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We saw in Chapter 2, that if a linear programming problem in standard
form has an optimal solution, then there exists a basic feasible solution that
is optimal. The simplex method is based on this fact and searches for an op-
timal solution by moving from one basic feasible solution to another, along
the edges of the feasible set, always in a cost reducing direction. Eventu-
ally, a basic feasible solution is reached at which none of the available edges
leads to a cost reduction; such a basic feasible solution is optimal aad the
algorithm terminates. In this chapter, we provide a detailed development
of the simplex method and discuss a few different implementations, includ-
ing the simplex tableau and the revised simplex method. We also address
some difficulties that may arise in the presence of degeneracy. We provide
an interpretation of the simplex method in terms of column geometry, and
we conclude with a discussion of its running :ime, as a function of the
dimension of the problem being solved.

Throughout this chapter, we consider the standard form problem

minimize c¢'x
subject to Ax
x

b
07

vl

and we let P be the corresponding feasible set. We assume that the dimen-
sions of the matrix A are m x n and that its rows are linearly independent.
We continue using our previous notation: A, is the ¢th column of the matrix
A, and a is its ith row.

3.1 Optimality conditions

Many optimization algorithms are structured as follows: given a feasible
solution, we search its neighborhood to find a nearby feasible solution with
lower cost. If no nearby feasible solution leads to a cost improvement, the
algorithm terminates and we have a locally optimal solution. For general
optimization preblems, a locally optimal solusion need not be (globally)
optimal. Fortunately, in linear programming, local optimality implies global
optimality; this is because we are minimizing a convex function over a
convex set (cf. Exercise 3.1). In this section, we concentrate on the problem
of searching for a direction of cost decrease in a neighborhood of a given
basic feasible solution, and on the associated optimality conditions.

Suppose that we are at a point x € P and that we contemplate moving
away from x, in the direction of a vector d € ™. Clearly, we should only
consider those choices of d that do not immediately take us outside the
feasible set. This leads to the following definition, illustrated in Figure 3.1.
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Figure 3.1: Feasible directions at different points of a polyhedron.

Deﬁnitio.n 3.1 Let x be an element of a polyhedron P. A vector
d € R" is said to be a feasible direction at x, if there exists a
positive scalar 8 for which x + 6d € P.

Let x be a -basic feasible solution to the standard form problem,
let B(1),...,B{m} be the indices of the basic variables, and let B =
[A 1) - - A ggmy) be the corresponding basis matrix. In particular, we have
x; = 0 for every nonbasic variable, while the vector xg =

, B = (Zp1)s. .-, T
of basic variables is given by ey B(m))

Xp = B 'b.

We consider the possibility of moving away from x, to a new vector
x +60d, by selecting a nonbasic variable =; {which is initially at zero level),
and increasing it to a positive vatue 6, while keeping the remaining nonbasic
‘_fariables at zero. Algebraically, d; = 1, and d; = 0 for every nonbasic index
i other than j. At the same time, the vector xz of basic variables changes
to xg +f0dg, where dpg = (dB(l),dB(Q), RN dg(m;) is the vector with those
components of d that correspond to the basic variables.

Given that we are only interested in feasible solutions, we require
A(x +0d) = b, and since x is feasible, we also have Ax = b. Thus, for the
equality constraints to be satisfied for # > 0, we need Ad = 0. Recal now
that d; = 1, and that d; = 0 for all other nonbasic indices i. Then,

n m
0= Ad = Z;A-Ldl = ZA‘B(i)dB(Z) +AJ = BdB+ AJ.
= i=1

Since the basis masrix B is invertible, we obtain

dg=-B7'A;. (3.1
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The direction vector d that we have just constructed will be referred
to as the jth basic direction. We have so far guaranteed that the equality
constraints are respected as we move away from x along the basic direction
d. How about the nonnegativity constraints? We recall that the variable
z; is increased, and all other nonbasic variables stay at zero level. Thus,
we need only worry about the basic variables. We distinguish two cases:

{a) Suppose that x is a nondegenerate basic feasible solution. Then,
xg > 0, from which it follows that xg + 68dp > 0, and feasibility is
maintained, when 6 is sufficiently small. In particular, d is a feasible
direction.

(b) Suppose now that x is degenerate. Then, d is not always a feasible di-
rection. Indeed, it is possible that a basic variable 2 5(;) is zero, while
the corresponding component dg(;) of dg = —B*IA]' is negative. In
that case, if we follow the jth basic direction, the nonnegativity con-
straint for £p(;) is immediately violated, and we are led to infeasible
solutions; see Figure 3.2.

