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3.7.

3.9.

Chap. 83  The simplex method }

The example showing that the simplex method can take an exponen- 4
tial number of iterations is due to Klee and Minty (1972). The Hirsch ;
conjecture was made by Hirsch in 1957. The first results on the aver- J
age case behavior of the simplex method were obtained by Borgwardt
(1982) and Smale (1983). Schrijver (1986) contains an overview of )
the early research in this area, as well as proof of the n/2 bound on !

the number of pivots due to Haimovich (1983).

The results in Exercises 3.10 and 3.11, which deal with the smallest ?
examples of cycling, are due to Marshall and Suurballe (1969). The §
matrix inversion lemma [Exercise 3.13(a)] is known as the Sherman- §

Morrison formula.
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In this chapter, we start with a linear programming problem, called the pri-
mal, and introduce ancther linear programming problem, called the dual.
Duality theory deals with the relation between these two problems and un-
covers the deeper structure of linear programming. It is a powerful theoret-
ical tool that has numerous applications, provides new geometric insights,

and leads to another algorithm for linear programming (the dual simplex -

method).

4.1 Motivation

Duality theory can be motivated as an outgrowth of the Lagrange multiplier
method, often used in calculus to minimize a function subject to equality
constraints. For example, in order to solve the problem

v . 2
minimize z* 4 y?

subject to x4y =1,

we introduce a Lagrange multiplier p and form the Lagrangean L(z,y,p)
defined by

L{z,y,p) =&* + ¥ + p(1 —z ~ y).

While keeping p fixed, we minimize the Lagrangean over all  and y, subject
to no constraints, which can be done by setting 8L/82 and 8L /8y to zero.
The optimal solution to this unconstrained problem is

r=y= 2’
and depends on p. The constraint = +y = 1 gives us the additional relation
p =1, and the optimal solution to the original problem is z — y=1/2

The main idea in the above example is the following. Instead of
enforcing the hard constraint £ + ¢ = 1, we allow it to be violated and
associate a Lagrange multiplier, or price, p with the amount 1 — » — v
by which it is violated. This leads to the unconstrained minimization of
B2+y2+pl—z-— ¥). When the price is properly chosen (p=1, in our
example), the optimal solution to the constrained problem is also optimal
for the unconstrained problem. In particular, under that specific value of p,
the presence or absence of the hard constraint does not affect the optimal
cost.

The situation in linear programming is similar: we associate a price
variable with each constraint and start searching for prices under which
the presence or absence of the constraints does not affect the optimal cost.
It turns out that the right prices can be found by solving a new iinear
programming problem, called the dual of the original. We now motivate
the form of the dual problem.
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Consider the standard form problem
minimize c¢'x
subject to Ax

b
b e 0

v

’

which we call the primal problem, and let x* be an optimal solution, as-
sumed to exist. We introduce a relezed problem in which the constraint
Ax = b is replaced by a penalty p’(b — Ax), where p is a price vector of
the same dimension as b. We are then faced with the problem

minimize c'x+p'(b - Ax)
subject to x> 0.

Let g(p) be the optimal cost for the relaxed problem, as a function of the
price vector p. The relaxed problem allows for more options than those
present in the primal problem, and we expect g(p) to be no larger than the
optimal primal cost ¢’x*. Indeed,

g(p) =min |c'x + p'b — Ax}| < 'x* +p'(b — Ax™) = ¢'x7,
x>0

where tke last inequality follows from the fact that x* is a feasible solution
to the primal problem, and satisfies Ax* = b. Thus, each p leads to a
lower bound g(p) for the optimal cost ¢'x*. The problem

maximize g{p)
subject to no constraints

can be then interpreted as a search for the tightest possible lower bound
of this type, and is known as the dual problem. The main result in du-
ality theory asserts that the optimal cost in the dual problem is equal to
the optimal cost ¢’x* in the primal. In other words, when the prices are
chosen according to an optimal solution for the dual problem, the option
of violating the constraints Ax = b is of no value.

Using the definition of g(p), we have

. L3 I _
9(p) min [c x+p'(b— Ax)

—_— ! i ! - !
= p'b+min(c’ — p'A)x.
Note that 0 if ¢ 'A>0
. ’ ’ — ? te—p - ’
2121101(0 —-pP'A)x= { —00, otherwise.

In maximizing g(p), we only need tc consider those values of p for which
g(p) is not equal to —oco. We therefore conclude that the dual problem is
the same as the linear programmine problem

maximize p’b
subject to p’A <c’.
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In the preceding example, we started with the equality constraint |

- ded up Wwith no constraints on the sign of the price |

Ax = b and we en lem had instead inequality constraints of the §
form Ax > b, they could be replaced by Ax — s = b, s > 0. The equality 3
Z b, ]

vector p. If the primal prOb

in the form
x
al-g] %] =0

which leads to the dual constraints

p'la| -1 <[]0,

constraint can be written

uivalently,
on cq 4 pA<c, p>0.

Also. if the vector x is free rather than sign-constrained, we use the fact
y

0, ifc —pA=0,
n;in(c' —pA)x= { —o0, otherwise,

to end up with the const
erations mativate the gen
in the next section.

In summary, the

variables) p, an
on the optimal primal cos

corresponding lower boun! "y ©
infornf)ation gThus we only need to maximize over those p that lead to

nontrivial lower bounds, and this is what gives rise to the dual constraints.
)

4.2 The dual problem

Let A be a matrix with rows a} and columns A ;. Given a primal problem

with the structure shown on the left, its dual is defined to be the maxi-

mization problem shown OR the right:

. ,
e aximiz b
minimize ¢'x maximizeé P

subject to  alx >b;, €My subject to  p; > 0, 1 € M,
alx < b, i€ M, 2 <0, 2.€M2,
alx=b, @€Ms p; free, i € Ms,
z; 20, JE€NM P:AjSCj, .7'EN1’
z; <0, JEN, P'A;>2cj, jeEN,

, S
z; free, 1 ENs P'Aj=c;, jEN;

raint P'A = ¢ in the dual problem. These consid-
eral form of the dual problem which we introduce

construction of the dual of a primal minimization !
problem can be viewed as follows. We have a vector of parameters (dual j
d for every P We have a method for obtaining a lower bound 3
t. The dual problem is a maximization problem }
that looks for the tightest such lower bound. For some vectors p, the ]
d is equal to —o0, and does not carry any useful
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Notice that for each constraint in the primal (other than the sign con-
straints), we introduce a variable in the dual problem; for each variable in
the primal, we introduce a constraint in the dual. Depending on whether
the primal constraint is an equality or inequality constraint, the corre-
sponding dual variable is either free or sign-constrained, respectively. In
addition, depending on whether a variable in the primal problem is free or
sign-constrained, we have an equality or inequality constraint, respectively,
in the dual problem. We summarize these relations in Table 4.1.

PRIMAL minimize || maximize DUAL
>b; >0
constraints <b <0 variables
=b; free
>0 <¢
variables <0 = ¢ constraints
free =¢j

Table 4.1: Relation between primal and dual variables and constraints.

If we start with a maximization problem, we can always convert it
into an equivalent minimization preblem, and then form its dual according
to the rules we have described. However, to avoid confusion, we will adhere
to the convention that the primal is & minimization problem, and its dual
is a maximization problem. Finally, we will keep referring to the objective
function in the dual problem as a “cost” that is being maximized.

A problem and its dual can be stated more compactly, in matrix
notation, if a particular form is assumed for the primal. We have, for
example, the following pairs of primal and dual problems:

minimize ¢'x maximize p'b
subject to Ax = b subject to p'A <c/,
x > 0,
and
minimize c¢/x maximize p’b
subject to Ax > b, subject to p'A=c

p=0.

Example 4.1 Consider the primal problem shown on the left and its dual shown
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on the right:

minimize T1 + 223 + 323 maximize 5p1 + 6p2 + 4p;
subject to —z1 + 3x2 =5 subject to 1 free
2my — ®2 + 323 > 6 p2 >0
z3 <4 p3 <0
z1 20 —p1 + 2p2 <1
2 <0 3p — po =2
x3 free, 3p2 + pa=3."

We transform the dual into an equivalent minimization problem, rename the‘-
variables from pi1,p2,p3 to #1,20, 73, and multiply the three last constraints by

—1. The resulting problem is shown on the left. Then, on the right, we show lts
dual:

minimize —5z; — G2 — 43 maximize —p1 — 2p2 — 3ps
subject to x free subject to 71— Ip2 = -5
z2 >0 —2p1 + p3 — 3ps < —6 |
z3 <0 - m2 -4
T, — 22 > -1 p1 20 3
—3z1 + =2 < -2 p2 <0
—3x2 — a3 = -3, ps free.

We observe that the latter problem is equivalent to the primal problem we started$
with. (The first three constraints in the latter problem are the same as the first
three constraints in the original problem, multiplied by —1. Also, if the maxi-
mization in the latter problem is changed to a minimization, by multiplying the;
objective function by —1, we obtain the cost function in the original problem.}

The first primal problem considered in Example 4.1 had all of the 3
ingredients of a general linear programming problem. This suggests that
the conclusion reached at the end of the example should hold in general.
Indeed, we have the following result. Its proof needs nothing more than
the steps followed in Example 4.1, with abstract symbols replacing specific
numbers, and will therefore be omitted. ‘

Theorem 4.1 If we transform the dual into an equivalent minimiza- A
tion problem and then form its dual, we obtain a problem equzvalent
to the original prob]em

A compact statement that is often used to describe Theorem 4.1 is |
that “the dual of the dual is the primal.” ]

Any linear programming problem can be manipulated into one of |
several equivalent forms, for example, by introducing slack variables or by
using the difference of two nonnegative variables to replace a single free 4
variable. Each equivalent form leads to a somewhat different form for the {
dual problem. Nevertheless, the examples that follow indicate that the §
duals of equivalent problems are equivalent.
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Example 4.2 Corusider the primal problem shown on the left and its dual shown
on the right:

minimize ¢'x maximize p'b
subject to Ax>b subject to p>0
x free, PA=c.

We transform the primal problem by introducing surplus variables and then ob-
tain its dual:

minimize <¢'x+0's maximize P'b
subject to Ax—s=Db subject to p free
x free PA=¢
s> 0, -p <0

Alternatively, if we take the original primal problem and replace x by sigu-
constrained variables, we obtain the following pair of problems:

minimize ¢'x* —¢/x” maximize p'b
subject to Axt — Ax">b subject to p=>0
x>0 pPA<c
x~ >0, —p'A<-c.

Note that we have three equivalent forms of the primal. We observe that the
constraint p > 0 is equivalent to the constraint —p < 0. Furthermore, the con-
straint p’A = ¢’ is equivalent to the two constraints p’A < ¢ and ~p’A < ~c'.
Thus, the duals of the three variants of the primal problem are also equivalent.

The next exarople is in the same spirit and examines the effect of
removing redundant equality constraints in a standard form problem.

Example 4.3 Consider a standard form problem, assumed feasible, and its
dual:

minimize ¢'x maximize p'b
subject to Ax = b subject to p'A <.
x > 0,
-1
Let a},.. ,al, be tae rows of A and suppose that am = ZZ] ~;a; for some
scalars 1,...,Ym—1. In particular, the last equality constraint is redundant and

can be eliminated. By considering an arbitrary feasible Tlution x, we obtain

m—1 m—1
/ '
b = apX = E yiaix = E Yibs
i=1 i=1

Note that the dual constraints are of the form 7" p:a} < ¢ and can be rewritten
as

1)

m—1

E(pz +'7’7-?m)az =

i=1
Furthermore, using Eq. (4.1), the dual cost E’:_i_l pibi is equal to

m—1

Z(Pi +¥ipm)bi.

=1
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If we now let i = pi + YiPm, We see that the dual problem is equivalent to
maximize Z Gibi
subject to Z g:a; <c.

We observe that this is the exact same dual that we would have obtained if we §
had eliminated the last (and redundant) constraint in the primal problem, before
forming the dual. ;

The conclusions of the preceding two examples are summarized and gener-
alized by the following result. '

"I'h&orem 4.2 Suppose timt we_have tranafozmed a hnear p O
ming prebiem Ii; to ano; linear programming problem Iy,

'_ asibia, ot* they have tﬁe same optnmal cast

The proof of Theorem 4.2 involves a combination of the various steps :
in Examples 4.2 and 4.3, and is left to the reader.

4.3 The duality theorem

We saw in Section 4.1 that for problems in standard form, the cost g(p) ]
of any dual solution provides a lower bound for the optimal cost. We now
show that this property is true in general.
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Proof. For any vectors x and p, we define

u = pi(ax — bi),
( -P'A; )-TJ
Suppose that x and p are primal and dual feasible, respectively. The def-
inition of the dual problem requires the sign of p; to be the same as the

sign of ajx — b;, and the sign of ¢; — p'A; to be the same as the sign of ;.
Thus, primal and dual feasibility imply that

u,ZO, Vi,

and
v; >0, Y 7.

Notice that
Z u; = p'Ax —- p'b,

and
Z'uj =c'x — p'Ax
i

We add these two equalities and use the nonnegativity of u;, v;, to obtain

OSZui+ZvJ=c’x—p’b. ]
i 7

The weak duality theorem is not a deep result, yet it does provide
some useful information about the relation between the primal and the
dual. We have, for example, the following corollary.

" Corollary 4.1 o R

Proof. Suppose that the optimal cost in the primal problem is —co and
that the dual problem has a feasible solution p. By weak duality, p satisfies
P'b < ¢'x for every primal feasible x. Taking the minimum over all primal
feasible x, we conclude that p’b < —co. This is impossible and shows that -
the dual cannot have a feasible solution, thus establishing part (a). Part
(b) follows by a symmetrical argument.

