 items, while accumulating
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little weight as possible, there are two alternatives depending on whether
itern ¢ +1 is used or not. If item ¢ +1 is not used, then the best we can do is.é
to accunulate a total value of u, while using only some of the first itemsj
and do that with the least possible accumulated weight, which is Wiu).4
Alternatively, if item i 41 is used, since it has a valueof €i+1, We must have}
accumuhted a total value of # — ¢;.; using the first i items. Of course, the}
first ¢ decisions should be made so that the value % — €i+1 is accumulated
with the least possible weight, which is W;(x— ¢4, ), and to which we must
then add the weight of item ¢ + 1. We can now interpret recursion (11.4
as stating that Wi, i(u) is given by the best of the two alternatives that we |
have just described. ]

We continue with a slightly different interpretation of recursion (11.4). §
Let us say that we are at state (i,u) if we heve considered the first i items, §
have picked some of them, and have accumulated a total value of 1. We ]
then build a state transition diagram indicating whichstates can be reached 1
from which other state. Notice that when in state (i, u) we can either decide }
to pick item 7 + 1 and move to state (i 4+ 1,u ¢i+1) or we can decide to 4
skip item ¢ + 1 and move to state (i + 1,1). We represent states as nodes !
and possible transitions by directed arcs; see Figure .1.5. 4

Figure 11.5: The state transition diagram for tle dynamic pro-
gramming approach to the zero-one knapsack problem.

In addition, we associate a weight to each arc ‘or transition) which
is the additional weight added in the course of this transition. Thus, the
transition from (#,«) to (i + 1,u) carries zero weight, while the transition
from (i,¢) to (i +1,u + c;4y) carries weight w;_ ;.

Initially, we are at state (0,0); no item has been considered and no
value has been accumulated. A sequence of decisi>ns, involving items
l,...,% corresponds to a directed path from node (0,0} to some node of
the form (i,u). Furthermore, the sum of the weights along the path cor-
responds to the accumulated weight. We conclude that W;(u) is equal to
the least weight of all paths from node (0,0) to nods (i,u), and is equal
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to infinity if no such path exists. We may then recognize Eq. (11.4) as Fhe
Bellman equation associated with this shortest path problem (see Section
7.9).
Let .

If & > Nemax. then no state of the form (¢,n) is reachable. By restricting
to states of the form (i, u) with u < neyay, we see that the. total number
of states of interest is of the order of ncmax. Using recursion (11;4), the
value of W;(u) for all states of interest, can be computed in time O(n?emax)-
Once this is done, the optimal value u* is given by

u* = max {u | Wy (u) < K},

which can be determined vith only an additional O{nctmax) eﬁ'ort.. Optimal
values for the variables x1.. .., T, are then cetermined by an optlmal path
from node (0, 0) to node (m, u*). We have thus proved the following result.

Theorem 11.1 The zero-one knapsack problém can be solved in time
O(n%cimex)- : :

An alternative, and somewhsat more natural, dynam.ic programming
algorithm for the same problem could be obtained by defining Ci(w)' as the
maximum value that can be accumulated using some o‘f th(? first ¢ items
subject to the constraint that the total accumnulated weight is equal to w.
We would then obtain the recursion

C,-+1(w) = max {C’i(w), Ci{w —wip1) + Ci+1}.

By considering all states of the form (4, w) with w < K, an cfn,lgorithm _Wlth
complexity O(nK) would be obtained. However, our previous algmtxthm
is better suited to the purposes of developing an approximatien algorithm,
which will be done in Secsion 11.5. o .

The algorithm of Theorem 11.1 is an exponential time a.lgorlthn-l.
This is because the size of an instance of the zero-one knapsack problem is

O(n( 10g €max + 108 Wmax) + 108 K),

where wmax = max; w;. However, it becomes polynf)mial if emax 18 bounded
by some polynomial in n. More formally, for apy.mteger d., we can d?ﬁﬁe
the problem KNAPSACK(d), as the problem conms’gng of all .mstances of the
zero-one knapsack problem with ¢ < n? for all 4. Ac.cor(‘ilng to Th(.eorem
11.1, KNAPSACK[d)} can be solved in time O(n#*2), which is polynomial for
every fixed d.
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11.4 Integer programming duality

In this section, we develop the duality theory of integer programming. This
in turn leads to a method for obtaining tight bounds, that are particularly
useful for branch and bound. The methodology & closely related to the
subject of Section 4.10, but our discussior. here is self-contained.

We consider the integer programming problem

minimize ¢'x
subject to Ax > b
Dx > d

X integer,

(11.3)

and assume that A, D, b, ¢, d have integer entries. Let Zp the optimal
cost and let
X = {x integer | Dx > d}.