We now study the effects on the cost function if we move along a basic
direction. If d is the jth basic direction, then the rate c¢'d of cost change
along the direction d is given by ¢zdp +¢;, where cg = (cB(1), - - - :CB(m))-
Using Eq. (3.1), this is the same as ¢; — ¢gB™'A;. This quantity is im-
portant enough to warrant a definition. For an intuitive interpretation, c;
is the cost per unit increase in the variable x4, and the term —cpB A is
the cost of the compensating change in the basic variables necessitated by
the constraint Ax = b.

Definition 3.2 Let x be a basic solution, let B be an associated basis
matrix, and let cp be the vector of costs of the basic variables. For
each j, we define the reduced cost T; of the variable z; according to
the formula

Ej =Cj — C’BB_lA.j‘.

Example 3.1 Consider the linear programming problem

minimize ¢i1T1 + Ca®2 + C3¥3 + CsTq

subject to z + ®2 + Xz 4+ x4 = 2
211 + 3z3 + dxy = 2
1,32, %3, %4 = 0.

The first two columns of the matrix A are A; = (1,2) and Az = (1,0). Since
they are linearly independent, we can choose x1 and x2 as our basic variables.
The corresponding basis matrix is

[y 2]
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Figure 3.2: Let n = 5, n—m = 2. As discussed in Section 1.4, we
can visualize the feasible set by standing on the two-dimensional
set defined by the constraint Ax = b, in which case, the edges of
the feasible set are associated with the nonnegativity constraints
x; > 0. At the nondegenerate basic feasible solution E, the vari-
ables 1 and T3 are at zero level [nonbasic) and za, z4, 5 are
positive basic variables. The first basic direction is obtained by
increasing x1, while keeping the other nonbasic variable x3 at zero
level. This is the direction corresponding to the edge EF. Con-
sider now the degenerate basic feasible solution F and let z3, x5
be the nonbasic variables. Note that x4 is a basic variable at zero
level. A basic direction is obtained by increasing z3, while keeping
the other nonbasic variable x5 at zero level. This is the direction
corresponding to the line F'G and it takes us outside the feasible
set. Thus, this basic direction is no: a feasible direction.

We set 3 = x4 = 0, and solve for x;, 72, to obtain - = 1 and 22 = 1. We have
thus obtained a noncegenerate basic feasible solution.

A basic direction corresponding to an increase in the nonbasic variable x3,
is constructed as follows. We have ds = 1 and dy = 0. The direction of change of
the basic variables is obtained using Eq. (3.1):

d) _ dB(l) _ _ _n-t _ 0 1,2 1) -3/2-‘
{d2:|_[dB(2) =dg =-B" Ay =- 1 1,2 3| = 12 |

The cost of moving along this basic direction is ¢’'d = —3e1/2 + €2/2 + e3. This
is the same as the reduced cost of the variable 3.

Consider now Definition 3.2 for the case of a basic variable. Since B
is the matrix [A gy -+ Apem), we have BTHAgq) -+ Apgmy] = I, where
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Iis the m x m identity matrix. In particular, B~ Ay is the ith eolumn
of the identity matrix, which is the ith unit vector e;. Therefore, for every
basic variable zg;), we have

Ta(i) = CB() — 5B Ap) = cpiy — Cpei = ey — o =9,

and we see that the reduced cost of every basic variable is zero.

Our next result provides us with optimelity conditions. Given our
interpretation of the reduced costs as rates of cost change along certain
directions, this result is intuitive.

Theorem 3.1 Consider a basic feasible solution x associated with a
basis matrix B, and let T be the corresponding vector of reduced costs.

(a) If T©> 0, then x is optimal
{b) Ifx is optimal and nondegenerate, thea € > 0.

Proof.

(a) We assume that € > 0, we let y be an arbitrary feasible solution, and
we define d = y — x. Feasibility implies that Ax = Ay = b and,
therefore, Ad = 0. The latter equality can be rewritten in the form

Bds+ ) A, =0,
iEN
where N is the set of indices corresponding to the nonbasic variables
under the given basis. Since B is invertible, we obtain

dg=-3Y BlAd;
iEN

and

C’d = C!BdB + ZCidi = Z(Ci - C,BB_IAi)di = Zﬁid,’.

