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Chap. 4  Duality theory

For extensions of duality theory to problems involving general convex
functions and constraint sets, see Rockafellar (1970) and Bertsekas
(1995b).

Exercises 4.6 and 4.7 are adapted from Boyd and Vandenberghe (1995).

The result on strict complementary slackness (Exercise 4.20) was
proved by Tucker (1956). The result in Exercise 4.21 is due to Clark
(1961). The result in Exercise 4.30 is due to Helly (1923). Input-
output macroeconomic models of the form considered in Exercise 4.32,
have been introduced by Leontief, who was awarded the 1973 Nobel
prize in economics. The result in Exercise 4.41 is due to Carathéodory
(1907).

Chapter 5

Sensitivity analysis
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Consider the standard form problem

minimize c¢'x
subject to Ax

d
vV Il
o

and its dual
maximize p'b
subject to p’A <c'.

In this chapter, we study the dependence of the optimal cost and the opti-
mal solution on the coeflicient matrix A, the requirement vector b, and the
cost vector ¢. This is an important issue in practice because we often have
incomplete knowledge of the problem data and we may wish to predict the
effects of certain parameter changes.

In the first section of this chapter, we develop conditions under which
the optimal basis remains the same despite a change in the problem data,
and we examine the consequences on the optimal cost. We also discuss
how to obtain an optimal solution if we add or delete some constraints. In
subsequent sections, we allow larger changes in the problem data, resulting
in a new optimal basis, and we develop a global perspective of the depen-
dence of the optimal cost on the vectors b and c. The chapter ends with
a brief discussion of parametric programming, which is an extension of the
simplex method tailored to the case where there is a single scalar unknown
parameter.

Many of the results in this chapter can be extended to cover general
linear programming problems. Nevertheless, and in order to simplify the
presentation, our standing assumption throughout this chapter will be that
we are dealing with a standard form problem and that the rows of the m xn
matrix A are linearly independent.

5.1 Local sensitivity analysis

In this section, we develop a methodology for performing sensitivity anal-
ysis. We consider a linear programming problem, and we assume that we
already have an optimal basis B and the associated optimal solution x*.
We then assume that some entry of A, b, or ¢ has been changed, or that
a new constraint is added, or that a new variable is added. We first look
for conditions under which the current basis is still optimal. If these con-
ditions are violated, we look for an algorithm that finds a new optimal
solution without having to solve the new problem from scratch. We will
see that the simplex method can be quite useful in this respect.

Having assumed that B is an optimal basis for the original problem,
the following two conditions are satisfied:

B~'b > 0, (feasibility)
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¢ —-cEpBlA > 0, (optimality).

When the problem is changed, we check to see how these conditions are
affected. By insisting that both conditions (feasibility and optimality) hold
for the modified problem, we obtain the conditions under which the basis
matrix B remains optimal for the modified problem. In what follows, we
apply this approach to several examples.

A new variable is added

Suppose that we introduce a new variable z,1, together with a corre-
sponding column A, 1, and obtain the new problem

minimize ¢'X + Cpp1%ntl
subject to AX + A,p1Tpy; = b
x > 0.

We wish to determine whether the current basis B is still optimal.

We note that (x,2,41) = (x*,0) is a basic feasible solution to the
new problem associated with the basis B, and we only need to examine the
optimality conditions. For the basis B to remain optimal, it is necessary
and sufficient that the reduced cost of z,41 be nonnegative, that is,

= / -1
Cnt1 = Cny1 —CgBT Ay y 2 0.

If this condition is satisfied, (x*,0) is an optimal solution to the new prob-
lem. If, however, €,41 < 0, then (x*,0) is not necessarily optimal. In
order to find an optimal solution, we add a column to the simplex tableau,
associated with the new variable, and apply the primal simplex algorithm
starting from the current basis B. Typically, an optimal solution to the new
problem is obtained with a small number of iterations, and this approach
is usually much faster than solving the new problem from scratch.

Example 5.1 Consider the problem

minimize —-5z1 — z2 + 12z3

subject to 3z + 2x2 + a3 = 10
5z; + 32 + x4 = 16
fEl,-~-,Z4_>__O.

An optimal solution to this problem is given by x = (2,2,0,0) and the corre-
sponding simplex tableau is given by

12 0 0 2 7
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Note that B~! is given by the last two columns of the tableau.
Let us now introduce a variable =5 and consider the new problem

minimize —5x; — z2 + 12z3 - s

subject to 3z + 22 + Ty + x5 = 10
57 + 3z2 + z4 + 35 = 16
Ty,...,T5 > 0.

We have As = (1,1) and

- /-1 _ -3 2 11
Cs———Cs—-CBB As—-——[—S-—l][ 5 _3]{1 = —4.

Since Cs is negative, introducing the new variable to the basis can be beneficial.
We observe that B"'A5 = (—1,2) and augment the tableau by introducing a
column associated with @s:

12 0 0 2 7T -4

Ty = 2 1 0 -3 2 -1

T2=| 2 0 1 5 -3 2

We then bring zs into the basis; z2 exits and we obtain the following tableau,
which happens to be optimal:

Ty T2 3 T4 Ts

16 0 2 12 1 0
zy=1] 3 1 05 -05 05 0
Tz =] 1 0 05 25 ~-15 1

An optimal solution is given by x = (3,0,0,0,1).

A new inequality constraint is added

Let us now introduce a new constraint aj, ;X > bp1, where a, 41 and
bmq1 are given. If the optimal solution x* to the original problem satisfies
this constraint, then x* is an optimal solution to the new problem as well.
If the new constraint is violated, we introduce a nonnegative slack variable
Zn+1, and rewrite the new constraint in the form al, X " Tap1r = brt1-
‘We obtain a problem in standard form, in which the matrix A is replaced

by
A 0
a; -1 |°
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Let B be an optimal basis for the original problem. We form a basis
for the new problem by selecting the original basic variables together with
Zp+1- The new basis matrix B is of the form

= B o

B - { al _1 ] ’
where the row vector a’ contains those components of aj, |, associated with
the original basic columns. (The determinant of this matrix is the negative
of the determinant of B, hence nonzero, and we therefore have a true basis
matrix.) The basic solution associated with this basis is (x*,a],  ;x* —

bm+1), and is infeasible because of our assumption that x* violates the
new constraint. Note that the new inverse basis matrix is readily available

because 1
=1 B~ 0
B = [ aB™! -1 ] )

(To see this, note that the product BB is equal to the identity matrix.)