: Ancther important corollary of the weak duality theorem is the fol-
owing,.



xeuwruoneziwndo Jesul|

148 Chap. 4  Duality theory

the dual, respect:ve[y, and suppose that p'b = c¢'X. Tben,..x andp
optimal solutions to the primal and the dual, respectively:

Proof. Let x and p be as in the statement of the corollary. For every prim
feasible solution y, the weak duality theorem yields ¢'x = p’b < ¢’y, whi
proves that x is optimal. The proof of optimality of p is similar.

The next theorem is the central result on linear programming dual-}
ity. 1

Theorem 4.4 (Strong duality) If a linear programming proble;
has an optimal solution, so does its dial, and the respective opti
costs are equaJ

Proof. Consider the standard form problem

minimize ¢'x
subject to Ax
x

Vol
=]

and an optlmal basis B. Let x5 = B !b be the corresponding vector
basic variables. When the simplex method terminates, the reduced costs
must be nonnegative and we obtain ;

c—czpBT'A >0,

where ¢/ is the vector with the costs of the basic variables. Let us define]
a vector p by letting p’ = ¢;B~!. We then have p’A < ¢’, which show:
that p is a feasible solution to the dual problem

maximize p'b
subject to p'A < ¢,

In addition,

p'b=cyB b =chxp =c'x.
It follows that p is an optimal solution to the dual {cf. Corollary 4.2) am{
the optimal dual cost is equal to the optimal primal cost. ‘

If we are dealing with a general linear programming problem II; that
has an optimal solution, we first transform it into an equivalent standard]
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form problem Il;, with the same optimal cost, and in which the rows of the
matrix A are linearly independent. Let D; and Do be the duals of I1; and
I1,, respectively. By Theorem 4.2, the dual problems Dy and D; have the
same optimal cost. We have already proved that II; and Ds have the same
optimal cost. It follows that II; and D) have the same optimal cost (see

Figure 4.1). O
. 1-[1 . s o Dl AR
e . . duals of equivalent
equivalent o | problems are
equivalent
I, > D,

duality for

standard form

problems

Figure 4.1: Proof of the duality theorem for general linear pro-
gramming problems.

The preceding proof shows that an optimal solution to the dual prob-
lem is obtained as a byproduct of the simplex method as applied to a primal
problem in standard form. It is based on the fact that the simplex method
is guaranteed to terminate and this, in turn, depends on the existence of
pivoting rules that prevent cycling. There is an alternative derivation of the
duality theorem, which provides a geometric, algorithm-independent view
of the subject, and which is developed in Section 4.7. At this point, we
provide an illustration that conveys most of the content of the geometric
proof.

Example 4.4 Consider a solid ball constrained to lie in a polyhedron defined
by inequality comstraints of the form ajx > b;. If left under the influence of
gravity, this ball reaches equilibrium at the lowest corner x* of the polyhedron;
see Figure 4.2. This corner is an optimal solution to the problem

minimize ¢'x

subject to  alx > by, Y i,

where c is a vertical vector pointing upwards. At equilibrium, gravity is counter-
balanced by the forces exerted on the ball by the “walls” of the polyhedron. The
latter forces are normal to the walls, that is, they are aligned with the vectors a;.
We conclude that ¢ = Zi p;iay, for some nonnegative coefficients p;; in particular,



xeuwruoneziwndo Jesul|

150 Chap. 4  Duality theory

the vector p is a feasible solution to the dual problem

maximize p’b
subject to p'A=c’
pz0.

Given that forces can only be exerted by the walls that touch the ball, we must |
have p; = 0, whenever ajx* > b;. Consequently, pi(b; — ajx*) = 0 for all i. We}
therefore have p'b =3, pibs = ¥, piaix* = c’x*. It follows (Corollary 4.2) that
p is an optimal solution to the dual, and the optimal dual cost is equal to the!

optimal primal cost.

Figure 4.2: A mechanical analogy of the duality theorem.

Recall that in a linear programming problem, exactly one of the fol- j

lowing three possibilities will occur:

(a)} There is an optimal solution.

(b} The problem is “unbounded”; that is, the optimal cost is —co (for-

minimization problems), or +oo (for maximization problems).

(¢) The problem is infeasible.

This leads to nine possible combinations for the primal and the dual, which
are shown in Table 4.2. By the strong duality theorem, if one problem has ;
an optimal solution, so does the other. Furthermore, as discussed earlier, }
the weak duality theorem implies that if one problem is unbounded, the
other must be infeasible. This allows us to mark some of the entries in]

Table 4.2 as “impossible.”
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T Finite optimum | Unbounded | Infeasible
Finite optimum Possible Impossible Impossible
Unbounded Impossible Impossible Possible
Infeasible Impossibla Possible Possible

Table 4.2: The different possibilities for the primal and the dual.

The case where both problems are infeasible can indeed occur, as shown by
the following example.

Example 4.5 Consider the infeasible primal
minimize z; + 222

subject to =z + 2
27 + 232

I
el

Its dual is
maximize p; + 3p2
subject to p; + 2p2 = 1
1+ 2p2 = 2,

which is also infeasible.
There is another interesting relation between the primal and the dual
which is known as Clark’s theorem (Clark, 1961). It asserts that unless

both problems are infeasible, at least one of them must have an unbounded
feasible set (Exercise 4.21).

Complementary slackness

An important relation between primal and dual optimal solutions is pro-
vided by the complementary slackness conditions, which we presens next.

Proof. In the proof of Theorem 4.3, we defined u; = p;(ajx — b;) and
v; = {¢; —p'A;)z;, and noted that for x primal feasible and p dual feasible,
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we have u; > 0 and v; 2 0 for all 4 and j. In addition, we showed that
¢’x-pb= Zui + Zvj.
3 J

By the strong duality theorem, if x and P are optimal, then ¢'x = p’h}
which implies that u; = v; = 0 for all i, j. Conversely, if u; = v; = 0 for al
i, §, then ¢'x = p'b, and Corollary 42 implies that x and p are optim

The first complementary slackness condition is automatically satigd
fied by every feasible solution to a problem in standard form. If the pri
ma] problem is not in standard form and has a constraint like ax > b
the corresponding complementary slackness condition asserts that the dual
variable p; is zero unless the constraint is active. An intuitive explanatiog
is that a constraint which is not active at an optimal sclution can be red
moved from the problem without affecsing the optimal cost, and there is na
point in associating a nonzero price with such a constraint. Note also the
analogy with Example 4.4, where “forces” were only exerted by the activel
constraints, ]

If the primal problem isin standard form and a nondegenerate optin
basic feasible solution is known, the complementary slackness conditio

determine a unique solution to the dual problem. We illustrate this fact in
the next example. '

Example 4.6 Consider a problem in standard form and its dual:

minimize 13z; + 10z + 6x3 maximize 8py + 3po

subject o 531 + xy + 3z3 = § subject to  5p; + 3pz: < 13
3r: + Z3 =3 M+ p: <10
T, 22,73 2 0, 3 < 6.

As will be verified shortly, the vector x* = (1,0,1) is a nondegenerate optimalf
solution to the primal problem. Assuming this to be the case, we use the comple-]
entary slackness conditions to construct the optimal solution to the dual. Thej
condition pi(ajx* — b;) = 0 is antomatically satisfied for each i, since the primal }
is in standard form. The condition (¢; — p’ A;)z; = (is clearly satisfied for j = 2,
because x3 = 0. However, since z} > 0 and z3 > 0, we obtain

5p1 + 3pa = 13,
and
3p1 =6,

which we can solve to obtain p; = 2 and p2 = 1. Note that this is a dual feasiblé]
solution whose cost is equal to 19, which is the same as the cost of x". This3
verifies that x* is indeed an optimal solution as claimed earlier. :

We now generalize the above example. Suppose that z,; is a ba~§
sic variable in a nondegenerate optimal basic feasible solution to a primal]
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problem in standard form. Then, the complemeptar.y slackness. condition
(c;—P'A;)x; = 0 yields p’A; = ¢; for every such j. Since t%le basic colun?ns
A; are linearly independent, we obtain a system‘ of equations .for p which
has a unique solution, namely, p’ = B~ A sunl_lar conclusion can also
be drawn for problems not in standard form (Exercise f1,12). On‘ the other
hand, if we are given a degenerate optimal basic. feasible golutlon t(_) ’.che
primal, complementary siackness may be of very little help in determining
an optimal solution to the dual problem (Exercise 4.1_7).

We finally mention that if the primal constraints are of _the form
Ax > b, x > 0, and the primal problem has an optimal solut.mn, thc_an
there_ exist optimal solutions to the primal and the dual which §at15fy stmc.t
complementary slackness; that is, a variable in one problem is nonzero if
and only if the corresponding constraint in the other‘ pr?blen} is lactlve
(Exercise 4.20). This result has some interesting applications in discrete
optimization, but these lie outside the scope of this book.

A geometric view

We now develop a geometric view that allows us to visualize pairs of primal
and dual vectors without having to draw the dual feasible set.
We consider the primal problem
minimize c'x
subject to  ajx > b;, 1=1,...,m,
where the dimension of x is equal to n. We assume that the vectors a; span
R". The corresponding dual problem is

maximize p’b

m

subject to Zpiai =c
i=1
p>0.

Let I be a subset of {1,...,m} of cardinality n, such that the vectors
a;, ¢ € I, are linearly independent. The system ajx = b;, i€ [ ; has a unique
solution, denoted by x’, which is a basic solution to the primal problem
(cf. Definition 2.9 in Section 2.2). We assume, that x! is nondegenerate,
that is, alx # b, for i ¢ I. ‘ .

Let p € ™ be a dual vector (not necessarily dual feasible), and let
us consider what is required for x? and p to be optimal solutions to the
primal and the dual problem, respectively. We need:

(a) alx! > by, for all i,
) p;=0,foralli¢g I, (complementary slackness),
() X0 mai=c, (dual feasibility),
(d) p=¢, (dual feasibility).

(primal feasibility),
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Figure 4.3: Consider a primal problem with two variables and
five inequality constraints (n = 2, m = 5), and suppose that no
two of the vectors a; are collinear. Every two-element subset J
of {1.2,3,4,5} determines basic solutions x’ and p! of the primal
and the dual, respectively.

If I = {1,2}, x’ is primal infeasible (point A) and p’ is dual in-
feasible, because ¢ cannot be expressed as a nonnegative linear
combination of the vectors a; and as.

¥ I={1,3}, x' is primal feasible (point B) and p’ is dual infea-
sible. »

If I = {1,4}, x' is primal feasible (point C) and p’ is dual feasible,
becanse ¢ can be expressed as a nonnegative linear combination of
the vectors a; and a4, In particular, x’ and p! are optimal.

If I = {1,5), x! is primal infeasible (point D) and p’ is dual
feasible.

Given the complementary slackness condition (b}, condition (c) becomes

Zpiai =cC.

ict
Since the vectors a;, i € I, are linearly independent, the latter equation
has a unique solution that we denote by p!. In fact, it is readily seen
that the vectors a;, i € I, form a basis for the dual problem (which is in
standard form) and p? is the associated basic solution. For the vector p!
to be dual feasible, we also need it to be nonnegative. We conclude that

once the complementary slackness condition (b) is enforced, feasibility of ,
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Figure 4.4: The vector x™ is a degenerate basic feasible solution
of the primal. If we choase I = {1,2}, the corresponding dual
basic solution p? is infeasible, because ¢ is not a nonnegative linear
combination of a;, az. On the other hand, if we choose I = {1,3}
or I = {2,3)}, the resulting dual basic solution p! is feasible and,
therefore, optimal.

the resulting dual vector p’ is equivalent to ¢ being a nonnegative linear
combination of the vectors a;, i € I, associated with the active primal
constraints. This allows us to visualize dual feasibility without having to
draw the dual feasible set; see Figure 4.3.

If x* is a degenerate basic solution to the primal, there can be several
subsets I such that x! = x*. Using different choices for I, and by solving
the system ), ; p;ja; = ¢, we may obtain several dual basic solutions pl. It
may then well be the case that some of them are dual feasible and some are
not: see Figure 4.4. Still, if p? is dual feasible (i.e., all p; are nonnegative)
and if x* is primal feasible, then they are both optimal, because we have
been enforcing complementary slackness and Theorem 4.5 applies.

4.4 Optimal dual variables as marginal costs

In this section, we elaborate on the interpretation of the dual vaxiables as
prices. This theme will be revisited, in more depth, in Chapter 5.
Consider the standard form problem

minimize ¢'x
subject to Ax
x

b
0

vl

We assume that the rows of A are linearly independent and that there
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is a nondegenerate basic feasible solution x* which is optimal. Let B be
the corresponding basis matrix and let xg = B~ b be the vector of basic
variables, which is positive, by nondegeneracy. Let us now replace b by §
b +d, where d is a small perturbation vector. Since B~ lb > 0, we also §
have B-X(b + d) > 0, as long as d is small. This implies that the same
basis leads to a basic feasible solution of the perturbed problem as well. §
Perturbing the right-hand side vector b has no effect on the reduced costs
associated with this basis. By the optimality of x* in the original problem, }
the veetor of reduced costs ¢ —c;BT1A is nonnegative and this establishes |
that the same basis is optimal for the perturbed problem as well. Thus,

the optimal cost in the perturbed problem is

cpB (b +d) = p'(b + d),

where p’ = c; B! is an optimal solution to the dual problem. Therefore, a 1§
small change of d in the right-hand side vector b results in a change of p’d §

in the optimal cost. We conclude that each component p; of the optimal

dual vector can be interpreted as the marginal cost (or shadow price) per “

unit increase of the ith requirement b;.