WEN iEN iEN

For any nonbasic index i € N, we must have z; = 0 and, since y
is feasible, y; > 0. Thus, d; > 0 and ¢d; > 0, for all i € N. We
conclude that ¢’(y — x) = ¢/d > 0, and since y was an arbitrary
feasible solution, x is optimal.

(b) Suppose that x is a nondegenerate basic feasible solution end that
z; < 0 for some j. Since the reduced cost of a basic variable is always
zero, x; must be a nonbasic variable and ¢; is the rate of cos; change
along the jth basic direction. Since x is nondegenerate, the jth basic
direction is a feasible direction of cost decrease, as discussed earlier.
By moving in that direction, we obtain feasible solutions whose cost
is less than that of x, and x is not optimal. O
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Note that Theorem 3.1 allows the possibility that x is a (degenerate)
optimal basic feasible solution, but that ¢; < 0 for some nonbasic index j.
There is an analog of Theorem 3.1 that provides conditions under which
a basic feasible solution x is a unique optimal solution; see Exercise 3.6.
A related view of the optimality conditions is developed in Exercises 3.2
and 3.3.

According to Theorem 3.1, in order to decid= whether a nondegenerate
basic feasible soluiion is optimal, we need only check whether all reduced
costs are nonnegative, which is the same as examining the n — m basic
directions. If x is a degenerate basic feasible solution, an equally simple
computational test for determining whether x is optimal is not available
(see Exercises 3.7 and 3.8). Fortunately, the simplex method, as developed
in subsequent sections, manages to get around this difficulty in an effective
manner.

Note that in order to use Theorem 3.1 and assert that a certain ba-
sic solution is optimal, we need to satisfy two conditions: feasibility, and
nonnegativity of the reduced costs. This leads us to the following definition.

Definition 3.3 A basis matrix B is said to be optimal if:
(a) B~!'b>0, and
(b) =c —czB A0

Clearly, if an optimal basis is found, the corresponding basic solution
is feasible, satisfies the optimality conditions, and is therefore optimel. On
the other hand, in the degenerate case, having an optimal basic feasible
solution does not necessarily mean that the reduced costs are nonnegative.

3.2 Development of the simplex method

We will now comglete the development of the simplex method. Qur main
task is to work out the details of how to move to a better basic feasible
solution, whenever a profitable basic direction is discovered.

Let us assume that every basic feasible solution is nondegenerate.
This assumption will remain in effect until it is explicitly relaxed later
in this section. Suppose that we are at a basic feasible solution x and
that we have computed the reduced casts €; of the nonbasic variables. If
all of them are nonnegative, Theorem 3.1 shows that we have an optimal
solution, and we stop. If on the other hand, the reduced cost ¢; of a nonbasic
variable z; is negative, the jth basic direction d is a feasible direction of
cost decrease. [This is the direction obtained by letting d; = 1, d; = 0
for { #£ B(1),...,B(m),j, and dp = -B7'A;] While moving along this
direction d, the nonbasic variable z; becomes positive and all other noubasic
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variables remain at zero. We destribe this situation by saying that z; (or
A;) enters or is brought into the basis.

Once we start moving away from x along the direction d, we are
tracing points of the form x + #d, where & > 0. Since costs decrease along
the cirection d, it is desirable to move as far as possible. This takes us to
the point x + #*d, where

8* = max {¢ > 0| x+6d € P}.

The resulting cost change is 8*¢’d, which is the same as 8°T;.

We now derive a formula for @*. Given that Ad = 0, we have A(x +
8d) = Ax = b for all 8, and the equality ccnstraints will never be violated.
Thus, x + 0d can become infeasible only if one of its components becomes
negative. We distinguish two cases:

(a) If d > 0, then x +6d > 0 for all ¢ > (¢, the vector x + #d never
becomes infeasible, and welet 6 = co.
{b) If d; < 0 for some i, the costraint z;+ 0d; = 0 becomes 0 < —x;/d;.

This constraint on § must be satisfiel for every ¢ with d; < 0. Thus,

the largest possible value o 8 is

" . { 331)
= min ——].
{ilds <0} \ d;

Recall that if z; is a nonbasic variable, then either z; is the entering
variable and d; = 1, or else d; = 0. In either case, d; is nonnegative.

Thus, we only need to consider the basic variables and we have the A

equivalent formula

rgr;
6 = min ()i@)) . (3.2
{i=1...,m|dp(i) <0} dB:i)
Note that * > 0, because zg;; > 0 for all 4, as a consequence of
nondegeneracy.