Let c¢g be the m-dimensional vector with the costs of the basic vari-
ables in the original problem. Then, the vector of reduced costs associated
with the basis B for the new problem, is given by

B! o0 A 0 , ﬁ
@ o [ B0 2] LA, 2]-w-aea n

and is nonnegative due to the optimality of B for the original problem.
Hence, B is a dual feasible basis and we are in a position to apply the dual
simplex method to the new problem. Note that an initial simplex tableau
for the new problem is readily constructed. For example, we have

5! A 0] BlA 0
ang -1 [aBl'A-al, 1]
where B™'A is available from the final simplex tableau for the original

problem.

Example 5.2 Consider again the problem in Example 5.1:

minimize ~5z; — x2 + 123

subject to 3z1 + 2z2 + z3 = 10
S5z + 3x2 + x4 = 16
:El,...,ﬂ?AZO,

and recall the optimal simplex tableau:

Ty T r3 T4

12 0 0 2 7
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We introduce the additional constraint z; + 22 = 5, which is violated by the
optimal solution x* = (2,2,0,0). We have amy1 = (1,1,0,0), bin+1 = 5, and
al,11X" < bimy1. We form the standard form problem

minimize —5z1 — z» + 12z3

subject to 3z1 + 2z2 + T3 = 10
5z + 3a2 + x4 = 16
Ty +  z2 — x5 = 5
zy,...,zs 2 0.

Let a consist of the components of a,, 41 associated with the basic variables.
We then have a = (1, 1) and

10 -3 2

61 & _3]—[1 100=[ 02 -1]

aB'A—ala=[1 1] {

The tableau for the new problem is of the form

r, Tz T3 T4 Ts

121 0 O 2 7 0

Ty = 2] 1 0 =3 2 0
Tp = 2|1 0 1 5 =3 0
zs=|-11 0 O 2 -1 1

We now have all the information necessary to apply the dual simplex method to
the new problem.

Our discussion has been focused on the case where an inequality con-
straint is added to the primal problem. Suppose now that we introduce
a new constraint p’An41 < cpy in the dual. This is equivalent to intro-
ducing a new variable in the primal, and we are back to the case that was
considered in the preceding subsection.

A new equality constraint is added

We now consider the case where the new constraint is of the form aj, , ;x =
bm+1, and we assume that this new constraint is violated by the optimal
solution x* to the original problem. The dual of the new problem is

maximize P'b + Pmtibm1

A
subject to [P’ Pm+1] [ , ] <d,
am+1
where pn,41 is a dual variable associated with the new constraint. Let p*
be an optimal basic feasible solution to the original dual problem. Then,
(p*,0) is a feasible solution to the new dual problem.
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Let m be the dimension of p, which is the same as the original num-
ber of constraints. Since p* is a basic feasible solution to the original dual
problem, m of the constraints in (p*)’A < ¢’ are linearly independent and
active. However, there is no guarantee that at (p*, 0) we will have m+1 lin-
early independent active constraints of the new dual problem. In particular,
(p*,0) need not be a basic feasible solution to the new dual problem and
may not provide a convenient starting point for the dual simplex method
on the new problem. While it may be possible to obtain a dual basic feasi-
ble solution by setting p,,41 to a suitably chosen nonzero value, we present
here an alternative approach.

Let us assume, without loss of generality, that aj, | x* > bny;. We
introduce the auxiliary primal problem

minimize c'x + Mzpy,
subject to Ax = b
’
Ap X — Tny1 = b'm-}—l

XZ 07 Tn41 ZO)

where M is a large positive constant. A primal feasible basis for the aux-
iliary problem is obtained by picking the basic variables of the optimal
solution to the original problem, together with the variable x,,4;. The re-
sulting basis matrix is the same as the matrix B of the preceding subsection.
There is a difference, however. In the preceding subsection, B was a dual
feasible basis, whereas here B is a primal feasible basis. For this reason,
the primal simplex method can now be used to solve the auxiliary problem
to optimality.

Suppose that an optimal solution to the auxiliary problem satisfies
Tny1 = 0; this will be the case if the new problem is feasible and the
coefficient M is large enough. Then, the additional constraint aj,,;x =
bm 1 has been satisfied and we have an optimal solution to the new problem.

Changes in the requirement vector b

Suppose that some component b; of the requirement vector b is changed
to b; + 6. Equivalently, the vector b is changed to b + de;, where e; is the
ith unit vector. We wish to determine the range of values of § under which
the current basis remains optimal. Note that the optimality conditions are
not affected by the change in b. We therefore need to examine only the
feasibility condition
B7'(b+de;) > 0. (5.1)

Let g = (Bii, B2i, - - -, Bmi) be the ith column of B~!. Equation (5.1)

becomes
xp +6g > 0,
or,
.’L‘B(j)-i-(s,BjiZO, J=1...,m.
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Equivalently,

) Trrs
max (—m> <6< min <~—Bm> .
{4185:>0} Bji {41853 <0} Bii

For & in this range, the optimal cost, as a function of &, is given by
czB7 (b + be;) = p'b + 8p;, where p’ = czB7! is the (optimal) dual
solution associated with the current basis B.

If § is outside the allowed range, the current solution satisfies the
optimality (or dual feasibility) conditions, but is primal infeasible. In that
case, we can apply the dual simplex algorithm starting from the current
basis.

Example 5.3 Consider the optimal tableau

Ty X2 X3 Ta

12 0 0 2 7

Xy = 2 1 0 -3 2

To=| 2 0 1 5 -3

from Example 5.1.

Let us contemplate adding § to b;. We look at the first column of B!
which is (—3,5). The basic variables under the same basis are 1 = 2 — 36 and
2 4 56. This basis will remain feasible as long as 2 — 3§ > 0 and 2+ 56 > 0, that
is, if —2/5 < 6 < 2/3. The rate of change of the optimal cost per unit change of
§ is given by cB ey = (~5,-1)'(—3,5) = 10.

If § is increased beyond 2/3, then x; becomes negative. At this point, we
can perform an iteration of the dual simplex method to remove z1 from the basis,
and z3 enters the basis.

Changes in the cost vector ¢

Suppose now that some cost coefficient c; becomes ¢; + 6. The primal
feasibility condition is not affected. We therefore need to focus on the
optimality condition )

cspBTTA < ¢

If c; is the cost coefficient of a nonbasic variable z;, then cp does not
change, and the only inequality that is affected is the one for the reduced
cost of x;; we need

C/BBAIAJ‘ <¢+ 6,

or
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If this condition holds, the current basis remains optimal; otherwise, we can
apply the primal simplex method starting from the current basic feasible
solution.