In order to motivate the method, we assume that optimizing over the set
X can be done efficiently; for example X may represent the set of feasible
solutions to an assignment problem. However, adding the constraints Ax >
b to the problem, makes the problem difficult to solve. We next consider
the idea of introducing a dual variable for every corstraint in Ax > b, Let
P > O be a vector of dual variables (also called Lagrange multipliers) that
has the same dimension as the vector b. For a fixed vector P, we introduce
the problem

minimize <x +p'(b — Ax)

subject to x € X, (11.6)

and denote its optimal cost by Z(p). We will say that we relaz or dualize
the constraints Ax > b. For a fixed p, the above problem can be solved
efficiently, as we are optimizing a linear objective over the set X. We next
observe that Z(p) provides a bound on Zp.

Lemma 11.1 If the problem (11.5) hes an optimal solution and if
p 20, then Z(p) < Zyp.

Proof. Let x* denote an optimal solution to (11.5). Then,b— Ax* <0
and, therefore,
c'x* + p’(b —Ax") <c'x* = Zp.
Since x* € X,
Z(p) £ x* + p'(b— Ax"),
and therefore, Z(p) < Zp. O

Since problem (11.6) provides a lower bound to the integer program-
ming problem (11.5) for all p > 0, it is natural to consider the tightest such
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Z(p)
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Figure 11.6: The function Z(p) is concave and piecewise linear.

bound. For this reason, we introduce the problem

maximize Z!p) 11.7)
subject to p > 0.

We will refer to problem (11.7) as the Lagrangean dual. Let

Zp = max Z(p).

Suppose for instance, that X = {x!,...,x™}. Then Z(p) can be also

written as _ _ ’
Z(p) = Ilnin (e'x" +p'(b — AX")). (11.8)
1=1,...,m

The function Z(p) is concave and piecewise linear, since it is the minimum
of a finite collection of linear functions of p (see Theorem 1.1 in Section 1.3
and Figure 11.6). As a consequence, the problem of computing Zp [namely,
problem (11.7)] can be 1ecast as a linear programming problem, but with
a very large number of constraints.

It is clear from Lemma 11.1 that weak duality holds:

Theorem 11.2 We have Zp < Zip.

The previous theorem represents the weak duality theory of integer
programming. Unlike linear programming, integer programming does not
have astrong duality theory. (Compare with Theorem 4.18 in Section 4.10.}
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Indeed in Example 11.8, we show that it is possible to have Zp < Zd
The procedure of obtaining bounds for integer programming problems
calcuating Zp is called Lagrangean relozation. We next investigate tj
qualily of the bound Zp, in comparison to the ore provided by the linej
programming relaxation of problem (11.5). 4

On the strength of the Lagrangean dual

The characterization (11.8) of the Lagrangean dual objective does not prd
vide particular insight into the quality of the bound. A more reveslig
characterization is developed in this subsection. Let CH(X) be the convey
hull of the set X. We need the following result, whose proof is outlined
in Exercise 11.8. Since we already know that the convex hull of a fini§
set is a polyhedron, this result is of interest when the set {x | Dx > d} §
unbounded and the set X is infinite. ]

Theorem 11.3 We sssume that the system of linear inequaﬁtiész )
d has a feasible solution, and that the matrix I} and the vector
integer entries. Let

X = {x integer | Dx > d}.

" Then CH(X ) is & polyhedron.

The next theorem, which is the central result of this section, charac-}
terizes the Lagrangean dual as a linear programming problem.

Theorem 11.4 The optimal value Zp of the Lagrangean dual is equ
to the optimal cost of the following linear programming problem:

minimize ¢'x
subject to Ax>b
x € CH(X).

Proof. By definition,
__ s ! ! _
Z(p) = mi (¢'x+p'(b — Ax)).

Since the objective function is linear in X, the optimal cost remains the 1
same if we allow convex combinations of the elements of X Therefore,

— 3 ! ! _
AP0~ Bl (¢34 ¥ 6 A),
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and hence, we have

i ! '(b — Ax)).
= in {cx+p'(b X
2o = g min €
j € J, be the extreme points and a complete set

k d wi
Let X', k € K, a0 W respectively. Then, for any fixed p, we have

of extreme rays of CH{X), |
if (¢ —p'A)w? <0,

e for some j € J,

B P R
kEK

. imal
Therefore, the Lagrangear dual is equivalent to and has the same optima
value as the problem
: k
maximize }Crélg (cx* +p'(b - Ax )
subject to (¢’ — p'Ajw’ >0, i€ J,
p=0,

or equivalently,

maximize ¥

subject to y + p'(Ax* —b) < c’x’“‘, ’?E K,
p'Aw’ < c'w?, j e,
p=0

Taking the linear programming dual of the above problem, and using strong

duality, we obtain that Zp is equal to the optimal cost of the problem

k )
minimize ¢’ E X +E Biw

keK J€J
subject tc Z ap =1
kEK
A Zakxk —LZ,ijj >b
keK ied
a3 = 0, keK,jeld
Since,
' = ‘>0,keK,jeJ},
CH(.X) = { Z akxk-l—z ﬁij Z G = 1, ak,ﬁj Pt
keK JEJ kEK

A

the result follows.