Example 3.2 This is a continuation of Example 3.1 from the previous section,
dealing with the linear programmirg problem

minimize c¢1x1 + C3T2 + Cakyz + CiZ4

subject to r; - 2+ T3 + xg =
2 + 3xmz + dxg
T1,T2,%3,7T4 20

I
[CEN

Let us again consider the basic feasble solutim x = (1,1,0,0) and recall that the
reduced eost & of the nonbasic variable z3 was found to be —3e1/2 +¢2/2 + c3.
Suppose that ¢ = (2,0,0,0), in which case, we have & = —3. Since €3 is negative,
we form the corresponding basic direction, which is d = (—3/2,1/2,1,0), and
consider vectors of the form x+8d, with @ > 0. As ¢ increases, the only component
of x that decreases is the first one (because & < 0). The largest possible value
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of 8 is given by 8* = —(x1/d1) = 2/3. This takes us to the point y =x+2d/3 =
{0,4/3,2/3,0). Note that the columns Az and Aj corresponding to the nonzero
variables at the new vector y are (1,0) and (1, 3), respectively, and are linearly
independent. Therefore, they form a basis and the vector y is a new basic feasible
solution. In particular, the variable 3 has entered the basis and the variable x;
has exited the basis.

Once #* is chosen, and assuming it is finite, we move to the new
feasible solution y = x+6*d. Sincez; = 0andd; =1, wehavey; = 8* > 0.
Let £ be a minimizing index in Eq. (3.2), that is,

_Tee _ o (_IB(:‘)) — o~
dpy  {i=L..mldaw <0} \ dpg ’

in particular,
dg(g) < 0,

and

Tpiey + e*da(g) = 0.
We observe that the basic variable z3(; has become zero, whereas the
nonbasic variable =; has now become positive, which suggests that &; should
replace Tz in the basis. Accordingly, we take the old basis matrix B and
replace A gy with A;, thus obtaining the matrix

- | | | | |
B=| Agy -+ Ape1y A; Apery - Apm |- (33)
| |

Equivalently, we are replacing the set {B(1),...,B5(m)} of basic indices by
anew set {B(1),...,B(m)} of indices given by

mn={fm’2i? (3.4)

Theorem 3.2
(a) The colum_ris Apy, 1 # £, and A; are linearly independent and,
therefore, B is a basis matrix.

(b) The vector y = x +6*d is a basic feasible solution associated
with the basis matrix B.

Proof,
{a) If the vectors Ag(i), i=1,...,m, are linearly dependent, then there
exist coefficients Aq,..., A, not all of them zero, such that

m
DN, =0,
i=1
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which implies that

i)\iB‘lAgm =0,

i=1

and the vectors BflAE(i» are also linearly dependent. To show that
this is not the case, we will prove that the vectors B 1A gy, i # 4, 1
and B~1A; are linearly independent. We have B™'B = L. Since §
Apyyis the ith column of B, it fdlows that the vectors B~ 1AB(,), -’
i & £, are all the unit vectors except for she fth unit vector. In §
partlcular they are linearly independent and their £th component is
zero. On the other hand, B™'A; is equal to —dg. Its fth entry,
—dpg(g, is nonzero by ths deﬁmtlon of £. Thus, B7'A; is linearly
independent from the unit vectors B~ 1A B 1 # L. ]

(b) Wehavey >0, Ay = b, and y; = 0 for i # B(1),...,B(m). Fur-}
thermore, the columns AB(U, e AB( ) have just been shown to be
linearly independent. It follows that y is a basic feasible solution §
associated with the basis matrix B. O ;

Since 0" is positive, the new basic feasible solution x + 0*d is distinet §
from x; since d is a direction of cost decrease, the cost of this new basic §
feasible solution is strictly smaller. We have therefore accomplished our §
objective of moving to a new basic feasible solution with lower cost. We
can now summarize & typical iteration of the simplex method, also known 3
as a pivot (see Section 3.6 for & discussien of the origins of this term). For |
our purposes, it is convenient to define avector u = (w1, ... 1) by letting

u=-dg =B A,

where A; is the column that enters the basis; in particular, u; = —dp(i)s
fori=1,...,m.

An iteration of the simplex metlod 1

1. In a typical iteration, we start with a basis consisting of the @E

basic columns A gy, - - , AB(m), and an associated basic feasible
solution x.