If c; is the cost coefficient of the £th basic variable, that is, if j = B(¢),
then cp becomes cp + 6ep and all of the optimality conditions will be
affected. The optimality conditions for the new problem are

(cp+6e) BT A <c;,  Vi#j

(Since z; is a basic variable, its reduced cost stays at zero and need not be
examined.) Equivalently,

5‘1&‘55@ VZ#L

where qe; is the £th entry of B=1 A ;, which can be obtained from the simplex
tableau. These inequalities determine the range of § for which the same
basis remains optimal.

Example 5.4 We consider once more the problem in Example 5.1 and deter-
mine the range of changes §; of ¢;, under which the same basis remains optimal.
Since z3 and x4 are nonbasic variables, we obtain the conditions

b3 > ~C3= -2,
64 > —Cq = —T.

Consider now adding 8, to ¢;. From the simplex tableau, we obtain ¢q12 = 0,
g1z = —3, q14 = 2, and we are led to the conditions

6 > —2/3,
h < 7/2.

Changes in a nonbasic column of A

Suppose that some entry e;; in the jth column Aj; of the matrix A is
changed to a;; + 6. We wish to determine the range of values of § for which
the old optimal basis remains optimal.

If the column A; is nonbasic, the basis matrix B does not change,
and the primal feasibility condition is unaffected. Furthermore, only the
reduced cost of the jth column is affected, leading to the condition

Cj — p’(A]’ + 6ei) >0,
or,
C5 — ép; > 0,

where p’ = ¢z B~1. If this condition is violated, the nonbasic coluinn A;
can be brought into the basis, and we can continue with the primal simplex
method.
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Changes in a basic column of A

If one of the entries of a basic column A; changes, then both the feasibil-
ity and optimality conditions are affected. This case is more complicated
and we leave the full development for the exercises. As it turns out, the
range of values of § for which the same basis is optimal is again an interval
(Exercise 5.3).

Suppose that the basic column A; is changed to A + be;, where €;
is the ith unit vector. Assume that both the original problem and its dual
have unique and nondegenerate optimal solutions x* and p, respectively.
Let x*(8) be an optimal solution to the modified problem, as a function of
8. 1t can be shown (Exercise 5.2) that for small § we have

c'x"(8) = 'x* — éxip; + 0(8%).

For an intuitive interpretation of this equation, let us consider the diet
problem and recall that a;; corresponds to the amount of the ith nutrient
in the jth food. Given an optimal solution x* to the original problem,
an increase of a;; by § means that we are getting “for free” an additional
amount 6z} of the ith nutrient. Since the dual variable p; is the marginal
cost per unit of the ith nutrient, we are getting for free something that is
normally worth ép;z}, and this allows us to reduce our costs by that same
amount.

Production planning revisited

In Section 1.2, we introduced a production planning problem that DEC had
faced in the end of 1988. In this section, we answer some of the questions
that we posed. Recall that there were two important choices, whether to
use the constrained or the unconstrained mode of production for disk drives,
and whether to use alternative memory boards. As discussed in Section 1.2,
these four combinations of choices led to four different linear programming
problems. We report the solution to these problems, as obtained from a
linear programming package, in Table 5.1.

Table 5.1 indicates that revenues can substantially increase by using
alternative memory boards, and the company should definitely do so. The
decision of whether to use the constrained or the unconstrained mode of
production for disk drives is less clear. In the constrained mode, the revenue
is 248 million versus 213 million in the unconstrained mode. However,
customer satisfaction and, therefore, future revenues might be affected,
since in the constrained mode some customers will get a product different
than the desired one. Morcover, these results are obtained assuming that
the number of available 256K memory boards and disk drives were 8,000
and 3,000, respectively, which is the lowest value in the range that was
estimated. We should therefore examine the sensitivity of the solution as
the number of available 256K memory boards and disk drives increases.

e e e e e
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Alt. boards Mode Revenue | z; Z9 T3 | T4 | @5
no constr. 145 0 2.5 0 0512
yes constr. 248 1.8 2 0 1 2
no unconstr. 133 0.272 ] 1.304 | 0.3 | 0.5 | 2.7
yes unconstr. 213 1.8 1.035 | 0.3 | 0.5 | 2.7

Table 5.1: Optimal solutions to the four variants of the produc-
tion planning problem. Revenue is in millions of dollars and the
quantities z; are in thousands.

With most linear programming packages, the output includes the val-
ues of the dual variables, as well as the range of parameter variations under
which local sensitivity analysis is valid. Table 5.2 presents the values of
the dual variables associated with the constraints on available disk drives
and 256K memory boards. In addition, it provides the range of allowed
changes on the number of disk drives and memory boards that would leave
the dual variables unchanged. This information is provided for the two lin-
ear programming problems corresponding to constrained and unconstrained
mode of production for disk drives, respectively, under the assumption that
alternative memory boards will be used.

Mode Constrained | Unconstrained
Revenue 248 213

Dual variable

for 256K boards 15 0
Range

for 256K boards [-1:5,0.2] [~1.62, 00]
Dual variable )

for disk drives 0 23.52
Range

for disk drives (~0.2,0.75] [~0.91,1.13]

Table 5.2: Dual prices and ranges for the constraints correspond-
ing to the availability of the number of 256K memory boards and
disk drives.
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In the constrained mode, increasing the number of available 256K
boards by 0.2 thousand (the largest number in the allowed range) results
in a revenue increase of 15 x 0.2 = 3 million. In the unconstrained mode,
increasing the number of available 256K boards has no effect on revenues,
because the dual variable is zero and the range extends upwards to infinity.
In the constrained mode, increasing the number of available disk drives by
up to 0.75 thousand (the largest number in the allowed range) has no effect
on revenue. Finally, in the unconstrained mode, increasing the number
of available disk drives by 1.13 thousand results in a revenue increase of
23.52 x 1.13 = 26.57 million.

In conclusion, in the constrained mode of production, it is important
to aim at an increase of the number of available 256K memory boards,
while in the unconstrained mode, increasing the number of disk drives is
more important.

This example demonstrates that even a small linear programming
problem (with five variables, in this case) can have an impact on a com-
pany’s planning process. Moreover, the information provided by linear pro-
gramming solvers (dual variables, ranges, etc.) can offer significant insights
and can be a very useful aid to decision makers.