We conclude with yet another interpretation of duality, for standard 3

form problems. In order to develop some concrete intuition, we phrase

our discussion in terms of the diet problem (Example 1.3 in Section 1.1). 4
We interpret each vector A; as the nutritional content of the Jjth available §

food, and view b as the nutritional content of an ideal food that we wish to

synthesize. Let us interpret p; as the “fair” price per unit of the ith nutrient. :,
A unit of the jth food has a value of ¢; at the food market, but it also has

a value of p’A,; if priced at the nutrient market. Complementary slackness
asserts that every food which is used (at a nonzero level) to synthesize the
ideal food, should be consistently priced at the two markets. Thus, duality
is concerned with two alternative ways of cost accounting. The value of the
ideal food, as computed in the food market, is ¢'x*, where x* is an optimal
solution to the primal problem; the value of the ideal food, as computed
in the nutrient market, is p’b. The duality relation ¢’x* = p’b states that
when prices are chosen appropriately, the two accounting methods should
give the same results,

4.5 Standard form problems and the dual
simplex method

In this section, we concentrate on the case where the primal problem is in
standard form. We develop the dual stmplex method, which is an alternative
to the simplex method of Chapter 3. We also comment on the relation
between the basic feasible solutions to the primal and the dual, including
a discussion of dual degeneracy.
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In the proof of the strong duality theorem, we considered the simplex
method applied to a primal problem in standard form and deﬁned4a dl_lal
vector p by letting p’ = ¢ B~!. We then noted that the prim.al optlm.al‘lty
condition ¢’ — ¢z B7LA > 0/ is the same as the dual feasibility condition
p’'A < ¢’. We can thus think of the simplex method as an algorithm that
maijntains primal feasibility and works towards dual feasibility. A metho.d
with this property is generally called a primal algorithm. An alternative is
to start with a dual feasible solution and work towards primal feasibility. A
method of this type is called a dual algorithm. In this section, we present a
dual simplex method, implemented in terms of the full tableau. We argue
that it does indeed solve the dual problem, and we show that it moves from
one basic feasible solution of the dual problem to another. An alternative
implemertation that only keeps track of the matrix B~!, instead of the
entire tableau, is called a revised dual simplez method (Exercise 4.23).

The dual simplex method

Let us consider a problem in standard form, under the usual assumption
that the rows of the matrix A are linearly independent. Let B be a basis
matrix, consisting of m linearly independent eolumns of A, and consider
the corresponding zablean

-czB7 b T
B~ 'b B'A

or, in more detail,

—c’BxB C1 Cp
TRB(1) | '
B7'A; ... B7'aA,

We do not require B~'b to be nonnegative, which means that we
have a basic, but not necessarily feasible solution to the primal problem.
However, we assume that T > 0; equivalently, the vector p' = ¢czB~!
satisfies p’A < ¢/, and we have a feasible solution to the dual problem.
The cost of this dual feasible solution is p'b = ¢zFB~!b = ¢/yx5, which
is the negative of the entry at the upper left corner of the tab]eau.‘ If
the inequality B~'b > 0 happens to hold, we also have a primal feasible
solution with the same cost, and optimal solutions to both problems have
been found. If the inequality B~!b > 0 fails to hold, we perform a change
of basis in a manner we describe next.
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We find some £ such that z B(ey < 0 and consider the £th row of the

tableau, called the pivot row; this row is of the form @B, 1y, V),

where v; is the £th component of B-*A;. For each i with v; < 0 (if such ¢

exist), we form the ratio ¢;/|v;] and let j be an index for which this ratio ‘

is smallest; that is, v; < 0 and

= mi (4.2) '

= n .
il {ilvi<o} oy

(We call the corresponding entry v; the pivot element. Note that r; must j
be a nonbasic varisble, since the jth column in the tableau contains the |
negative element v;.) We then perform a change of basis: column A; .
enters the basis and column A g, exits. This change of basis (or pivot) is |
effected exactly as in the primal simplex method: we add to each row of the |
tableau a multiple of the pivot row so that all entries in the pivot column
are set to zero, with the exception of the pivot element which is set to 1. In
particular, in order to set the reduced cost in the pivot column to Zero, We |

multiply the pivot tow by €;/|v;| and add it to the zeroth row. For every
%, the new value of ¢; is equal to

~ Cj
C; + vy,

[

which is nonnegative because of the way that j was selected [f. Eq. (4.2)].

We conclude that the reduced costs in the new tableau will also be nonneg-
ative and dual feasibility has been maintained.

Example 4.7 Consider the tableau

I T2 T3 T4 s

0 2 6 10 0 0

4= 2] -2 4 1 1 0

zs= | —1 4 -2+ -3 0 1

Since zp(s) < 0, we choose the second row to be the pivot row. Negative entries
of the pivot row are found in the second and third column. We compare the
corresponding ratios 6/} — 2| and 10/| ~ 3|. The smallest ratio is 6/ — 2 and,
therefore, the second column enters the basis. (The pivot element is indicated by
an asterisk.] We multiply the pivot row by 3 and add it to the zeroth row. We
multiply the pivot row by 2 and add it to the first rov. We then divide the pivot
row by —2. The new tableau is

&y X2 T3 B4 s
-3 14 0 1 0 3
z4 = 0 6 0 -5 1 2

= |1/2 (-2 1 32 0 -1/2
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The cost has increased to 3. Furthermore, we now have B~'b > 0, and an
optimal solution has been found.

Note that the pivot element v; is always chosen to be negative, where-
as the corresponding reduced cost T; is nonnegative. Let us temporarily
assume that ¢; is in fact positive. Then, in order to replace ¢; by zero, we
need to add a positive multiple of the pivot row to the zeroth row. Since
Zpe) Is negative, this has the effect of adding a negative quantity to the
upper left corner. Equivalently, the dual cost increases. Thus, as long as the
reduced cost of every nonbasic variable is nonzero, the dual cost increases
with each basis change, and no basis will ever be repeated in the course of
the algorithm. It follows that the algorithm must eventually terminate and
this can happen in one of two ways:

(a) We have B~'b > 0 and an optimal solution.

(b) All of the entries v1,. .., v, in the pivot row are nonnegative and we
are therefore unable to locate & pivot element. In full analogy with
the primal simplex method, this implies that the optimal dual cost is
equal to +oc and the primal problem is infeasible; the proof is left as
an exercise (Exercise 4.22).

We now provide a summary of the algorithm.

An iteration-of ’the dual simplex methed = O
1. A typical iteration starts with the tableau associsted with a basis -

timal basic feasible solution and the algorithm terminates; else,
choose some £ such that £z < 0. ,

3. Consider the £th row of the tableau, with elements 2z, 15+,
mal dual cost

Let us now consider the possibility that the reduced cost & in the
pivot column is zero. In this case, the zeroth row of the tableau does not
change and the dual cost ¢’zB b remains the same. The proof of termina-
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tion given earlier does not apply and the algorithm can cycle. This can be
avoided by employing a suitable anticycling rule, such as the following.

Lexicographic pivoting rule for the dual simplex mei:hod
1. Choose anytow £ such that x5 < 0, to be the pivot row.

2. Deétermine thé index j of the entering colunmn asfollows: Foreach "
~column with »; < 0, divide all entries by v}, and then choose it
~the lexicographically: smallest column. - If there is a tie between : i

several lexicographically sma.llest columns, choose +the one wmh
the smallest index.

If the dual simplex method is initialized so that every column of the
tableau [that is, each vector (¢;, B~1A;)] is lexicographically positive, and
if the above lexicographic pivoting rule is used, the method terminates in a
finite nurnber of steps. The proof is similar to the proof of the corresponding
result for the primal simplex method (Theorem 3.4) and is left as an exercise
(Exercise 4.24).

When should we use the dual simplex method

At this point, it is natural to ask when the dual simplex method should
be used. One such case arises when a basic feasible solution of the dual
problem is readily available. Suppose, for example, that we already have an
optimal basis for some linear programming problem, and that we wish to
solve the same problem for a different choice of the right-hand side vector
b. The optimal basis for the original problem may be primal infeasible
under the rew value of b. On the other hand, a change in b does not affect
the reduced costs and we still have a dual feasible solution. Thus, instead
of solving the new problem from scratch, it may be preferable to apply
the dual simplex algorithm starting from the optimal basis for the original
problem. This idea will be considered in more detail in Chapter 5.

The geometry of the dual simplex method

Qur development of the dual simplex method was based entirely on tableau
manipulations and algebraic arguments. We now present an alternative
viewpoint based on geometric considerations.

We continue assuming that we are dealing with a problem in standard
form and that the matrix A has linearly independent rows. Let B be a basis
matrix with columns Apgy,..., Ap(m;. This basis matrix determines a
basic solution to the primal problem with xg = B~'b. The same basis can
250 be used to determine a dual vector p by means of the equations

P’AB(:‘) = CB(:)» i=1,...,m.
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These are m equations in m unknowrs; since the columns Apg(yy,..., Ap(m)
are linearly independent, there is a unique solution p. For such a vector p,
the number of linearly independent active dual constraints is equal to the
dimension of the dual vector, and it follows that we have a basic solution
to the dual problem. In matrix notation, the dual basic solution p satisfies
pB=cp orp = ¢’z B!, which was referred to as the vector of simplex
multipliers in Chapter 3. If p is also dual feasible, that is, if p’A < ¢/, then
p is a basic feasible solution of the dual problem.

To summarize, a basis matrix B is associated with a basic solution
to the primal problem and also with a bagic solution to the dual. A basic
solution to the primal (respectively, dual) which is primal (respectively,
dual) feasible, is a basic feasible solution to the primal {respectively, dual).

We now have a geometric interpretation of the dual simplex method:
at every iteration, we have a basic feasible solution to the dual problem.
The basic feasible solutions obtained at any two consecutive iterations have
m — 1 linearly independent active constraints in common (the reduced costs
of the m — 1 variables that are common to both bases are zero); thus,
consecutive basic feasible solutions are either adjacent or they caincide.

Example 4.8 Consider the following standard form problem and its dual:

minimize x; + za maximize 2p1 + p2

subject to 7y + 2x2 — x5 = 2 subject to p1+p2 £1
ry —2a=1 2p1 s 1
1, T2, X3, x4 = 0, p1.p2 2 0.

The feasible set of the primal problem is 4-dimensional. If we eliminate the
variables z3 and x4, we obtain the equivalent problem

minimize z; 4 z2
subject to =z + 2z2 > 2
T 2 1
1, T2 2 0.

The feasible sets of the equivalent primal problem and of the dual are shown in
Figures 4.5(a) and 4.5(b), respectively.

There is a tatal of five different bases in the standard form primal problem
and five different basic solutions. These correspond to the points A, B, C, D,
and E in Figure 45(a). The same five bases also lead to five basic solutions to
the dual problem, which are points A, B, C, D, and F in Figure 4.5(b).

Far example. if we choose the columns Az and A4 to be the basic columns,
we have the infeasible primal basic solution x = (0,0,—2,—1) (point A). The
corresponding dual basic solution is obtained by letting p’A; = ¢35 = 0 and
p'As = cs = 0, which yields p = (0,0). This is a basic feasible solution of the
dual problem and can be used to start the dual simplex method. The associated
initial tableau is
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1 To T3 T4

0 1 1 0 0
2| -1 —2* 1 0
-1|-1 0o 0 1

We carry out two iterations of the dual simplex method to obtain the following

Duality theory

ri i) T3 Ta

~1,1/2 0 1/2 0

zm=| 1|1/2 1 -1/2 0
o= | -1 -1 0 0 1
1 X2 T3 T4

-3p0 0 0 12 1/2
m=| 12| 0 1 -2 12
z = 1] 1 0 0 -1

This sequence of tableaux corresponds to the path A— B — C in either figure. In
the primal space, the path traces a sequence of infeasible basic solutions until, at

Sec. 4.5  Standard form problems and the dual simplex method 163

optimality, it becomes feasible. In the dual space, the algorithm behaves exactly
like the primal simplex method: it moves through a sequence of (dual} basic
feasible solutions, while at each step improving the cost function.

Having observed that the dual simplex method moves from one basic
feasible solution of the dual to an adjacent one, it may be tempting to say
that the dual simplex method is simply the primal simplex method applied
to the dual. This is a somewhat ambiguous statement, however, because the
dual problem is not in standard form. If we were to convert it to standard
form and then apply the primal simplex method, the resulting method is
not necessarily identical to the dual simplex method {Exercise 4.25). A
more accurate statement is to simply say that the dual simplex method is
a variant of the simplex method tailored to problems defined exclusively in
terms of linear inequality constraints.

Duality and degeneracy

Let us keep assuming that we are dealing with a standard form problem
in which the rows of the matrix A are linearly independent. Any basis
matrix B leads to an associated dual basic solution given by p’ = ¢xB~L.
At this basic solution, the dual constraint p’A; = ¢; is active if and only if
czBT1A; = ¢, that is, if and only if the reduced cost  is zero. Since p is
m-dimensional, dual degeneracy amounts to having more than m reduced
costs that are zero. Given that the reduced costs of the m basic variables
must be zero, dual degeneracy is obtained whenever there exists a nonbasic
variable whose reduced cost is zero.

The example that follows deals with the relation between basic solu-
tions to the primal and the dual in the face of degeneracy.