2. Compute the reduced costs ¢; = ¢; — ¢B~ A for all nonbasic
indices j. If they are all nonnegative, the current basic feasible- 2
solution is optimal, and the algorithm terminates; else, choose !
some j for which &; <0. 1

3. Compute u=B~!A;. If no conponent of u is positive, we have :
#* = oo, the optimal cost is —o0, and the algorithm terminates. -3
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4. If some component of u is positive, let

" : TB(i)

min
{i=1,.,m|u; >0} Uy

5. Let £ be such that 8* = x4 /ue. Form a new basis by replacing
Apg with A;. If y is the new basic feasible solution, the values
of the new basic variables are y; = 8" and ypu) = Ty — 0 u;,

i£ L

The simplex method is initialized with an arbitrary basic feasible
solution, which, for feasible standard form problems, is guaranteed to exist.
The following theorem states that, in -he nondegenerate case, the simplex
method works correctly and terminates after a finite number of iterations.

Theorem 3.3 Assume that the feasible set is nonempiy and that ev-
ery basic feasible solution is nondegenerate. Then, the simplex method
terminates after a finite number of iterations. At termination, there
are the following two possibilities:

(a) We have an optimal basis B and an associated basic feasible
solution which is optimal.

(b) We have found a vector d satisfying Ad=0,d > 0, and ¢/d < 0,
and the optimal cost is —o0.

Proof. If the algorithm terminates due to the stopping criterion in Step
2, then the optimality conditions in Theorem 3.1 have been met, B is an
optimal basis, and the current basic feasible solution is optimal.

If the algoritkm terminates because the criterion in Step 3 has been
met, then we are at a basic feasible solution x and we have discovered a
nonbasic variable z; such that £; < 0 and such that the corresponding basic
direction d satisfies Ad = 0 and d > 0. In particular, x 4 dd € P for all
§ > 0. Since ¢'d =, < 0, by taking # arbitrarily large, the cost can be
made arbitrarily negative, and the optimal cost is —co.

At each iteration, the algorithm moves by a positive amount ¢* along
a direction d that satisfies ¢’d < 0. Therefore, the cost of every successive
asic feasible solution visited by the algorithm is strictly less than the cost
of the previous one, and no basic feasible solution can be visited twice.
Bince there is a finite number of basic feasible solutions, the algorithm
must eventually terminate. Ll

Theorem 3.3 provides an independent proof of some of the results
of Chapter 2 for nondegenerate standard form problems. In particular,
it shows that for feasible and nondegenerate problems, either the optimal
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cost is —oo, or there exists a dasic feasible solution which is optimal (cf.

Theorem 2.8 in Section 2.6). While the proof given here might appear more

elementary, its extension to th: degenerate case is not as simple.

The simplex method for degenerate problems

We have been working so far under the assumption that all basic feasible

solutions are nondegenerate. Suppose now that the exact same algcrithm
is used in the presence of degeneracy. Taen, the following new possibilities
may be encountered in the cotrse of the algorithm.

(a) If the current basic feasible soluticn x is degenerate, 0* can be equal
to zero, in which case, thz new basic feasible solution y is the seme as ‘
x. This happens if some basic variable g is equal to zero and the ]

corresponding componert dgy of the direction vector d is negative.

Nevertheless, we can stil define ¢ new basis B, by replacing A B(&)
with A; [cf. Egs. (3.3)-(3.4)], and Theorem 3.2 is still valid.

{b) Evenif #* is positive, it may happen that more than one of the original

basic variables becomes sero at the new point x+60*d. Since only one |
of them exits the basis, the others remain in the basis at zerc level, |

and the new basic feasible solution is degenerate.

Basis changes while staying at tke same basic feasible solution are ;
not in vain. As illustrated in Figure 3.5, a sequence of such basis changes |
may lead to the eventual discovery of a cost reducing feasible direction. On |
the other hand, a sequence of basis changes might lead back to the initial |
basis, in which case the algorithm may loop indefinitely. This undesirable |

phenomenon is called cyeling. An example of cycling is given in Section 3.3,

after we develop some bookkeeping took for carrying out the mechanics of
the algorithm. It is sometimes maintained that cycling is an exceptionally |
rare phenomenon. However, for many highly structured linear program- 3
ming problems, most basic feasible solutions are degenerate, and cycling

is a real possibility. Cycling can be avoided by judiciously choosing the

variables that will enter or exit the basis (see Section 3.4). We now discuss |

the freedom available in this 1espect.