5.2 Global dependence on the right-hand side
vector

In this section, we take a global view of the dependence of the optimal cost
on the requirement vector b.
Let
P(b):{x]Ax:b, xZO}

be the feasible set, and note that our notation makes the dependence on b
explicit. Let
S = {b| P(b) is nonempty },

and observe that
S ={Ax|x>0};

in particular, S is a convex set. For any b € S, we define

F(b) = min c'x,
x€P(b)

which is the optimal cost as a function of b.

Throughout this section, we assume that the dual feasible set {p |
p’A < c'} is nonempty. Then, duality theory implies that the optimal
primal cost F(b) is finite for every b € S. Our goal is to understand the
structure of the function F(b), for b € S.
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Let us fix a particular element b* of S. Suppose that there exists a
nondegenerate primal optimal basic feasible solution, and let B be the cor-
responding optimal basis matrix. The vector xz of basic variables at that
optimal solution is given by xp = B~!b*, and is positive by nondegeneracy.
In addition, the vector of reduced costs is nonnegative. If we change b* to b
and if the difference b — b* is sufficiently small, B~!'b remains positive and
we still have a basic feasible solution. The reduced costs are not affected
by the change from b* to b and remain nonnegative. Therefore, B is an
optimal basis for the new problem as well. The optimal cost F(b) for the
new problem is given by

F(b) = czB~'b = p’b, for b close to b*,
where p’ = c¢zB~! is the optimal solution to the dual problem. This
establishes that in the vicinity of b*, F(b) is a linear function of b and its
gradient is given by p.

We now turn to the global properties of F(b).

Theorem 5.
“the set. S

Proof. Let b! and b? be two elements of S. For i = 1,2, let x* be an
optimal solution to the problem of minimizing ¢'x subject to x > 0 and
Ax = b*. Thus, F(b!) = ¢'x! and F(b?) = ¢'x>. Fix a scalar A € [0,1],
and note that the vector y = Ax! + (1 — \)x? is nonnegative and satisfies
Ay = Ab! + (1 — \)b2. In particular, y is a feasible solution to the linear
programming problem obtained when the requirement vector b is set to
Ab! + (1 — A)b2. Therefore,

F(Ab'+ (1~ Mb?) <y = Ax! + (1= N)c'x? = AF(bY) + (1 — \) F(b?),
establishing the convexity of F. ]

We now corroborate Theorem 5.1 by taking a different approach,
involving the dual problem

maximize p’b
subject to p’A <c,

which has been assumed feasible. For any b € S, F(b) is finite and, by
strong duality, is equal to the optimal value of the dual objective. Let
p,p?,...,p" be the extreme points of the dual feasible set. (Our standing
assumption is that the matrix A has linearly independent rows; hence its
columns span R™. Equivalently, the rows of A’ span ®™ and Theorem 2.6
in Section 2.5 implies that the dual feasible set must have at least one
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Figure 5.1: The optimal cost when the vector b is a function
of a scalar parameter. Each linear piece is of the form ) (b +
6d), where p° is the ith extreme point of the dual feasible set.
In each one of the intervals 8 < 61, 81 < 8§ < 62, and 6 > 02,
we have different dual optimal solutions, namely, p', p%, and pd,
respectively. For 8 = 6, or 6 = 63, the dual problem has multiple
optimal solutions.

extreme point.) Since the optimum of the dual must be attained at an
extreme point, we obtain

F(b) = '_rgla,xN(pi)'b, besS. (5.2)

In particular, F is equal to the maximum of a finite collection of linear
functions. It is therefore a piecewise linear convex function, and we have a
new proof of Theorem 5.1. In addition, within a region where F is linear,
we have Fi(b) = (p')’b, where p’ is a corresponding dual optimal solution,
in agreement with our earlier discussion.

For those values of b for which F is not differentiable, that is, at the
junction of two or more linear pieces, the dual problem does not have a
unique optimal solution and this implies that every optimal basic feasible
solution to the primal is degenerate. (This is because, as shown earlier in
this section, the existence of a nondegenerate optimal basic feasible solution
to the primal implies that F is locally linear.)

We now restrict attention to changes in b of a particular type, namely,
b = b* + 4d, where b* and d are fixed vectors and 6 is a scalar. Let
f(8) = F(b* +6d) be the optimal cost as a function of the scalar parameter
6. Using Eq. (5.2), we obtain

f0) = maxN(pi)’(b* +6d), b*+édes.

=1,
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Figure 5.2: Illustration of subgradients of a function F at a
point b*. A subgradient p is the gradient of a linear function
F(b") + p’(b — b") that lies below the function F(b) and agrees
with it for b = b".

This is essentially a “section” of the function F; it is again a piecewise linear
convex function; see Figure 5.1. Once more, at breakpoints of this function,
every optimal basic feasible solution to the primal must be degenerate.

5.3 The set of all dual optimal solutions”

We have seen that if the function F' is defined, finite, and linear in the
vicinity of a certain vector b*, then there is a unique optimal dual solution,
equal to the gradient of F' at that point, which leads to the interpretation
of dual optimal solutions as marginal costs. We would like to extend this
interpretation so that it remains valid at the breakpoints of F. This is
indeed possible: we will show shortly that any dual optimal solution can
be viewed as a “generalized gradient” of F. We first need the following
definition, which is illustrated in Figure 5.2.

Definition 51 Let F be a convex fimctjoﬁ déﬁnéd on a'convex svet'\S.
Let.b* be an element of S. ‘We say that a vector. p is a subgradient -

(o) +p/(b ") < ',F/(b)a |

Note that if b* is a breakpoint of the function F, then there are
several subgradients. On the other hand, if F is linear near b*, there is a
unique subgradient, equal to the gradient of F.
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Proof. Recall that the function F' is defined on the set S, which is the
set of vectors b for which the set P(b) of feasible solutions to the primal
problem is nonempty. Suppose that p is an optimal solution to the dual
problem. Then, strong duality implies that p'b* = F (b*). Consider now
some arbitrary b € S. For any feasible solution x € P(b), weak duality
yields p'b < ¢/x. Taking the minimum over all x € P(b), we obtain
p'b < F(b). Hence, p'b — p’b* < F(b) — F(b*), and we conclude that p

is a subgradient of £ at b*.

We now prove the converse. Let p be a subgradient of F' at b*; that
is,

F(*)+p'(b—b") < F(b), Ybes. (5.3)

Pick some x > 0, let b = Ax, and note that x € P(b). In particular,
F(b) < ¢'x. Using Eq. (5.3), we obtain

p'Ax = p'b < F(b) — F(b*) + p'b* < 'x— F(b*) +p'b

Since this is true for all x > 0, we must have p’ A < ¢/, which shows that p
is a dual feasible solution. Also, by letting x = 0, we obtain F(b*) < p'b".
Using weak duality, every dual feasible solution g must satisfy @'b* <
F(b*) < p'b*, which shows that p is a dual optimal solution.