Example 4.9 Consider the following standard from problem and its dual:

minimize 3z + 2 maximize 2p;

subject to z, + T2 — T3 =2 subject to p1 + 2pz < 3
25, — T3 — x4 =0 - p2 =1
Z1,%2,%3,%q4 > 0, p1,p2 2> 0.

We eliminate z3 and z,; to obtain the equivalent primal problem

minimize 3z; + z2

subject to  z1 + x2 > 2
221 — x2 > 0
1,22 > 0.

The feasible set of the equivalent primal and of the dual is shown in Figures 4.6(a)
and 4.6(b), respectively.

There is a total of six different bases in the standard form primal problem,
but only four different basic solutions [points A, B, C, D in Figure 4.6(a)]. In the
dual problem, however, the six bases lead to six distinct basic solutions [points
A, A', AY, B, C, D in Figure 4.6(b)).
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S

(a).

Figure 4.6: The feasible sets in Example 4.9.

For example, if we let columns Az and A4 be basic, the primal basic solu-
tion has 1 = z2 = 0 and the corresponding dual basic solution is (p1, ps) = (0,0).
Note that this is a basic feasible solution of the dual problem. If we let columns
A; and Aj be basic, the primal basic solution has again 3 = z3 = 0. For
the dual problem, however, the equations p’A; = ¢; and p'As = c3 yield
(p1,p2) = (0,3/2), which is a basic feasible solution of the dual, namely, point
A’ in Figure 4.6(b). Finally, if we let columns Az and Aj be basic, we still have
the same primal sclution. For the dual problem, the equations p’Az; = ¢; and
P'As = c3 yield {p1,p) = (0, —1), which is an infeasible basic solution to the
dual, namely, point A” in Figure 4.6(b).

Example 4.9 has established that different bases may lead to the same
basic solution for the primal problem, but to different basic solutions for the
dual. Furthermore, out of the different basic solutions to the dual problem,
it may be that some are feasible and some are infeasible.

We conclude with a summary of some properties of bases and basic
solutions, for standard form problems, that were discussed in this section.

{(a) Every basis determines a basic solution to the primal, but also a
corresponding basic solution to the dual, namely, p’ = ¢;B~!.

(b) This dual basic solution is feasible if and only if all of the reduced
costs are nonnegative.

{c) Under this dual basic solution, the reduced costs that are equal to
zero correspond to active constraints in the dual problem.

(d) This dual basic solution is degenerate if and only if some nonbasic
variable has zero reduced cost.
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4.6 Farkas’ lemma and linear inequalities

Suppose that we wish to determine whether a given system of linear in-
equalities is infeasible. In this section, we approach this question using
duality theory, and we show that infeasibility of a given system of linear
inequalities is equivalent to the feasibility of another, related, system of
linear inequalities. Intuitively, the latter system of linear inequalities can
be interpreted as a search for a certificate of infeasibility for the former
system.

To be more specific, consider a set of standard form constraints Ax =
b and x > 0. Suppose tha: there exists some vector p such that p'A > 0/
and p'b < 0. Then, for any x > 0, we have p’Ax > 0 and since p’b < 0,
it follows that p’Ax # p’b. We conclude that Ax # b, for all x > 0. This
argument shows that if we can find a vector p satisfying p’A > 0’ and
p’'b < G, the standard form constraints cannot have any feasible solution,
and such a vector p is a certificate of infeasibility. Farkas’ lemma below
states that whenever a standard form problem is infeasible, such a certificate
of infeasibility p is guaranteed to exist.

Theorem 4.6 (Farkas’ lemma) Let A be a matrix of dimensions
m x n.and let b be a vector in ™. Then, exactly one of the following
two alternatives holds:

(a) ' There exists somie x > 0 such that Ax = b. -
(b) There exists some vector p such that p’A > 0’ and p'b < 0.

Proof. One direction is easy. If there exists some x > Osatisfying Ax = b,
and if p’A > 0, then p'b = p’Ax > 0, which shows that the second
alternative cannot hold.

Let us now assume that there exists no vector x > 0 satisfying Ax =
b. Consider the pair of problems

maximize 0'x minimize p’b
subject to Ax = b subject to p’A > O,
x>0

?

and note that the first is the dual of the second. The maximization prob-
lem is infeasible, which implies that the minimization problem is either
unbounded (the cptimal cost is —o0) or infeasible. Since p = 0 is a feasi-
ble solution to the minimization problem, it follows that the minimization
problem is unbounded. Therefore, there exists some p which is feasible,
that is, p’A > 0, and whose cost is negative, that is, p'b < 0. C]

We now provide a geometric illustration of Farkas’ lemma, (see Fig-
ure 4.7). Let Ay,..., A, be the columns of the matrix A and note that
Ax = Y7 | A;z;. Therefore, the existence of a vector x > 0 satisfying



xeuwruoneziwndo Jesul|

166 Chap. 4  Duality theory

Ax = b is the same as requiring that b lies in the set of all nonnegative
linear combinations of the vectors A,,..., Ay, which is the shaded region
in Figure 4.7. If b dces not belong to the shaded region (in which case the
first alternative in Farkas’ lemma does not hold), we expect intuitively that
we can find a vector p and an associated hyperplane {z | p'z = 0} such
that b lies on one side of the hyperplane while the shaded region lies on the
other side. We then have p'b < 0 and p’A; > 0 for all 4, or, equivalently,
p’A > (0, and the second alternative holds.

Farkas’ lemma predates the development of linear programming, but
duality theory leads to a simple proof. A different proof, based on the
geometric argument we just gave, is provided in the next section. Finally,
there is an equivalent statement of Farkas’ lemma which is sometimes more
convenient,

, 'to the system Ax< b satzsﬁes cx=d.

Proof. Consider the following pair of problems

maximize c¢'x minimize p'b
subject to Ax < b, subject to p'A=c
p20,

and note that the first is the dual of the second. If the system Ax < b }
has a feasible solution and if every feasible solution satisfies ¢’x < d, then !

the first problem has an optimal soluticn and the optimal cost is bounded
above by d. By the strong duality theorem, the second problem also has
an optimal solution p whose cost is bounded above by d. This optimal
solution satisfies p’A = ¢’, p > 0, and p'b < d.

Conversely, if some p satisfies p’A = ¢/, p > 0, and p'b < d, then

the weak duality theorem asserts that every feasible solution to the first

problem must also satisfy ¢'x < d. O

Results such as Theorems 4.6 and 4.7 are often called theorems of the .
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Figure 4.7: If the vector b does not belong to the set of all
nonnegative linear combinations of Ay,..., A, then we can fird a
hyperplane {z [ p’z = 0} that separates it from that set.

alternative. There are several more results of this type; see, for example.
Exercises 4.26, 4.27, and 4.28.

Applications of Farkas’ lemma to asset pricing

Consider a market that operates for a single period, and in which n different
assets are traded. Depending on the events during that single period, there
are m possible states of nature at tae end of the period. If we invest one
dollar in some asset ¢ and the state of nature turns out to be s, we receive a
payoff of 4;. Thus, each asset i is described by a payoff vector (riz... ., 7ms).
The following m x n payoff matrix gives the payoffs of sach of the n assets
for each of the m states of nature:

™1 e Tin
R:

Tml -+ Tmn

Let z; be the amount held of asset 1. A portfolio of assets is then a vector
X = (%1,...,%,). The components of a portfolio x can be either positive
or negative. A positive value of z; indicates that one has bought z; units
of asset ¢ and is thus entitled to receive ry;z; if state s materializes. A
negative value of x; indicates a “short” position in asset ¢: this amounts to
selling |x;| units of asset ¢ at the beginning of the period, with a promise
to buy them back at the end. Hence, one must pay out ry|z;| if state s
occurs, which is the same as receiving a payoff of r ;x;.
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The wealth in state s that results from a portfolio x is given by

n
We = E Teilli.
i=1

We introduce the vector w = (w, ..., %), and we obtain
w = Rx.

Let p; be the price of asset ¢ in the beginning of the period, and let p = §
(p1,-..,Pn) be the vector of asset prices. Then, the cost of acquiring a §
portfolio x is given by p’x. {

The central problem in asset pricing is to determine what the prices }
p; should be. In order to address this question, we introduce the absence ‘
of arbitrage condition, which underlies much of finance theory: asset prices ;
should always be such that no investor can get a guaranteed nonnegative §
payoff out of a negative investment. In other words, any portfolio that
pays off nonnegative amounts in every state of nature, must be valuable to 3
investors, so it must have nonnegative cost. Mathematically, the absence }
of arbitrage condition can be expressed as follows: :

if Rx> 0, then we must have p'x > 0.

Given a particular set of assets, as described by the payoff matrix R, only
certain prices p are consistent with the absence of arbitrage. What charac- |
terizes such prices? What restrictions does the assumption of no arbitrage "
impose on asset prices? The answer is provided by Farkas’ lemma. ‘

there existd 4 nonnegative vector q = {(qr,. ..,qm), such that the price.
of each asset i is given by

o ”
=) gt
. =1

Proof. The absence of arbitrage condition states that there exists no
vector x such that xR’ > 0/ and x'p < 0. This is of the same form as
condition (b) in the statement of Farkas' lemma (Theorem 4.6). (Note that
here p plays the role of b, and R’ plays the role of A.] Therefore, by
Farkas’ lemma, the absence of arbitrage condition holds if and only if there §
exists some nonnegative vector q such that R'q = p, which is the same as !
the condition in the theorem’s statement. 14

Theorem 4.8 asserts that whenever the market works efficiently enough
to eliminate the possibility of arbitrage, there must exist “state prices” ¢s 1
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that can be used to value the existing assets. Intuitively, it establishes
a nonnegative price g5 for an elementary asset that pays one dollar if the
state of nature is 3, and nothing otherwise. It then requires that every asset
must be consistently priced, its total value being the sum of the values of
the elementary assets from which it is composed. There is an alternative
interpretation of the variables g, as being {unnormalized) probabilities of
the different states s, which, however, we will not pursue. In general, the
state price vector q will not be unique, unless the number of assets equals
or exceeds the number of states.

The no arbitrage condition is very simple, and yet very powerful. It
is the key element behind many important results in financial economics,
but these lie beyond the scope of this text. (See, however, Exercise 4.33 for
an application in options pricing.)

4.7 From separating hyperplanes to duality*

Let us review the path followed in our development of duality theory. We
started from the fact that the simplex method, in conjunction with an anti-
cycling rule, is guaranteed to terminate. We then exploited the termination
conditions of the simplex method to derive the strong duality theorem. We
finally used the duality theorem to derive Farkas’ lemma, which we inter-
preted in terms of a hyperplane that separates b from the columns of A. In
this section, we show that the reverse line of argument is also possible, We
start from first principles and prove a general result on separating hyper-
planes. We then establish Farkas’ lemma, and conclude by showing that the
duality theorem follows from Farkas’ lemma. This line of argumert is more
elegant and fundamental because instead of relying on the rather compli-
cated development of the simplex method, it only involves a small number
of basic geometric concepts. Furthermore, it can be naturally generalized
to nonlinear optimization problems.

Closed sets and Weierstrass’ theorem

Before we proceed any further, we need to develop some background ma-
terial. A set § C R™ is called closed if it has the following property: if
xt,x? ... is a sequence of elements of § that converges to some x € R”,
then x € 5. In other words, § contains the limit of any sequence of elements

of §. Intuitively, the set S contains its boundary.

Proof. Consider the polyhedron P = {x € ®* | Ax > b}. Suppose that
x!, %2, ... is a sequence of elements of P that converges to some x*. We have
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to show that x* € P. For each k, we have x* € P and, therefore, Ax* > b. ]
Taking the limit, we obtain Ax* = A{limy_ xF) = limyg_o0 (Ax"’) >b,]
and x* belongs to P. ‘

The following is a fundamental result from real analysis that provides
us with cenditions for the existence of an optimal solution to an optimiza- |
tion problem. The proof lies beyond the scope of this book and is omitted.

Weierstrass’ theorem is not valid if the set S is not closed. Consider, :
for example, the set § = {x € R | > 0}. This set is not closed because we !
can form a sequence of elements of S that converge to zero, but z = 0 does
not belong to 5. We then observe that the cost function f(x} = z is not 4
minimized at any point in §; for every z > 0, there exists another positive §
number with smaller cost, and no feasible = can be optimal. Ultimately,
the reason that § is not closed is that the feasible set was defined by means }
of strict inequalities. The definition of polyhedra and linear programming
problems does not allow for strict inequalities in order to avoid situations |
of this type.

The separating hyperplane theorem

The result that follows is “geometrically obvious” but nevertheless ex- |
tremely important in the study of convex sets and functions. It states that ;
if we are given a closed and nonempty convex set S and a point x* ¢ S, ‘
then we can find a hyperplane, called a separating hyperplane, such that § |
and x* lie in different halfspaces (Figure 4.8). !

Proof. Let | - || be the Euclidean norm defined by ||xJ| = (x'x)!/2. Let us {
fix some element w of S, and let ‘

B = {x|lx—x| < |lw-x||},

and D = §N B [Figure 4.9(a)]. The set D is nonempty, because w € D).
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Figure 4.8: A hyperplane that separates the point x* from the
convex set §.

Furthermore, D is the intersection of the closed set S with the closed set
B and is also closed. Finally, D is a bounded set because B is bounded.
Consider the quantity ||x — x*||, where x ranges over the set D. This is
a continuous function of x. Since I is nonempty, closed, and bounded,
Weierstrass’ theorem implies that there exists some y € I such that

ly —xl < Jx—x"}, VxeD.