Pivot Selection

The simplex algorithm, as we describec it, has cartain degrees of freedom:
in Step 2, we are free to choose any j whose reduced cost €; is negative;
also, in Step 5, there may be several indices £ that attain the minimum in
the definition of #*, and we are free to choose any one of them. Rules for
making such choices are called pivoting rules.

Regarding the choice of the entering column, the following rules are |

some natural candidates:
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Figure 3.3: We visualize a problem in standard form, with
n —m = 2, by standing on the two-dimensional plane defined by
the equality constraints Ax = b. The basic feasible solution x is
degenerate. If x4 and z; are the nonbasic variables, then the two
corresponding basic directions are the vectors g and f. For either of
these two basic directions, we have 8" = 0. However, if we perform
a change of basis, with z4 entering the basis and z¢ exiting, the
new nonbasic variables are zs and zg, and the two basic directions
are h and —-g. (The direction —g is the one followed if x5 is in-
creased while x5 is kept at zero.} In particular, we can now follow
direction h to reach a new basic feasible solution y with lower cost.

(a) Choose a column A;, with ¢; < 0, whose reduced cost is the most
negative. Since the reduced cost is the rate of ckange of the cost
function, this rule chooses a direction along which costs decrease at
the fastest rate. However, the actual cost decrease depends on how
far we move along the chosen direction. This suggests the next rule.

(b) Choose a column with ¢; < 0 for which the corresponding cost de-
crease 0*|¢;| is largest. This rule offers the possibility of reaching
optimality after a smaller number of iterations. On the other hand,
the computational burden at each iteration is larger, because we need
to compute #* for each column with & < 0. The available empirical
evidence suggests that the overall running time does not improve.

For large problems, even the rule that chooses the most negative ¢;
can he computationally expensive, because it requires the computation of
the reduced cost of every variable. In practice, simpler rules are sometimes
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used, such as the smallest subseript rule, that chooses the smallest j for 1
which ¢; is negative. Under this rule, once a negative reduced cost is j

discovered, there is no reascn to compute the remaining reduced costs.

Other criteria that have been found to improve the overall running time §
are the Devex (Harris, 1973) and the stzepest edge rule (Goldfarb and Reid, ]
_977). Finally, there are methods based on candidate lists whereby one 3
examines the reduced costs of nonbasic variables by picking them one at 1
a time from a prioritized list. There are different ways of maintaining

such prioritized lists, depending on the rule used for adding, removing, or
reordering elements of the list.

Regarding the choice of the exiting column, the simplest option is §
again the smallest subscript rule: out of all variables eligible to exit the 4
basis, choose one with the smallest subscript. It turns out that by following §
the smallest subscript rule for both tke entering and the exiting column, $

eycling can be avoided (cf. Section 3.4).

3.3 Implementations of the simplex method

In this section, we discuss some ways of carrying out the mechanics of the

simplex method. It should be clear from the statement of the algorithm

that the vectors B-'A; play a key role. If these vectors are available, }
the reduced costs, the direction of motion, and the stepsize £* are easily }
computed, Thus, the main difference between alternative implementations j
lies in the way that the vectors B*IAj are computed and on the amount §

of related information that is carried from one iteration to the next.

When comparing different implementations, it is important to keep ‘
the following facts in mind (¢f. Section 1.6). If B is a given m x m matrix
and b € R™ is a given vector, computing the inverse of B or solving a linear

system of the form Bx = b takes O(m?) arithmetic operations. Computing

a matrix-vector product Bb takes O(m?) operations. Finally, computing “

an inner product p’b of two m-dimensional vectors takes O(m) arithmetic
operations.

Naive implementation

We start by describing the most straightforward implementation in which
no auxiliary information is carried from one iteration to the next. At the
beginning of a typical iteration, we have the indices B(1),...,B(m) of
the current basic variables. We form the basis matrix B and compute
p’ = ¢z BL, by solving the linear system p’B = c/g for the unknown vector
P (This vector p is called the vector of simplex multipliers associated with
the basis B.} The reduced cost &5 = ¢; — ¢gB71A; of any variable z; is
then obtained according to the formula

= L 1 )
i =ci — DA
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Depending on the pivoting rule employed, we may have to computeall of the
reduced costs or we may compute them one at a time until a variable with
a megative reduced cost is encountered. Once a column A; is selected to
enter the basis, we solve the linear system Bu= A, in order to determine
the vector u = B_lAj. At this point, we can form the directibn along
which we will be moving away from the current basic feasible solution. We
finally determine #* and the variable that will 2xit the basis, and tonstruct
the new basic feasible solution.