5.4 Global dependence on the cost vector

In the last two sections, we fixed the matrix A and the vector c, and we
considered the effect of changing the vector b. The key to our development
was the fact that the set of dual feasible solutions remains the same as b
varies. In this section, we study the case where A and b are fixed, but the
vector ¢ varies. In this case, the primal feasible set remains unaffected; our
standing assumption will be that it is nonempty.

We define the dual feasible set

Qe)={p|p'A<c},

and let

T={c|Q(c)is nonempty }-
Ifc! € T and ¢ € T, then there exist p* and p? such that (p')'A < ¢
and (p?)’A < ¢. For any scalar X € [0,1], we have

(@Y + (1 =NEY))A < Act 4+ (1 = N)c?,
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and this establishes that Ac! + (1 — A\)c? € T. We have therefore shown
that T is a convex set.

If ¢ ¢ T, the infeasibility of the dual problem implies that the optimal
primal cost is —oco. On the other hand, if ¢ € T, the optimal primal cost
must be finite. Thus, the optimal primal cost, which we will denote by
G(c), is finite if and only if c € T.

Let x!,x2,...,x"N be the basic feasible solutions in the primal feasible
set; clearly, these do not depend on c. Since an optimal solution to a
standard form problem can always be found at an extreme point, we have

G(c) = rlninN c'xt
i=1,...,

Thus, G(c) is the minimum of a finite collection of linear functions and is
a piecewise linear concave function. If for some value c* of ¢, the primal
has a unique optimal solution x*, we have (¢*)'x* < (c*)'x7, for all j # i.
For c very close to c*, the inequalities ¢'x® < ¢'x7, j # i, continue to hold,
implying that x* is still a unique primal optimal solution with cost ¢/x*.
We conclude that, locally, G(c) = c¢’x?. On the other hand, at those values
of ¢ that lead to multiple primal optimal solutions, the function G has a
breakpoint.
We summarize the main points of the preceding discussion.

_.Theorem 5.3, ConSJder a feaszble 11near programmmg problem in stan—
dard form. P : : Y

(a) - The set T of all c for Wllxch the. optzmal/cost is ﬁmte, is convex ‘
. (b)  The optimal cost G(c) isa concave fUHCtIOH of c on the st

s (c) If for some Value of c:the pnmal prob]em Ilas a unique opt;zmal
: solutwn x*, then G is linear in the v1cm1ty ofc and its gradwm‘,
is equal to x*

5.5 Parametric programming
Let us fix A, b, c, and a vector d of the same dimension as ¢. For any

scalar 6, we consider the problem

minimize (c+ 6d)'x
subject to Ax

X

b
0,

v

and let g(@) be the optimal cost as a function of §. Naturally, we assume
that the feasible set is nonempty. For those values of 6 for which the optimal
cost is finite, we have

— H 11
90) = pin (ot 0=
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where x!,...,x" are the extreme points of the feasible set; see Figure 5.3.
In particular, g(@) is a piecewise linear and concave function of the param-
eter 6. In this section, we discuss a systematic procedure, based on the
simplex method, for obtaining g(8) for all values of 6. We start with an
example.

Figure 5.3: The optimal cost g(f) as a function of 6.

Example 5.5 Consider the problem

minimize (-3 +20)z1 + (3—0)zz + T3

subject to 7 + 22 — 3z3
2z -+ T2 — 43
z1, 2,23 2> 0.

w

<
<

We introduce slack variables in order to bring the problem into standard form,
and then let the slack variables be the basic variables. This determines a basic
feasible solution and leads to the following tableau.

0 |~-3+420 3-8 1 0 0

Ty= |5 1 2 =3 1 0

z5= |7 2 1 -4 0 1

If ~3+20 >0 and 3-8 > 0, all reduced costs are nonnegative and we
have an optimal basic feasible solution. In particular,

9@y =0, if ggag&
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If 6 is increased slightly above 3, the reduced cost of z2 becomes negative
and we no longer have an optimal basic feasible solution. We let z2 enter the
basis, x4 exits, and we obtain the new tableau:

T xo z3 Ty s

~T7.5+2.50 | —4.5+2.50 0 55—-1560 —-15-+056 0
T2 = 2.5 0.5 1 -1.5 05 0
T5 = 4.5 1.5 0 —-2.5 -0.5 1

We note that all reduced costs are nonnegative if and only if 3 < 6 < 5.5/1.5.
The optimal cost for that range of values of 8 is
9(6) =75 250, if 3<0< %

If § is increased beyond 5.5/1.5, the reduced cost of z3 becomes negative. If we
attempt to bring z3 into the basis, we cannot find a positive pivot element in the
third column of the tableau, and the problem is unbounded, with g(#) = —o0.

Let us now go back to the original tableau and suppose that 8 is decreased
to a value slightly below 3/2. Then, the reduced cost of z; becomes negative, we
let z; enter the basis, and x5 exits. The new tableau is:

z T2 x3 Iy s

10.5 — 76 0 45-20 -5446 0 15-¢6

T4 = 1.5 0 1.5 -1 1 -0.5
T = 3.5 1 0.5 -2 0 0.5

We note that all of the reduced costs are nonnegative if and only if 5/4 < § < 3/2.
For these values of 6, we have an optimal solution, with an optimal cost of

9(6) = ~105+79, if 2<p< 2

4 2
Finally, for 6 < 5/4, the reduced cost of z3 is negative, but the optimal cost is
equal to —oo, because all entries in the third column of the tableau are negative.
We plot the optimal cost in Figure 5.4.

We now generalize the steps in the preceding example, in order to
obtain a broader methodology. The key observation is that once a basis
is fixed, the reduced costs are affine (linear plus a constant) functions of
0. Then, if we require that all reduced costs be nonnegative, we force 8 to
belong to some interval. (The interval could be empty but if it is nonempty,
its endpoints are also included.) We conclude that for any given basis, the
set of 6 for which this basis is optimal is a closed interval.
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Figure 5.4: The optimal cost g(6) as a function of 6, in Example
5.5. For @ outside the interval [5/4,11/3], g(9) is equal to —oo.

Let us now assume that we have chosen a basic feasible solution and
an associated basis matrix B, and suppose that this basis is optimal for ¢
satisfying 6; < 6 < 6,. Let z; be a variable whose reduced cost becomes
negative for § > . Since this reduced cost is nonnegative for 6, <0 <6,,
it must be equal to zero when § = ;. We now attempt to bring z; into
the basis and consider separately the different cases that may arise.