For any x € § that does not belong to D, we have ||x —x*|| > w —x*|| >
lly — x*||. We conclude that y minimizes ||x — x*|| over all x € §.

‘We have so far established that there exists an element y of S which
is closest to x*. We now show that the vector ¢ = y — x* has the desired
property [see Figure 4.9(b) .

Let x € S. For any Asatisfying 0 < A <1, we have y + A(x—y) € 5,
because S is convex. Since y minimizes |jx — x*|| over all x € 5, we obtain

ly = x*I2 < lly +Mx —y) - x*|?
ly — =112 + 22y —x*) (x — y) + 3 [|x -y,

which yields
2y —x")(x—y)+ X|x-y]* >0

We divide by A and then take the limit as A decreases to zero. We obtain
y—-x")(x-y)20.

[This inequality states that the angle # in Figure 4.9(b) is no larger than
90 degrees.] Thus,

y-x")Vx 2> (y—x"y
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Figure 4.9: Ilustration of the proof of the separating hyperplane
theorem.
= (y—-x")x" +{y—x){y—x)
> (y—x")x"
Setting ¢ = ¥ — x* proves the theorem. C

Farkas’ lemma revisited

We now show that Farkas’ lemina is a consequence of the separating hy-
perplane theorem.

We will only be concerned with the difficult half of Farkas’ lemma. In
particular, we will prove that if the system Ax = b, x > 0, does not have
a solution, then there exists a vector p such tha; p’A > 0’ and p'b < 0.

Let

S = {Ax|x>0}
{y | there exists x such that y = Ax, x> 0},

and suppose that the vector b does not belong to §. The set § is clearly
convex; it is also nonempty because 0 € 5. Finalty, the set S is closed; this
may seem cbvious, but is not easy to prove. For one possible proof, note
that S is the projection of the polyhedron {(x,y) | ¥y = Ax, x > 0} onto
the y coordinates, is itself a polyhedron (see Section 2.8), and is therefore
closed. An alternative proof is outlined in Exerdse 4.37.

‘We now invoke the separating hyperplane theorem to separate b from
S and conclude that there exists a vector p such that p’'b < p’y for every
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y £ 5. Since 0 € S, we must have p’b < 0. Furthermore, for every column
A of A and every A > 0, we have JA; € § and p'b < Ap’A;. We divide
both sides of the latter ineqaality by A and then take the limit as A tends
to infinity, to conclude that p’A; > 0. Since this is true for every ¢, we
obtain p’A > 0’ and the proof is conplete.

The duality theorem revisited

We will now derive the duslity thecrem as a corollary of Farkas’ lemma.
We only provide the proof for the case where the primal constraints are of
the form Ax > b. The proof for the general case can be constructed along
the same lines at the experse of mare notation (Exercise 4.38). We also
note that the proof given here is very similar to the line of argument used
in the heuristic explanation of the duality theorem in Example 4.4.

We consider the following pair of primal and dual preblems

minimize ¢'x maximize p’b
subject to  Ax > b, sibject to p'A=c
P20,

ard we assume that the primal has an optimal solution x*. We will show
that the dual problem also has a feasible solution with the same cost. Once
this is done, the strong duality theorem follows from weak duality (ef. Corol-
lazy 4.2},

Let I = {i | ajx* = b;} be the set of indices of the constraints that
are active at x*. Wa will first show that any vector d that satisfies aid > 0
for every i € I, must also sa:isfy ¢’d > 0. Consider such a vector d and let
¢ be a positive scalar. We then have al(x* +ed) > a;x* = b; forall i e I
In addition, if ¢ ¢ I and if ¢ is suffidently small, the inequality ajx™ > b;
implies that af(x* +ed) > b, We conclude that when e is sufficiently small,
x* + ed is a feasible solution. By the optimality of x*, we obtain ¢'d > 0,
which establishes our claim By Farkas' lemma (cf. Corollary 4.3), ¢ can
be expressed as a nonnegative linear combination of the vectors a;, i € I,
and there exist nommegative scalars p;, ¢ € I, such that

c= Zpiai. (4.3)
ief

For i ¢ I, we define p; = 0. We then have p > 0 and Eq. (4.3) shows that
the vector p satisfies the dual constraint p’A = ¢’. In addition,

pb=> pb =) pax’ =cx,
el iel

which shows that the cost of this dual feasible solution p is the same as the
optimal primal cost. The duality theorem now follows from Coerollary 4.2.
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Figure 4.10: Examples of cones.

' I-n conclus.ion, we have accomplished the goals thas were set out in the
beglmn'mg of this section. We proved the separating hyperplane theorem
which is 4 very intuitive and seemingly simple result, .but with many i ’
portant ramifications in optimization and othe- areas in mathematicsy \;Vn—
used the separating hyperplane theorem to ez.ablish Farkas’ lem ‘ nc':l3
finally showed that the strong duality theorem tonce

is an easy con
Farkas’ IEIIlma.. v sequence of

4.8 Cones and extreme rays

We bave seen in Chapter 2, that if the optimal ¢o
problem is finite, then our search for an optima)
to_ﬁnitely many points, namely, the basic feasitl
exists. In this section, we wish to develop a simil
the optimal cost is —co. In particular
Is —oo if and only if there exis

st in a linear programming
solution can be restricted

Cones

The first step in our development is to introduce the concept of a cone
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Notice that if C' is a nozempty cone, then 0 € C. To this sze, consider
an arbitrary element x of C and set A = 0 in the definition of a cone; see
also Figure 4.10. A polyhecron of the form P = {x € " | Ax > 0} is
easily seen to be a nonempty cone and is called a polyhedral cone.

Let x be a nanzero element of a polyhedral cone €. We then hsve
3x/2 € C'and x/2 € C. Since x is the average of 3x/2 and x,2, it is not
an extreme point and, therefore, the cnly possible extreme point is the zero
vector. If the zero vector is indeed an extreme point, we say that the cone
is pointed. Whether this will be the case or not is determined by the criteria
provided by our next result.

Theorem 4.12 Let C.C #™ be the polyhedral: cone defined by the
constraints a{x >0, i=1,....,m. Then, the following aro equivalent:
(a) The zero vector is an extreme point of C. o (LTI
(b)  The cone C does not contain a line. .

-
e

(c) There exist n vectos out of the Family a3, ,a ,wh’iqbare
{inearly independent. D S
Proof. This result is a specal case of Theorem 2.6 in Section 2.5. H

Rays and recession cones

Consider a nonempty polyhedron
P:{xe%ﬂszb},

and let us fix some y € P. We define the recession cone at ¥ as the set of
all directions d along which we can meve indefinitely away from y, without
leaving the set P. More formally, the -ecession cone is defined as the set

{de®" | Ay +2d) > b, forall A > 0}).
It is easily seen that this set i the same as
{de ®" | ad > 0},

and is a polyhedral cone. Thisshows that the recession cone is independent
of the starting point y; see Figure 4.11. The nonzero elements of the
recession cone are called the rays of the polyhedron P.
For the case of a nonempty polyledron P = {x € R" | Ax = b, x>
0} in standard form, the recession cone is seen to be the set of all vectors
d that satisfy
Ad =0, d>o.
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Figure 4.11: The recession cone at different elements of a polyhedron.

Extreme rays

We now define the extreme rays of a polyhedron. Intuitively, these are the |
directions associated with “edges” of the polyhedron that extend to infinity;

see Figure 4.12 for an illustration.

(a) A nongero element x of a polyhedral cone C' C R" is called an .

(b) An extreme ray of the recession cone associated with a nonempty
polyhedron P is also called an extreme ray of P.

Note that a positive multiple of an extreme ray is also an extreme ray.

We say that two extreme rays are equivalent ifone is a positive multiple of §

the other. Note that for this to happen, they must correspond to the same
n—1linearly independent active constraints. Any n—1 linearly independent
constraints define a line and can lead to at mosi two nonequivalent extreme
rays (one being the negative of the other). Given that there is a finize
number of ways that we can choose n — 1 constraints to become active,

and as long as we do not distinguish hetween equivalert extreme rays, we |

conclude that the number of extreme rays of a polyhedren is finite. A finite
collection of extreme rays wil, be said to be a complete set of extreme rays
if it contains exactly one representative from each equivalence class,

Definition 4.2 E =

extreme ray if there are n —1 linearly independent constraints ?;
that are active at x. 4

3 3
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(a) {b)

Figure 4.12: Extrems rays of polyhedral cones. (a) The vactor
y is an extreme ray because » = 2 and she constraint ajx = 0
is active at y. (b} A polyhedrel cone defined by three linearly
independent constraints of the form ajx > 0. The vector z is
an extreme ray because 7 = 3 and the two linearly independent
constraints ajx > 0 and ajx > 0 are active at z.

The definition of extreme rays mimics the definition of basic feasible
solutions. An alternative and equivaent definition, resembling the defini-
tion of extreme points of polyhedra, & explored in Exercise 4.39.

Characterization of unbounded linear programming
problems

We now derive conditions under which the optimal cost in a linear pro-
gramming problem is equal to —oo, first for the case where the feasible set
is a cone, and then ‘or the general case.

Theorem 4.13 Consider the probiem of minimizing ¢/x over a pointed
polyhedral cone C = {x € R | ajx > 0, i = 1,...,m}. The optimal
cost is equal to —oo if and only if some extreme ray d of C satisfies
cd < 0.

Proof. One direction of the result is trivial because if some extreme ray
has negative cost, then the cost becomes arbitrarily negative by moving
aleng this ray.

For the converse, suppese that the optimal cost is —co. In particular,
there exists some x € €' whese cost is negative and, by suitably secaling x,
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we can assume that ¢’x = —1. In particular, the polyhedren

P={xe§R" | aixZO,...,%xEO,c'x:—l}

is nonempty. Since C is pointed, the vectors ay,...,a, span R* and this ‘

implies tha: P has at least one extreme point; let d be one of them. At d,

we have n linearly independent active constraints, which means that n — 1
lincarly independent constraints of the form ajx > 0 must be active. It §
follows that d is an extreme ray of C. 03

By exploiting duality, Theorem 4.13 leads to a criterion for unbound- §
edness in general linear programming problems. Interestingly enough, this §

criterion does not involve the right-hand side vector b.

Theorem 4.14 Consider the problem of minimizing ¢/x subject -

Ax > b, and assume that the feasible set has at least one extren
point.’ Theuptfmal cost is equal to —oo if and. only 1f some extre

ray d of the feasxble set satisfies ¢’d < 0. '

Proof. One direction of the result is trivial because if an extreme ray has {
negative cost, then the cost becomes arbitrarily negative by starting at a |

feasible solution and moving along the direction of this ray.

For the proof of the reverse direction, we consider the dual problem:

maximize p'b
subject to p'A =¢
p=0.

If the primal problem is unbounded, the dual problem is infeasible. Then,

the related problem
maximize p’0
sudject to p'A =¢
pz0,

is also infeasible. This implies that the associated primal problem

minimize c¢'x
subject to Ax > (,

is either unbounded or infeasible. Since x = 0 is one feasible solution, it
must be unbounded. Since the primal feasible set has at least one extreme |
point, the rows of A span ", where n is the dimension of x. Tt follows |

that the recession cone {x | Ax > 0} is pointed and, by Theorem 4.13,

there exists an extreme ray d of the recession cone satisfying ¢'d < 0. By |
definition, this is an extreme ray of the feasible set. 13
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The unboundedness critericn in the simplex method

We end this section by pointing out that if we have a standard form prob-
lem in which the optimal cost is —o, the simplex method prevides us at
termination with an extreme ray.

Indeed, consider what nappens when the simplex method terminares
with an indication that the optimal cost is —oc. At that point, we have
a basis matrix B, a nonbasiz variabl: x; with negative reduced cost, and
the jth column B™-A; of the tableaa has no positive elements. Consider
the jth basic direction d, which is the vector that satisfies dg = —-B~'A;,
d; = 1, and d; = 0 for every nonbasic index i other than j. Then, the
vector d satisfles Ad = 0 and d > 0, and belongs to the recession cone. It
is also a direction of cost decrease, sirce the reduced cost ; of the entering
variable is negative.

Out of the constraints defining the recession cone, the jth basic di-
rection d satisfies n — 1 lineaily independent such constraints with equality:
these are the constraints Ad = 0 {m of them) and the constraints d; = 0
for ¢ nonbasic and different than 5 {(n— m — 1 of them). We conclude that
d is an extreme ray.

4.9 Representation of polyhedra

In this section, we establish one of the fundamental results of linear pro-
gramming theory. In particular, we show that any element of a polyhedron
that has at least one extrems point can be represented as a convex combi-
nation of extreme points plus a nonnsgative linear combination of extreme
rays. A precise statement is given by our next result. A generalization to
the case of general polyhedra is developed in Exercise 4.47.

Theorem 4.15 {Resolution theorem) Let
P={xe® | Ax>b}

be a nonempty polyhedron with at least one extreme point. Let
x!,...,x* be the extreme points, and let w', w" be a complete
set of extreme rays of P. Let

Z,\x +anﬂ‘x >0, & >0, ):)\1_1

q==x1 Fe=i

Then, ¢} = P.
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Proof. We first prove that Q C P. Let

k
X = Z Aixi + i:ijj
i=1 =1

be an element of ¢}, where the coemments A; and #; are nonnegative, a.nd ]

EI (A = 1. The vector y = 5% L Aax? is & convex combination of ele-

(d

ments of P. It therefore belongs to P and satisfies Ay > b. We also have !
Aw’ > 0 for every j, which implies that the vector z = Z 1 8,w7 satisfies |
Az > 0. It then follows that the vector x =y + = satlsﬁes Ax > b and ]

belongs to P.