Suppose that no entry of the jth column B~'A; of the simplex
tableau is positive. For 6§ > 6o, the reduced cost of z; is negative, and
this implies that the optimal cost is —oo in that range.

If the jth column of the tableau has at least one positive element, we
carry out a change of basis and obtain a new basis matrix B. For 8 = 85,
the reduced cost of the entering variable is zero and, therefore, the cost
associated with the new basis is the same as the cost associated with the
old basis. Since the old basis was optimal for § = 05, the same must be
true for the new basis. On the other hand, for 8 < ,, the entering variable
x; had a positive reduced cost. According to the pivoting mechanics, and
for 8 < 05, a negative multiple of the pivot row is added to the pivot row,
and this makes the reduced cost of the exiting variable negative. This
implies that the new basis cannot be optimal for 8 < 6. We conclude that
the range of values of @ for which the new basis is optimal is of the form
0, < 8 < 85, for some f;. By continuing similarly, we obtain a sequence of
bases, with the ith basis being optimal for 6; < 8 < 0;43.

Note that a basis which is optimal for 8 € [6;, 0;4.1] cannot be optimal
for values of @ greater than @;,1. Thus, if #;4.1 > 6; for all 7, the same basis
cannot be encountered more than once and the entire range of values of ¢
will be traced in a finite number of iterations, with each iteration leading
to a new breakpoint of the optimal cost function g(8). (The number of
breakpoints may increase exponentially with the dimension of the problem.)

Sec. 5.6  Summary 221

The situation is more complicated if for some basis we have 0; = ;4.
In this case, it is possible that the algorithm keeps cycling between a finite
number of different bases, all of which are optimal only for § = 8; = 6;,,.
Such cycling can only happen in the presence of degeneracy in the primal
problem (Exercise 5.17), but can be avoided if an appropriate anticycling
rule is followed. In conclusion, the procedure we have outlined, together
with an anticycling rule, partitions the range of possible values of ¢ into
consecutive intervals and, for each interval, provides us with an optimal
basis and the optimal cost function as a function of 6.

There is another variant of parametric programming that can be used
when c is kept fixed but b is replaced by b + 6d, where d is a given vector
and 0 is a scalar. In this case, the zeroth column of the tableau depends
on . Whenever 8 reaches a value at which some basic variable becomes
negative, we apply the dual simplex method in order to recover primal
feasibility.

5.6 Summary

In this chapter, we have studied the dependence of optimal solutions and of
the optimal cost on the problem data, that is, on the entries of A, b, and
c. For many of the cases that we have examined, a common methodology
was used. Subsequent to a change in the problem data, we first examine its
effects on the feasibility and optimality conditions. If we wish the same basis
to remain optimal, this leads us to certain limitations on the magnitude of
the changes in the problem data. For larger changes, we no longer have
an optimal basis and some remedial action (involving the primal or dual
simplex method) is typically needed.
We close with a summary of our main results.

(a) If a new variable is added, we check its reduced cost and if it is
negative, we add a new column to the tableau and proceed from
there.

(b) If a new constraint is added, we check whether it is violated and if
so, we form an auxiliary problem and its tableau, and proceed from
there.

(c) If an entry of b or ¢ is changed by §, we obtain an interval of values
of § for which the same basis remains optimal.

(d) If an entry of A is changed by §, a similar analysis is possible. How-
ever, this case is somewhat complicated if the change affects an entry
of a basic column.

(e) Assuming that the dual problem is feasible, the optimal cost is a
piecewise linear convex function of the vector b (for those b for which
the primal is feasible). Furthermore, subgradients of the optimal cost
function correspond to optimal solutions to the dual problem.
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(f) Assuming that the primal problem is feasible, the optimal cost is a
piecewise linear concave function of the vector ¢ (for those ¢ for which
the primal has finite cost).

(g) If the cost vector is an affine function of a scalar parameter 6, there
is a systematic procedure (parametric programming) for solving the
problem for all values of . A similar procedure is possible if the
vector b is an affine function of a scalar parameter.

5.7 Exercises

Exercise 5.1 Consider the same problem as in Example 5.1, for which we al-
ready have an optimal basis. Let us introduce the additional constraint =, +z2 =
3. Form the auxiliary problem described in the text, and solve it using the pri-
mal simplex method. Whenever the “large” constant M is compared to another
number, M should be treated as being the larger one.

Exercise 5.2 (Sensitivity with respect to changes in a basic column
of A) In this problem (and the next two) we study the change in the value
of the optimal cost when an entry of the matrix A is perturbed by a small
amount. We consider a linear programming problem in standard form, under the
usual assumption that A has linearly independent rows. Suppose that we have
an optimal basis B that leads to a nondegenerate optimal solution x”, and a
nondegenerate dual optimal solution p. We assume that the first column is basic.
We will now change the first entry of A, from a); to a1 + 6, where § is a small
scalar. Let E be a matrix of dimensions m X m (where m is the number of rows
of A), whose entries are all zero except for the top left entry e;1, which is equal
to 1.

(a) Show that if § is small enough, B+8E is a basis matrix for the new problem.

(b) Show that under the basis B + §E, the vector xp of basic variables in the
new problem is equal to (I+ 6B~ 'E)"'B~'b.

(c) Show that if § is sufficiently small, B + 8E is an optimal basis for the new
problem.

(d) We use the symbol = to denote equality when second order terms in § are ig-
nored. The following approximation is known to be true: (I+§B7'E)~! =~
I~ 6B~'E. Using this approximation, show that

cpxp =~ d'x" - édprz],

where z] (respectively, p;) is the first component of the optimal solution to
the original primal (respectively, dual) problem, and xp has been defined
in part (b).

Exercise 5.3 (Sensitivity with respect to changes in a basic column
of A) Consider a linear programming problem in standard form under the usual
assumption that the rows of the matrix A are linearly independent. Suppose
that the columns A,,..., A, form an optimal basis. Let Ay be some vector and
suppose that we change A, to Ai 4+ §Ag. Consider the matrix B(§) consisting of
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the columns Ag + 6A1, Aa, ..., Am. Let [61,82] be a closed interval of values of
§ that contains zero and in which the determinant of B(§) is nonzero. Show that
the subset of {6, 62] for which B(§) is an optimal basis is also a closed interval.

Exercise 5.4 Consider the problem in Example 5.1, with a;, changed from
3 to 3 + 6. Let us keep z1 and a2 as the basic variables and let B(6) be the
corresponding basis matrix, as a function of .
(a) Compute B(6)~'b. For which values of § is B(§) a feasible basis?
(b) Compute ¢zB(6)~". For which values of § is B(6) an optimal basis?
(c) Determine the optimal cost, as a function of §, when § is restricted to those
values for which B(§) is an optimal basis matrix.

Exercise 5.5 While solving a standard form linear programming problem using
the simplex method, we arrive at the following tableau:

ry X2 3 Ta s

0 0 @& 0 &

zo=| 1 0 1 -1 0 g
zs=| 2 0 0 2 1
Ty = 3 1 0 4 0 [

Suppose also that the last three columns of the matrix A form an identity matrix.

(a) Give necessary and sufficient conditions for the basis described by this
tableau to be optimal (in terms of the coefficients in the tableau).

(b) Assume that this basis is optimal and that ¢3 = 0. Find an optimal basic
feasible solution, other than the one described by this tableau.

(c) Suppose that v > 0. Show that there exists an optimal basic feasible
solution, regardless of the values of ;3 and ¢s.

(d) Assume that the basis associated with this tableau is optimal. Suppose
also that b; in the original problem is replaced by b; + ¢. Give upper and
lower bounds on ¢ so that this basis remains optimal.

(e) Assume that the basis associated with this tableau is optimal. Suppose
also that ¢; in the original problem is replaced by ¢; + ¢. Give upper and
lower bounds on € so that this basis remains optimal.

Exercise 5.6 Company A has agreed to supply the following quantities of spe-
cial lamps to Company B during the next 4 months:

Month | January | February | March | April

Units 150 160 225 180

Company A can produce a maximum of 160 lamps per month at a cost of $35
per unit. Additional lamps can be purchased from Company C at a cost of $50
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per lamp. Company A incurs an inventory holding cost of $5 per month for each
lamp held in inventory.

(a) Formulate the problem that Company A is facing as a linear programming
problem.

(b) Solve the problem using a linear programming package.

(c) Company A is considering some preventive maintenance during one of the
first three months. If maintenance is scheduled for January, the company
can manufacture only 151 units (instead of 160); similarly, the maximum
possible production if maintenance is scheduled for February or March is
153 and 155 units, respectively. What maintenance schedule would you
recommend and why?

(d) Company D has offered to supply up to 50 lamps (total) to Company A
during either January, February or March. Company D charges $45 per
lamp. Should Company A buy lamps from Company D7 If yes, when and
how many lamps should Company A purchase, and what is the impact of
this decision on the total cost?

(e) Company C has offered to lower the price of units supplied to Company
A during February. What is the maximum decrease that would make this
offer attractive to Company A?

(f) Because of anticipated increases in interest rates, the holding cost per lamp
is expected to increase to $8 per unit in February. How does this change
affect the total cost and the optimal solution?

(g) Company B has just informed Company A that it requires only 90 units in
January (instead of 150 requested previously). Calculate upper and lower
bounds on the impact of this order on the optimal cost using information
from the optimal solution to the original problem.

Exercise 5.7 A paper company manufactures three basic products: pads of
paper, 5-packs of paper, and 20-packs of paper. The pad of paper consists of a
single pad of 25 sheets of lined paper. The 5-pack consists of 5 pads of paper,
together with a small notebook. The 20-pack of paper consists of 20 pads of
paper, together with a large notebook. The small and large notebooks are not
sold separately.

Production of each pad of paper requires 1 minute of paper-machine time,
1 minute of supervisory time, and $.10 in direct costs. Production of each small
notebook takes 2 minutes of paper-machine time, 45 seconds of supervisory time,
and $.20 in direct cost. Production of each large notebook takes 3 minutes of
paper machine time, 30 seconds of supervisory time and $.30 in direct costs. To
package the 5-pack takes 1 minute of packager’s time and 1 minute of supervisory
time. To package the 20-pack takes 3 minutes of packager’s time and 2 minutes
of supervisory time. The amounts of available paper-machine time, supervisory
time, and packager’s time are constants by, b2, ba, respectively. Any of the three
products can be sold to retailers in any quantity at the prices $.30, $1.60, and
$7.00, respectively.

Provide a linear programming formulation of the problem of determining
an optimal mix of the three products. (You may ignore the constraint that only
integer quantities can be produced.) Try to formulate the problem in such a
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way that the following questions can be answered by looking at a single dual
variable or reduced cost in the final tableau. Also, for each question, give a brief
explanation of why it can be answered by looking at just one dual price or reduced
cost.

(a) What is the marginal value of an extra unit of supervisory time?

(b) What is the lowest price at which it is worthwhile to produce single pads
of paper for sale?

(c) Suppose that part-time supervisors can be hired at $8 per hour. Is it
worthwhile to hire any?

(d) Suppose that the direct cost of producing pads of paper increases from $.10
to $.12. What is the profit decrease?

Exercise 5.8 A pottery manufacturer can make four different types of dining
room service sets: JJP English, Currier, Primrose, and Bluetail. Furthermore,
Primrose can be made by two different methods. Each set uses clay, enamel, dry
room time, and kiln time, and results in a profit shown in Table 5.3. (Here, lbs
is the abbreviation for pounds).

Resources |E| c |P:i][P:]| B | Total |
Clay (Ibs) 10 15]10] 10 20 | 130
Enamel (lbs) 1 2| 2 1 1 13
Dry room (hours) 3 11 6 6 3 45
Kiln (hours) 2 4 2 5 3 23
Profit 51 | 102 | 66 | 66 89

Table 5.3: The rightmost column in the table gives the manufac-
turer’s resource availability for the remainder of the week. Notice‘
that Primrose can be made by two different methods. They both
use the same amount of clay (10 1bs.) and dry room time (6 hours).
But the second method uses one pound less of enamel and three
more hours in the kiln.

The manufacturer is currently committed to making the same amount of
Primrose using methods 1 and 2. The formulation of the profit maximization
problem is given below. The decision variables E,C, Py, P2, B are the number
of sets of type English, Currier, Primrose Method 1, Primrose Method 2, and
Bluetail, respectively. We assume, for the purposes of this problem, that the
number of sets of each type can be fractional.
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maximize 51F + 102C + 66P + 66FP + 89B
subject to 10E + 15C + 10P; 4 10 + 20B < 130
E+ 20+ 2+ P+ B<I3
3E + C + 6P+ 6P + 3B £ 45
2E + 4C + 2P + 5P, + 3B < 23
]31 - P2 = 0

E,C,P,P,B>0.