For the reverse inclusion, we assume that P is nct a subset of ¢ and’ 1
we will derive a contradiction. Let z be an element of P that does not ! 4

belong to ). Consider the linear programming problem

k r
maximize ZUz\i + Z 08,
i=1 i=1

k T
subject to » Ax'+ > 0wl =z

A >0, i=1,... k&
9j20, _j:].,...,’.",

which is infeasible because z € Q. This problen is the dual of the problem :

minimize p'z+q

subject to p'x*4+¢ 20, i=1,...,k, (4.5) "

pPw’ =0, i=1,...,r

Because the latter problem has a feasible solution, namely, p = QO and g =0, }
the optimal cost is —co, and there exists a feasible solution (p,q) whose |
cost p'z + ¢ is negative. On the other hand, p'x¢ + ¢ > 0 for all i and this

implies that p'z < p’x? for all i. We also have p'w? >0 for all 5. }

Having fixed p as above, we now consider the linear programming

problem
minimize p'x
subject to Ax > b.

If ihe optimal cost is finite, there exists an extreme point x* which is op-
timal. Since z is a feasible solution, we obtain p'x* < p’z, which is a |

'For an intuitive view of this proof, the purpose of this paragraph was to construct a

hyperplane that separates z from 3.
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contradiction. If the optimal cost is —co, Theorem 4.14 implies that there
exists an extreme ray w? such that p’w? < 0, which is again a contradiction.

O
Example 4.10 Consider the unbounded polyhedron defined by the constraints
r1 — Lo 2 -2
Ttz 21
z1,8; 2 0

(see Figure 4.13). ThlS polyhedron has three extreme points, namely, x* = (0,2),

= (0,1), and x* = (1,0). The recession cone C is described by the inequalities
d1 d2 > 0,dy+dy 20, anddy,dx > 0. We conclude that C = {(d;,dz) |0 <
d2 < di}. This cone has two extreme rays, namey, w' = (1,1) and w? = (1,0).
The vector y = (2,2) is an element of the polyhedron and can be represented as

LG

However, this representation is not unique; for example, we also have

I IS I S O O R O I O O 3
=[] e

Figure 4.13: The polyhedron of Example 4.10.

We note that the set ¢} in Theorem 4.15 is the image of the polyhedron

k
D=1, A 20, 9j20},

i=1

= {(Al-:'--v/\k}el)-“:e'r')
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under the linear mapping

k T
Ay Ak 1,6} S A+ 4wl
i=1 j=1

Thus, one corollary of the resolution theorem is that every polyhedron is
the image, under a linear mapping, of a polyhedron H with this particular §
structure. i
We now specialize Thecrem 4.15 to the case of bounded polyhedra, ;
to recover a result that was also proved in Section 2.7, using a different line !
of argument. '

Corollary 4.4 A nonempty bounded polyhedron is the convex hull of:
its extreme points. ' :

Proof. Let P = {x| Ax > b} be a nonempty bounded polyhedron. If d
is a nonzero element of the cone € = {x | Ax > 0} and x is an element of ]
P, we have x4+ Ad € P for all A > 0, contradicting the boundedness of P. }
We conclude that C consists of only the zero vector and does not have any 3
extreme rays. The result then follows from Theorem 4.15. 0

There is another corollary of Theorem 4.15 that deals with cones, and §
which is proved by noting that a cone can have no extreme points other }
than the zero vector.

“Corollary 4.5 Assume that the cone C' = [x | Ax > 0} is pointed. g
Then, every element of C can be expressec as a ncnnegative linear
combination of the extreme mys of C. :

Converse to the resolution theorem

Let us say that a set @ is finitely generated if it is specified in the form
k T k 1
Q={32x'+3 6w |,\i20, 0,20, S n=1p,  (46) ]

i=1 i=1 i=1 ]

where x!,...,x* and w!,..., w" are some given elements of ®". The res- :
olution theorem states that a polyhedron with at least one extreme point |
is a finitely generated set (this is also true for general polyhedra; see Exer-
cise 4.47). 'We now discuss a converse result, which states that every finitely
generated set is a polyhedron.

Sec. 4.9  General linear programming duality* 183

As observed earlier, a finitely generated set Q can be viewed as the
image of the polyhedron

k
H= {(Al,..,Ak,Bl...,Hr) \ Sa=1 0200 20}
=1
under a certain linear mapping. Thus, the results of Section 2.8 apply and
establish that a finitely generated sei is indeed a polyhedron. We record
this result and also present a proof based on duality.

Theorem 4.18 A finitely generated set is a polyhedron, In particular,
she convex hull of finitely many vectors is a (bounded) polyhedron.

Proof. Consider the linear programming problem (4.4) that was used in
the proof of Theorem 4.15. A given vector z belongs to a finitely generated
set  of the form (4.6) if and only if the problem (4.4) has a feasible
solution. Using duality, this is the case if and only if problem (4.5} has finite
optimal cost. We convert problem (4.5) to standard form by introducing
nonnegative variables p™,p~,¢%, 47, such that p = p* — p~, and ¢ =
g*—q~, as well as surplus variables. Since standard form polyhedra contain
no lines, Theorem 4.13 shows that tle optimal cost in the standard form
problem is finite if and only f

P2~ (p7)z+q" — ¢ >0,
for each one of its finitely many extreme rays. Hence, z € Q if and only if

z satisfies a finite collection of linear inequalities. This shows that Q is a
polyhedron, O

In conclusion, we have two ways of representing a polyhedron:
(e) in terms of a finite set of linear constraints;

(b) as a finitely generated set, in terms of its extreme points and extreme
rays.

These two descriptions are mathematically equivalent, but can be
quite different from a practical viewpoint. For example, we may be able to
describe a polyhedron in terms of a small number of linear constraints. If on
the other hand, this polyhedron has many extreme points, a description as a
finitely generated set can be much more complicated. Furthermore, passing
from one type of description to the other is, in general, a complicated
computational task.

4.10 General linear programming duality*

In the definition of the dual problem (Section 4.2), we associated a dual
variable p; with each constraint of the form ajx = b;, alx > b;, ar alx < b;.
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However, no dual variables were associated with constraints of the form
; 2 0or z; < 0. In the same spirit, and in a more general approach
to linear programming duality, we can choose arbitrarily which constraints -
will be associated with price variables and which ones will not. In this 3
section, we develop a general duality theorem that covers such a situation, }
Counsider the primal problem
minimize c¢'x
subject to Ax > Db
xe P,

where P is the polyhedron
P={x{Dx>d}

We associale a dual vector p with the constraint Ax > b. The constraint
x € P is a generalization of constraints of the form z; > 0 or z; < 0 and
dual variab.es are not associated with it. i

As in Section 4.1, we define the dual objective g(p) by

s ' h 1
g(p) = min [c x+p'(b Ax)] . {4.7) !
The dual problem is then defined as

maximize g(p)
subject to p >0,

We first provide a generalization of the weak duality theorem.
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Proof. If x and p are primal and dual feasible, respectively, then p’(b —
Ax) < 0, which implies that,

o ' fop

9(p) = min [c y+p'(b AY)]
< cx+p'(b— Ax) ‘
< ¢'x. O 3

We also have the following generalization of the strong duality theo-
rem. ]
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Proof. Since P = {x | Dx > d}, the primal problem is of the form

minimize ¢'x
subject to Ax>b
Dx >d,

and we assume that it has an optimal solution. Its dual, which is
maximize pb+q'd
subject to pA+qgb=c¢
p=0
q=0,

(4.8)

must then have the same optimal cost. For any fixed p, the vector q should
be chosen optimally in the problem (4.8). Thus, the dual problem (4.8) can
also be written as

maximize p'b+ f(p)

subject to p > 0,
where f(p) is the optimal ccst in the problem
maximize q'd
subject to gD =c¢' - p’'A (4.9)
qz=0.

[If the latter problem is infeasible, we set f(p) =
duality theoremn for problem {4.9), we obtain

—.] Using the strong

fip)= mm c'x — p'Ax).

We conclude that the dual problem (4.8) has the same optimal cost as the
problem

L. ' : ! ’
maximize p'b + min {¢'x -~ p'A
maximize p'b+ sz'j( x ~ p'Ax)

subject to p = 0.

By comparing with Eq. (4.7}, we see that this is the same as maximizing
g(p) over all p > 0. [

The idea of selectively assigniny dual variables to some of the con-
straints is often used in order to tr:at “simpler” constraints differently
than more “complex” ones, and has numerous applications in large scale
optimization. {Applications to integer programming are discussed in Sec-
tion 11.4.) Finally, let us poirt out that the approach in this section extends
to certain nonlinear optimization problems. For example, if we replace the
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linear cost function c¢’x by a general convex function c(x), and the poly< _
hedron P by a general convex set, we can again define the dual objective

according to the formula

o(p) = mip [c(x) +p'(b~ Ax)].

X

Y
It turns out that the strong duality theorem remains valid for such nonlinear
problems, under suitable technical conditions, but this lies beyond the scope §

of this book.

4.11 Summary

We summarize here the main ideas that have been developed in this chapter. '

Given a (primal) linear programming problem, we can associate with §
it another {(dual} linear programming problem, by following a set of mechan- }
ical rules. The definition of the dual problem is consistent, in the sense that §

the duals of equivalent primal problems are themselves equivalent.

Each dual variable is associated with a particular primal constraint }
and can be viewed as a penalty for violating that constraint. By replacing i
the primai constraints with penalty terms, we increase the set of available }
options, and this allows us to construct primal solutions whose cost is less §
than the optimal cost. In particular, every dual feasible vector leads to a ]
lower bound on the optimal cost of the primal problem (this is the essence of 3

the weak duality theorem). The maximizaticn in the dual problem is then
a search for the tightest such lower bound. The strong duality theorem
asserts that the tightest such lower bound is equal to the optimal primal
cost.

An optimal dual variable can also be interpreted as a marginal cost,
that is, as the rate of change of the optimal primal cost when we perform a
small perturbation of the right-hand side vector b, assuming nondegeneracy.

A useful relation between optimal prinal and dual solutions is pro-
vided by the complementary slackness conditions. Intuitively, these con-
ditions require that any constraint that is inactive at an optimal solution
carries a zero price, which is compatible with the inzerpretation of prices
as marginal costs.

We saw that every basis matrix in a standard form problem deter-
mines not only a primal basic solution, but also a basic dual solution. This
observation is at the heart of the dual simplex method. This method is
similar to the primal simplex method in that it generates a sequence of
primal basic solutions, together with an associated sequence of dual basic
solutions. It is different, however, in that the dual basic solutions are dual
feasible, with ever improvirg costs, while the primal basic solutions are in-
feasible (except for the last one). We developed the dual simplex method by
simply describing its mechanics and by providing an zlgebraic justification.
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Nevertheless, the dual simplex method also has a geometric interpretation.
It keeps moving from one dual basic feasible solution to an adjacent one
and, in this respect, it is similar to the primal simplex method applied to
the dual problem.

All of duality theory can be developed by exploiting the termination
conditions of the simplex method, ard this was our initial approach to the
subject. We also pursued an alternative line o development that proceeded
from first principles and used geometric arguments. This is a more direct
ard more general approach, but reqtires more abstract reasoning.

Duality theory provided us wita some powerful tcols based on which
we were able to enhance our geomeiric understanding of polyhedra. We
derived a few theorems of tae alternative {like Farkas' lemma), which are
surprisingly powerful and have applications in a wide variety of contexts.
In fact, Farkas’ lemma can be viewed as the core of linear programming
duality theory. Anmnother major result that we derived is the resolution
theorem, which allows us to sxpress any element of a nonempty polyhedron
with at least one extreme point as a convex combination of its extreme
points plus a nonnegative linear combination of its extreme rays; in other
words, every polyhedron is ‘finitely generated.” The converse is also true,
and every finitely generated set is a polyhedron (can be represented in
teems of linear inequality constraints). Results of this type play a key
role in confirming cur intuitive geometric understanding of polyhedra and
lirear programming. They allow us to develop alternative views of certain
situations and lead to deeper understanding. Many such results have an
“obvious” geometric content and are often taken for granted. Nevertheless,
as we have seen, rigorous proofs can be quite elaborate.

4.12 Exercises
Exercise 4.1 Consider the Inear programming problem:

minimize T1 — I2

subject to 2z + 3z2
3r1 + 2
-r — i)
r <0
Tz, &3 2 0.

o]

+ @4
— 24
+ ®a

++
Nk
585
LIV IA
w

Write down the corresponding dual problem.

Exercise 4.2 Consider the primal prablem

minimize «¢'x
subject to  Ax

>
x >

Form the dual problem and convert it iato an equivalent minimization problem.
Derive a set of conditions on the matrix A and the vectors b, ¢, under which the
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dual is identical to the primal, and construct an example in which these conditions 3

are satisfied.

Exercise 4.3 The purpose of this exercise is to show that solving linear pro-

gramming problems is no harder than solving systems of linear inequalities.

Suppose that we are given a subroutine which, given a system of linear in- §
equality constraints, either produces a solution or decides that no solution exists, §
Construct a simple algorithm that uses a single call to this subroutine and which 3
finds an optimal solution to any linear programming problem that has an optimal

solution.

Exercise 4.4 Let A be a symmetric square matrix. Consider the linear pro- }

gramming problem
minimize ¢'x
subject to Ax > ¢
x = (.

Prove that if x* satisfies Ax* = c and x™ > 0, then xX™ is an optimal solution.

Exercise 4.5 Consider a linear programming problem in standard form and
assume that the rows of A are linearly independent. For each one of the following §

statements, provide either a proof or a counterexample.

(a) Let x* be a basic feasible solution. Suppose that for every basis correspond- “
ing to x*, the associated basic solution to the dual is infeasible. Then, the §

optimel cost must be strictly less that c’'x*.

{b) The dual of the auxiliary primal problem considered in Phase I of the .

simplex method is always feasible.

{c) Let p; be the dual variable associated with the ith equality constraint in §
the primal. Eliminating the ith primal equality constraint is equivalent to §

introducing the additional constraint p; = 0in the dual problem.

(d) If the unboundedness criterion in the primal simplex algorithm is satisfied, §

then the dual problem is infeasible.

Exercise 4.6* (Duality in Chebychev appraximation) Let A be an m xn |

matrix and let b be a vector in ™. We consider the problem of minimizing

lAx — bllo over all x € R". Here || - ||oc is the vector norm defined by |ly[lcc = 1

max; [:|. Let v be the value of the optimal cost.

(a) Let p be any vector in R™ that satisfies 3_* [p:| =1and p’A = 0". Show }

that p'b < v.

(b) In order to obtain the best possible lower beund of the form considered in |

part (a), we form the linear programming problem

maximize p’b
subject to p'A =0’

Z|P@| <1
i=1

Show that the optimal cost in this problem i equal to v.
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Exercise 4.7 (Duality in piecewiss linear convex optimization) Con-
sider the problem of minimizing max;—1,... m(ajx — b;) over all x € ®®. Let v
be the value of the optimal cost, assumed finite. Let A be the matrix with rows
ai,..-,am, and let b be the vector with components b1, ..., bm.-
(a) Consider any vector p € R™ that satisfies P A =0",p>0,and 3" p =
1. Show that —p'b < v.
(b) In order to obtain the best possible lower bound of the form considered in
part (a), we form the linear programming problem

maximize -p'b

subject o p'A =0
pe=1
p=z0

where e is the vector with all components equal to 1. Show thar the optimal
cost in this problem is eyual to v.

Exercise 4.8 Consider the linear programming problem of minimizing ¢’x sub-
ject to Ax = b, x > 0. Let x" be an optimal solution, assumed to exist, and let
p” be an optimal solution to the dual.

(a) Let % be an optimal solution to tie primal, when ¢ is replaced by some €.
Show that (& — ¢)'(X —x*) < 0.

(b) Let the cost vector be fixed at ¢, but suppose that we now change b to b,
and let X be a corresponding optimal solution to the primal Prove that
(P*)(b—b) < (% —x).

Exercise 4.9 (Back-propagation of dual variables in a multiperiod
problem) A company makes a product that can be either sold or stored to
meet future demand. Let ¢ =1,...,7T denote the periods of the planning hori-
zon. Let b; be the production volume during period ¢, which is assumed to be
known in advance. During each period :, a quantity z: of the product is sold, at
a unit price of d;. Furthermore, a quantity y: can be sent to long-term storage, at
a unit, transportation cost of c. Alternatively, a quantity wy can be retrieved from
storage, at zero cost. We assume that wien the product is prepared for long-term
storage, it is partly damaged, ¢nd only 2 fraction f of the total survives. Demand
is assumed to be unlimited. The main question is whether it is profitable to store
some of the production, in anticipation of higher prices in the future. This leads
us to the following problem, where z; stands for the amount kept in long-term
storage, at the end of period .

T
. t—1 T
maximize o {dizy —ap) + @ drsazr

i=1

subject to T + Yy —w: = by t=1,...,7,
Zetwe— 21— fye =0, t=1,...,7T,
ZnZU,

Tty Y, We, 2 > 0.

Here, dr41 is the salvage prive for whatever inveatory is left at the end of period
T. Furthermore, « is a discount factor, with 0 < a < 1, reflecting the fact that
future revenues are valued less than cumrent ones.
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(a) Let p: and ¢; be dual variables associated with the first and second equa.hty
constraint, respectively. Write down the dial problem.

(b) Assume that 0 < f < 1, b > 0, and ¢ > 0. Show that the followin g
formulae provide an optlma,l solutlon to the dual problem: 8

gr = aTdT+1,

Pr = max {aTﬁldT, qu—aT_lc},

¢ = max {qt+1,a*_1dg}, t=1,...,T -1,
P = max {at’]dt, fa —at'lc}, t=1,...,T-1.

{c) Explain how the result in part (b) can be used to compute an optima.l“
solution to the original problem. Primal and dual nondegeneracy can be |
assuried.

Exercise 4.10 (Saddle points of the Lagrangean) Consider the standard ; ]
form problem of minimizing ¢'x subject to Ax = b and x > 0. We define the 1
Lagrangeon by

L{x.p) =c'x+ p'(b — Ax).

Consider the following “game™: player 1 chooses some x > 0, and player 2 chooses J
some p; then, player 1 pays to player 2 the amownt L(x, p). Player 1 would like
to minimize L(x, p), while player 2 would like to maximize it. ]
A pair (x*,p"}, with x* > 0, is called an equilibrium point (or a saddle §
point, or a Nash equilibrium) if ;
Lix",p) < L(x",p") < L{x,p"), Vx20,Vp.
{Thus, we have an equilibrium if no player is able to improve her performance by 1
unilaterally modifying her choice.) i
Show that a pair (x*,p*} is an equilibriun if and only if x* and p* are 4
optimal solutions to the standard form problem under consideration and its dual, !
respectively.

Exercise 4.11 Consider a linear programming problem in standard form which 3
is infeasible, but which becomes feasible and has finite optimal cost when the last §
equality comnstraint is omitted. Show that the dual of the original (infeasible) 3
problem is feasible and the optimal cost is infinits. '

Exercise 4.12* (Degenerzacy and uniqueness — I} Consider a general linear
programming problem and suppose that we have a nondegenerate basic feasible
solution to the primal. Show that the complementary slackness conditions lead
to a system of equations for the dual vector that has a unique solution.

Exercise 4.13* (Degeneracy and uniqueness — I} Consider the following 1
pair of problems that are duals of each other:

minimize ¢'x
subject to  Ax
x

mazimize p'b
b subjct to p’A < ¢

vl
o
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(a) Prove that if one problen has a nondegenerate and unique optimal solution,
s0 does the other.

(b) Suppose that we have s« nondegenerate optimal basis for the primal and
that the reduced cost for one of the basic variables is zero. What does the
result of part {a) imply” Is it true that there must exist ancther optimal
basis?

Exercise 4.14 (Degeneracy and uniqueness — III) Give an example in
which the primal problem has a degenerate optimal basic feasible solution, but
the dual has a unique optima. solution (The example need not be in standard
form.)

Exercise 4.15 (Degeneracy and uniqueness — I'V) Consider the problem

minimizz I

subject to x2 =1
I 2 0
x> 0.

Wirite down its dual. For both the primai and the dual problem determine whether
they have unique optimal solutions and whether they have nondegenerate optimal
solutions. Is this example in sgreement with the statement that nondegeneracy
of an optimal basic feasible solution in one problem implies uniqueness of optimal
solutions for the other? Explain.

Exercise 4.16 Give an example of a »air (primal and dual) of linsar program-
ming problems, both of which have multiple optimal solutions.

Exercise 4.17 This exercise is meant to demoastrate that knowledge of a pri-
mal optimal solution does not necessarily contain information that can be ex-
ploited to determine a dual optimal solution. In particular, determining an opti-
mal solution to the dual is as hard as solving a system of linear inequalities, even
if an optimal solution to the primal is available.

Consider the problem of minimizing ¢'x subject to Ax > 0, and suppose
that we are told that the zer> vector s optimal. Let the dimensions of A be
m x r, and suppose that we have an algorithm that determines a dual optimal
solution and whose rinning time O ((m -l-n)k), for some constant k. {Note that if
x = 0 is not an optimal primal solution, the dual has no feasible solution, and we
assume that in this case our slgorithm exits with an error message.) Assuming
the availability of thz above algorithm, construct a new algorithmn that takes as
input a system of m linear inequalities in n variables, runs for O((m+ n)k) time,
and either finds a feasible solwion or determines that no feasible solution exists.

FExercise 4.18 Consider a problem instandard form. Suppose that the matrix
A has dimensions m X n and its rows are linearly independent. Suppose that
all basic solutions to the primal and to the dual are nondegenerate. Let x be a
feasible sclution to the primal and let p e a dual vector (not necessarily feasibie),
such that the pair (x, p) satisfes complmentary slackness.

(a) Show that there exist m columns of A that are linearly independent and
such that the corresponding components of x are all positive.
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(b} Show that x and p are basic solutions to the primal and the dual, respec-

tively. o
(c) Show that the result of part (a) is false if the nondegeneracy assumption is |

removed.

Exercise 4.19 Let P={x € i" | Ax=b, x > 0} bea nonempty polyhedron, ]
and let m be the dimension of the vector b. We cal z; a null variable if z; =0 |

whenever x € P.

s S 3
(a) Suppose that there exists some p € R™ for which p’A > 0/, p'b = 0, aﬂﬁ |
such that the jth component of p'A is positive. Prove that z; is a null

variable. .
(b) Prove the converse of (a): if ; is a null va.r;able, then there exists some
p € R™ with the properties stated in part (a,.
(c) ¥f x; is not a null variable, then by definition, there exists some y € P for

which y; > 0. Use the resulis in parts (a) and (b} to prove that there exist

x € P and p € ™ such that:
pPA=0, pb=20, x+A'p>0.

Exercise 4.20* (Strict complementary slackness)
(a) Consider the following linear programming problem and its dual

_ ,

minimize ¢'x raximize p’h ,

subject to Ax = b sibject to p'A < ¢,
x>0

!

and assume that both problems have an opti.mal sohlltion. Fix soxglﬁ i-
Suppose that every optimal sclution to the primal satisfies x; = X m"v
that there exists an optimal solution p to the dual such that P jl < c,;: .
{Here, A; is the jth column of A) Hint: Let d be the optima cos(i
Consider the problem of minimizing —z; subject to Ax = b, x > 0, an
—¢'x > —d, and form its dual.

(b} Show that there exist optimal solutions x ard P to the primal a?i fo thé
dual, respectively, such that for every j we have either z; > O orp’A; <t -
Hint: Use part (&) for each j, and then take the average of the vectors
obtained. -

{c) Consider now the following linear programming problem and its dual:

minimize ¢'x maximize p:b ,
subject to Ax > b subject to p’A < ¢
x > 0, p > 0.

Assume that both problems have an optimal solution. Show .that there
exist optimal sclutions to the primal and tf) the dual, respectively, that
satisfy strict complementary slackness, that is:
(i) For every j we have either x; >0 or p'A; < ¢;. N .
(ii} For every i, we have either ax >.bi or p; > 0. {Here, a; is the zt]h
row of A) Hint: Convert the primal to standard form and apply
part (b).
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(d) Consider the linear programming problem

minimize 51 + 5z2

stbject to z;, + =z > 2
2:51 — I3 2 0
ry,x2 > .

Does the optimal primal solution ‘2 /3,4/3), together with the correspond-
ing dual optimal solution, satisfy strict complementary slackness? Deter-
mine all primal and dual optimal selutions and identify the set of all strictly
complementary pairs.

Exercise 4.21* (Clark’s theorem) Consider the following pair of linear pro-
gramiming problems:

minimize c'x maximize p’b
subject to Ax > b subject to p‘A < ¢'
x 20 pz 0

Suppose that at least one of these two sroblems has a feasible solution. Prove
that the set of feasible solutions to at least one of the two problemns is unbounded.
Hint: Interpret boundedness of a set in terms of tke finiteness of the optimal cost
of some linear programming problem.

Exercise 4.22 Consider the dual simplex method applied to a standard form
problem with kinearly independent rows. Suppose that we have a basis which is
primal infeasible, but dual feasible, and let < be such that By < 0. Suppose
that all entries in the sth row in the tabkau (other than zp(;;) are nonnegative.
Shew that the optimal dual cost is 4-o0.

Exercise 4.23 Describe in detail the mechanics of a revised dual simplex meth-

od that works in terms of the inverse basis matrix B! instead of the full simplex
tableau.

Exercise 4.24 Consider the lexicographic pivoting rule for the dual simplex
method and suppose -hat the algorithm is initialized with each column of the

tableau being lexicographically positive. Prove that the dual simp.ex method
does not cycle.

Exercise 4.25 This exercise shows that if we bring the dual problem into stan-

dard form and then apply the primal simplex method, the resulting algorithm is
not identical to the dual simpler method.

Consider the following standard form problem and its dual.

minimize 1z, + 29 maximize p; + ps
subject to =z =1 subject to p1 <1
x2 =1 <1

1,2 2 0

Here, there is only one possible basis and tie dual simplex method must terminate
immediately. Show that if the dual problem is converted into standard form and

the primal simplex method is applied to it, one or more changes of basis may be
required.



xeuwruoneziwndo Jesul|

194 Chap. 4  Duality theory

Exercise 4.26 Let A be a given matrix. Show tha; exactly one of the following
alternatives must hold.

(a) There exists some x # O such that Ax =0, x> 0.
{b) There exists some p such that p’A > 0’

Exercise 4.27 Let A be a given matrix. Show that the following two state-
ments are equivalent.

(a) Every vector such that Ax > 0 and x > 0 must satisfy 2, =0.

(b) There exists some p such that p’A <0, p >0, and p'A; < 0, where A
is the first column of A.