The optimal solution to the primal and the dual, respectively, together. with
sensitivity information, is given in Tables 5.4 and 5.5. Use this information to
answer the questions that follow.

Optimal | Reduced | Objective | Allowable | Allowable
Value Cost Coefficient | Increase Decrease

0 —3.571 51 3.571 00

0 102 16.667 12.5

0 66 37.571 o0

2
0
0 —-37.571 66 37.571 00
5 0 89 47 12.5

()
(b)
()
(d)
()

Table 5.4: The optimal primal solution and its sensitivity with
respect to changes in coefficients of the objective function. The
last two columns describe the allowed changes in these coefficients
for which the same solution remains optimal.

What is the optimal quantity of each service set, and what is the total
profit?

Give an economic (not mathematical) interpretation of the optimal fiual
variables appearing in the sensitivity report, for each of the five constraints.
Should the manufacturer buy an additional 20 lbs. of Clay at $1.1 per
pound?

Suppose that the number of hours available in the dry room decreases by
30. Give a bound for the decrease in the total profit.

In the current model, the number of Primrose produced using method 1 was
required to be the same as the number of Primrose produced by method 2.
Consider a revision of the model in which this constraint is replaced by the
constraint Py — P > 0. In the reformulated problem would the amount of
Primrose made by method 1 be positive?

Exercise 5.9 Using the notation of Section 5.2, show that for any posi1-:ive
scalar A and any b € S, we have F(Ab) = AF(b). Assume that the dual feasible
set is nonempty, so that F'(b) is finite.
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Slack Dual Constr. | Allowable | Allowable
Value | Variable RHS Increase Decrease
Clay 130 1.429 130 23.33 4375 |
Enamel 9 0 13 [} 4
Dry Rm. 17 0 45 00 28
Kiln 23 20.143 23 5.60 3.50
Prim. 0 11.429 0 3.50 0

Table 5.5: The optimal dual solution and its sensitivity. The
column labeled “slack value” gives us the optimal values of the
slack variables associated with each of the primal constraints. The
third column simply repeats the right-hand side vector b, while the
last two columns describe the allowed changes in the components
of b for which the optimal dual solution remains the same.

Exercise 5.10 Consider the linear programming problem:

minimize z; 4 z,
subject to 1z 4 2z, = 9,

T1,x2 2 0.

(a) Find (by inspection) an optimal solution, as a function of §.

(b) Draw a graph showing the optimal cost as a function of 6.

(c) Use the picture in part (b) to obtain the set of all dual optimal solutions,

for every value of 8.

Exercise 5.11 Consider the function 9(6), as defined in the beginning of Sec-
tion 5.5. Suppose that g(8) is linear for § € [61,62]. Is it true that there exists a
unique optimal solution when 6, < 6 < 6,? Prove or provide a counterexample.

Exercise 5.12 Consider the parametric programming problem discussed in Sec-
tion 5.5.

(a) Suppose that for some value of 8, there are exactly two distinct basic feasible

(b)

solutions that are optimal. Show that they must be adjacent.

Let 6" be a breakpoint of the function 9(0). Let x', x2, x% be basic feasible
solutions, all of which are optimal for § = 6*. Suppose that x! is a unique
optimal solution for § < 8*, x% is a unique optimal solution for § > ¢*, and
x', %%, %% are the only optimal basic feasible solutions for 8 = §*. Provide
an example to show that x* and x” need not be adjacent.
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Exercise 5.13 Consider the following linear programming problem:

minimize 4a, + 5x3
subject to 2z, + z2 — 5z3 =1
-3z + dz3 + x4 = 2

z31,%2,3,T4 2 0.

(a) Write down a simplex tableau and find an optimal solution. Is it unique?
(b) Write down the dual problem and find an optimal solution. Is it unique?

(¢) Suppose now that we change the vector b from b = (1,2) to b = (1 —
20,2 — 30), where 6 is a scalar parameter. Find an optimal solution and
the value of the optimal cost, as a function of §. (For all , both positive
and negative.)

Exercise 5.14 Consider the problem

minimize (c + 0d)'x
subject to Ax
X

b+ 6f
0)

vV il

where A is an m X n matrix with linearly independent rows. We assume that the
problem is feasible and the optimal cost f(6) is finite for all values of @ in some
interval {6y, 62].
(a) Suppose that a certain basis is optimal for # = —10 and for § = 10. Prove
that the same basis is optimal for § = 5.
(b) Show that f(8) is a piecewise quadratic function of §. Give an upper bound
on the number of “pieces.”
(c) Let b = 0 and ¢ = 0. Suppose that a certain basis is optimal for 6 = 1.
For what other nonnegative values of € is that same basis optimal?

(d) Is f(6) convex, concave or neither?

Exercise 5.15 Consider the problem

minimize ¢'x
subject to Ax
x

b+6d
0,

vl

and let f(8) be the optimal cost, as a function of 6.

(a) Let X(8) be the set of all optimal solutions, for a given value of §. For
any nonnegative scalar ¢, define X(0,t) to be the union of the sets X(6),
0<6 <t Is X(0,t) a convex set? Provide a proof or a counterexample.

(b) Suppose that we remove the nonnegativity constraints x > 0 from the
problem under consideration. Is X(0,t) a convex set? Provide a proof or
a counterexample.

(c) Suppose that x' and x* belong to X(0,t). Show that there is a continuous
path from x! to x? that is contained within X(0,t). That is, there exists
a continuous function g(}) such that g(A1) = x*, g(X2) = x%, and g()) €
X(0,t) for all A € (Aq,A2).
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Exercise 5.16 Consider the parametric programming problem of Section 5.5.
Suppose that some basic feasible solution is optimal if and only if 8 is equal to

some 8.
(a) Suppose that the feasible set is unbounded. Is it true that there exist at
least three distinct basic feasible solutions that are optimal when 6 = §*?

(b) Answer the question in part (a) for the case where the feasible set is
bounded.

Exercisg 5.17 Consider the parametric programming problem. Suppose that
every basic solution encountered by the algorithm is nondegenerate. Prove that
the algorithm does not cycle.

5.8 Notes and sources

The material in this chapter, with the exception of Section 5.3, is standard,
and can be found in any text on linear programming.

5.1. A more detailed discussion of the results of the production planning
case study can be found in Freund and Shannahan (1992).

5.3. The re§ults in this section have beautiful generalizations to the case
of nonlinear convex optimization; see, e.g., Rockafellar (1970).

5.5. ?nticycling rules for parametric programming can be found in Murty
1983).