Exercise 4.28 Let a and a;,.. .,a,, be given vectors in ®". Prove that the
following two statements are equivalent:

{a) For all x > 0, we have a’x < max; ajx.

(b) There exist nonnegative ccefficients A; that sum to 1 and such that a <

2?;1 Asdi.

Exercise 4.29 (Inconsistent systems of linearinequalities) Letay,...,an
be some vectors in R™, with m > n + 1. Suppose that the system of inequalities
ax > b;, i =1,...,m, does not have any solutions. Show that we can choose
n + 1 of these inequalities, so that the resulting system of inequalities has no
solutions.

Exercise 4.30 (Helly’s theorem)

(a) Let F be a finite family of polyhedra in 8™ such that every n+1 polyhedra
in F have a point in common. Prove that all polyhedra in F have a point
in common. Hint: Use the result in Exercise 4.29.

(b) For n = 2, part (a) asserts that the polyhedra P, P,...,Pxr (K > 3)in
the plane have a point in common if and only if every three of them have &
peint in common. Is the result still true with “three” replaced by “two”7

Exercise 4.31 (Unit eigenverctors of stochastic matrices} We say that an
n X n matrix P, with entries p;;, is stochastic if all of its entries are nonnegative

and
Zpij =1, v i,
=

that is, the sum of the entries of each row is equal o 1.
Use duality to show that if P is a stochastic matrix, then the system of
equations
pP=p, p20

has a nonzero solution. (Note that the vector p can be normalized so that its
components sum to one. Then, the result in this exercise establishes that every
finite state Markov chain has an invariant probabili:y distribaition.)
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Exercise 4.32 * (Leontief systems and Samuelson's substitution the-
orem) A Leontief matriz is an m X n matrix A in which every column has at
most one positive element. For an interpretation, each column A; corresponds
to a production process. If a;, is negative, |a;;| represents the amount of goods
of type © consumed by the process. If ay; is positive, it represents the amount of
goods of type i produced by the process. If x; is the intensity with which process
7 is used, then Ax represents the net output of the different goods. The matrix
A is called productive if there 2xists some x > 0 such that Ax > 0.

{a) Let A be a square productive Leontief matrix (m = n). Show that every
vector z that satisfies Az > 0 must be nonnegative. Hint: If z satisfies
Az > 0 but has a negative corrponent, consider the smallest nonnega-
tive 6 such that some component of x 4 #z becomes zero, and derive a
contradiction.

{b) Show that every square productive Leontief matrix is invertible and that
all entries of the inverse matrix sre nonnegative. Hint: Use the result in
part (a).

(c} We now consider the geieral case where n > m, and we introduce a con-
straint of the form e'x < 1, wherc e = (1,...,1). (Such a constraint could
capture, for example, a bottleneck due to the finiteness of the labor force.)
An “output” vector y € R™ is said to be achievable if y > 0 and there
exists some X > 0 such that Ax = y and €y < 1. An achieveble vector y
is said to be efficient if there exisis no achievable vector z such that =z > y
and z # y. (Intuitively, an output vector ¥ which is not efficient can be im-
proved upon and is therefore uninteresting.! Suppose that A is productive.
Show that there exists a positive officient vector y. Hint: Given a positive
achievable vector y”*, corsider mazimizing Ei y:; over all achievable vectors
y that are larger than y*.

(d) Suppose that A is productive. Show that there exists a set of m production
processes that are capabe of generating all possible efficient cutput vectors
y. That is, there exist indices B(1),...,B(m), such that every efficient
output vector y can be expressed in the form y = Z:ll Agiyxp(s, for
some nonnegative coefficients xp,, whose sum is bounded by 1. Hint:
Consider the problem of minimizing e'x subject to Ax =y, x > 0, and
show that we can use the same optimal basis for all eficient vectors y.

Exercise 4.33 (Options pricing) Consider a market that operates for a single
period, and which involves thiee assets: a stock, a bond, and an option. Let §
be the price of the stock, in the beginning of the period. Its price § at the end of
the period is random and is assumed tc be equal to either Su, with probability
B3, or Sd, with probability 1 — 3. Here uand d are scalars that satisfy d < 1 < «.
Bonds are assumed riskless. Investing one dellar in a bond results in a payoff
of r, at the end of the period. (Here, r is a scalar greater than 1.) Finally, the
option gives us the right to purchase, at she end of the period, one stock at a fixed
prce of K. If the realized price § of the stock is greater than K, we exercise the
option and then immediately sell the stock in the stock market, for a payoff of
S - K. If on the other hand we have §< K, thee is no advantage in exercising
the option, and we receive zero payoff. Thus, the value of the option at the end
of the period is equal to max 0,5 — K}. Since the option is itself an asset, it
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should have a value in the beginning of the time period. Show that under the -

absence of arbitrage condition, the value of the opton must be equal to
ymax{0, Su — K} + §max{0, §d — K},
where v and ¢ are a solution to the following system of linear equations:

uy + dé =

1
1

6= =
v+ -

Hint: Write down the payoff matrix R and use Theorem 4.8.

Exercise 4.34 (Finding separating hyperplanes) Consider a polyhedron §

P that has at least one extreme point.

{(a) Suppose that we are given the extreme points x' and a complete set of
extreme rays w’ of P. Create a linear programming problem whose solution }
provides us with a separating byperplane that separates P from the origin, §

or allows us to conclude that none exists.

(b) Suppose now that P is given to us in the fam P = {x | alx > b;, 1 = J
L,...,m}. Suppose that 0 ¢ P. Explain how a separating hyperplane can §

be found.

Exercise 4.35 (Separation of disjoint polyhedra} Consider two nonempty f
polyhedra P = {x € ®#" | Ax < b} and @ = {x € " | Dx < d}. We are }

interested in finding out whether the two polyhedra have a point in common.

(a) Devise a linear programming problem such that: if P N ¢ is nonempty, it .

returns a point in PN¢; if PNQ is empty, thelinear programming problem
is infeasible.

(b) Suppose that PN @ is empty. Use the dual of the problem you have f
constructed in part (a) to show that there exists a vector c such that |

cx<cyforallx€ Pandy € Q.

Exercise 4.36 (Containment of polyhedra)

(a) Let P and @ be two polyhedra in ®" described in terms of linear inequality

constraints. Devise an algorithm that decides whether P is a subset of Q.

(b) Repeat part (a} if the polyhedra are described in terms of their extreme 1

points and extreme rays.

Exercise 4.37 (Closedness of finitely generated cones) Let A;,..., A,
be given vectcrs in ™. Consider the cane C = {T"

¥*, k=1,2,. .., be a sequence of elements of C' tha: converges to some y. Show
that y € C (and hence C' is closed), using the following argument. With y fixed
as above, consider the problem of minimizing ||y — 3.7 | A;xi[[ oo, subject to the
coustraints z1....,zn = 0. Here | - || stands for the maximum norm, defined by
Ix|| = = max; |z;|. Explain why the above minimization problem has an optimal

solution, find the value of the optimal cost, and prove that y € C.

—ii=1

Az, |z 2 ()} and let f-
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Exercise 4.38 (From Farlas’ lemma to duality) Use Farkas’ lemma to
prove the duality theorem for alinear pregramming problem involving constraints
of the form a‘x = b, ajx > », and nonnegativity constraints for some of the
variables z;. Hint: Start by deriving the form of the set of feasible directions at
an optimal solution.

Exercise 4.39 (Extreme rays of cones) Let us define a nonzero element d of
a pointed polyhedral cone C tc be an exireme ray if it has the following property:
if there exist vectors f € C and g € C and some A € (0,1) satisfying d = f + g,
then both f and g are scalar multiples of d. Prove that this definition of extreme
rays is equivalent to Definition 4.2.

Exercise 4.40 (Extreme rays of a cone are extreme points of its sec-
tions) Consider the cone C = {x € ® jajx > 0, ¢ = 1,...,m} and assume
that the first n consuraint vectors a;,. .,a. are linearly independent. For any
nennegative scalar v, we define the polyhedron F. by

PTA{XEC‘ Zaﬁx:r}.
i=1

{a) Show that the polyhedron F, is bounded for every r > 0.

(b) Let r > 0. Show that a vector x € P, is an extreme point of F. if and only
if x is an extreme ray of the cone C.

Exercise 4.41 (Carathéodory’s theorem) Show that every element x of a
bounded polyhedron P C R™ can be expressed as a convex combination of at
most n 4+ 1 extreme points of P. Hint: Consider an extreme point of the set of
all possible representations of x.

Exercise 4.42 (Problems with side constraints} Consider the linear pro-
gramming problem of minimizsing ¢'x ¢ver a bounded polyhedron P < R" and
subject to additional constraints ajx =b;, i = 1,..., L. Assume that the prob-
lem has a feasible solution. Show that there exists an optimal solution which is
a convex combination of I +1 extrem> points of P. Hint: Use the resolution
theorem to represent P.

Exercise 4.43

(a) Consider the minimization of ¢1a + ca72 subject to the constraints
Te—3 < x <o+ 2, x1,T2 = 0.
Find necessary and suffcient conditions on (c1, c2) for the optimal cost to

be finite.

(b) For a general ‘easible lirear programming problem, consider the set of all
cost vectors for which the optimasl cost is finite. Is it a polyhedron? Prove
your answer.
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Exercise 4.44

(a) Let P = {($1,$2) | 21 —22 =0, 21 + 22 = 0}. What are the extreme
points and the extreme rays of P?

(b) Let P= {(a:l,a:g) | 421 +222 > 8, 271 + 22 < 8}. What are the extreme
points and the extreme rays of P?

(c) For the polyhedron of part [b), is it possible to express each one of iis
elemenis as a convex combination of its extreme points plus a nonnega-

tive linear combination of its extreme rays? Is this compatible with the _

resclution theorem?

Exercise 4.45 Let P be a polyhedron with at least one extreme point. Is it

possible to express an arbitrary element of P as a convex combination of its ]

extreme points plus a nonnegative multiple of a single extreme ray?

Exercise 4.46 (Resolution theorem for polrhedral cones) Let C be a 7}

nonempty polyhedral cone.

{a) Show that C can be expressed as the union of a finite number Ciyoo, Gy 3

of pointed polyhedral cones. Hini: Intersect with orthants.

(b) Show that an extreme ray of C must be an extreme ray of one of the cones

i, Gl
(c) Show that there exists a finite number of elements w' ..., w" of C such i
that ;

C= {Zaiw‘ ’ 91,...,0,20}.
i=1

Exercise 4.47 (Resolution theorem for general polyhedra) Let P be a l

polyhedron. Show that there exist vectors x',...,x* and wl, ..., w" such that

k ™
P= {Z,\,xi+29jwf r)\izo, 0; >0, i).,—:l}.
i=1 i=1 i=1

Hint: Generalize the steps in the preceding exercise

Exercise 4.48 * (Polar, finitely generated, and polyhedral cones) For
any cone C, we define its polar C* by

ct = {p [p'x <0, for all xc C}.
(a)} Let F be a finitely generated cone, of the forn
F= {Zeiwi } b1,....,6 20}.
i=1

Show that F'* = {p|p'wi<0,i=1,..., v}, which is a polyhedral cone.

(b) Show that the polar of F* is F' and conclude that the polar of a polyhedral
cone is fnitely generated. Hint: Use Farkas’ lemma.
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{c) Show that a finitely generated poirted cone F is a polyhedron. Hint: Con-
sider the polar of the poar.

(d) (Polar cone theorem) Let € be a closed, nonempty, and convex cone.
Show that {C+) = C. Hint: Minic the derivation of Farkas’ lemnma using
the separating hyperplare theoren (Section 4.7).

(e) Is the polar cone theorem true when C is the empty set?

Exercise 4.49 Consider a polyhedron, and let x, y be two basic feasible solu-
tions. If we are only allowed to make moves from any basic feasible solution to
an adjacent one, show that we can go fom x to y in a finite number of steps.
Hint: Generalize the simplex method to nonstandard form problems: starting
from a nonoptimal basic feasibe solution, move along an extreme ray of the cone
of feasible directions.

Exercise 4.50 We are interested in the problem of deciding whether a polyhe-
dron

Q={xe#®"|Ax<b, Dx2d, x>0}
is nonempty. We assume that she polyhsdron P = {x € " | Ax < b, x > 0} is
nonempty and boundsd. For any vector p, of the same dimension as d, we define

g(p = —p'd+ max p'Dx.

(a) Show that if ) is nonempty, then g{(p)} > 0 for all p > 0.
(b) Show that if Q is empty, then there exists some p > 0, such that g(p) < 0.
(c) If @ is empty, what is the minimum of g{p) over all p > 07

413 Notes and sources

4.3. The duality theorem is due to von Neumann {1947}, and Gale, Kuhn,
and Tucker (1951).

4.6. Farkas’ lemma is due to Farkas (1894) and Minkowski (1896)}. See
Schrijver {1986) for a comprehensive presentation of related results.
The connection between duality theory and arbitrage was developed
by Ross (1976, 1978).

4.7. Weierstrass’ Theorem and its proof can be found in most texts on real
analysis; see, for examgle, Rudir (1976). While the simplex method is
only relevant to linear programming problems with a finite number of
variables, the approach based on the separating hyperplane theorem
leads to a generalization of duality theory that covers more general
convex optimization problems, as well as infinite-dimensional linear
programming problems, that is, linear programming problems with
infinitely many variables and constraints; see, e.g., Luenberger {1969)
and Rockafellar (1970).

4.9. The resolution theorem and its converse are usually attributed to
Farkas, Minkowski, and Weyl.