We note that we need O{m?) arithmetic operations to solve the sys-
tems p’'B = ¢z and Bu = A;. In addition, computing the reduced costs of
all variables requires Q(mn) arithmetic operations, because we need to form
the inner product of the vector p with each one of the nonbasic columns A ;.
Thus, the total computational effort per iteration is O(m? + mn) We will
see shortly that alternative implementations require only O{m? +rn) arith-
metic operations. Therefore, the implementation described here is rather
inefficient, in general. On the other hand, for certain problems with a spe-
cial structure, the linear systems p'B = ¢ and Bu = A; can be solved
very fast, in which case this implementation zan be of practical interest.
We will revisit this point in Chapter 7, when we apply tae simplex method
to network flow problems.

Revised simplex method

Much of the computational burden in the naive implementation is due to
the need for solving two linear systems of equations. In an alkernative
implementation, the matrix B~! is made available at the beginning of each
iteration, and the vectors ¢;B~! and B™1A; are computed by 1 matrix-
vector multiplication. For this approach to be practical, we need an efficient
method for updating the matrix B—' each time that we effect a change of
basis. This is discussed next.
Let

B= [AB(I) "'AB(m)]

be the basis matrix at the beginning of an iteration and let
B= [AB(l) ~-Apre—1y A; Appiny- "AB(m)]

be the basis matrix at the beginning of the next iteration. These two basis
matrices have the same columns except that tte £th column A g (the one
that exits the basis) has been replaced by A ;. I: is then reasonableto expect
that B! contains information that can be exploited in she computation of
B After we develop some needed tools and terminology, we wil see that
this is indeed the case. An alternative explanation and line of devzlopment
is outlined in Exercise 3.13.
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 Definition 3.4  Given a mstiix, nof necessarily square, the operatiof
' of adding a constant multiple of one row.tc the saté oF to another rox

'is called an elementary. row operation. .. .. Ly

e
23

e
Nt

g

The example that follows indicates that performing an elementary row
operation on a matrix C is equivalent to forming the matrix QC, where Q

is a suitably constructed square matrix.
Example 3.3 Let

10 2 1 2
Q=101 0y, C=|3 4},
001 5 6

1 14
QC = 3 4.
5 6

In particular, multiplication from the left by the matrix Q has the effect of mul-
tiplying the third row of C by two and adding it to the first row.

and note that

Generalizing Example 3.3, we see that pltiplying the jth. oW by 3
and adding it to the ith row (for ¢ # j) is the same as 1eft-mu}t1plymg by
+he matrix Q@ = I 4+ Dy;, where D; is a matrix with all entries ejqual to
zero, except for the {¢,7)th entry which is equal to 3. The determinant of
such a matrix Q is equal to . and, therefore, Q is invertible.

Suppose now that we apply a sequence of K elementary row Oper-
ations and that the kth such operation corresponds to left-multiplication
by a certain invertible matrix Qy. Then, the sequence of Fhese .elementar'y
row operations is the same as left-multiplication by the invertible matrix
QrQx_1--Q2Q1. We conclude that performing a sequence of .elemen-
tary row operations on a given matrix is equivalent to left-multiplying that
matrix by a certain invertible matrix.

Since B-1B = I, we see that B~'A g is the ith unit vector e,
Using this observation, we bave

[ o |
BAIE — e er_1 u ngrl €m
o ol |
[ 1 1%
= k173 )
L L
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where u = B_lAj. Let us apply a sequence of elementary row operations
that will change the above matrix to the identity matrix. In particular,
consider the following sequence of elementary row operations.

(a) For each i 3 ¢, we add the fth row tmes —u;/u; to the ith row.
{Recall that u, > 0.) This replaces u; by zero.

{b) We divide the fth row by u,. This replices 4, by one.

In words, we are adding to each row a multiple of the fth row to
replace the £th column u by the fth unit vector e;. This sequence of ele-
mentary row operations is equivalent to left-multiplying B—'B by a certain
invertible matrix Q. Since the result is the icentity, we have QBB =1,

. : =1 . .
which yields QB~! = B . The last equation shows that if we apply
the same sequence of row operations to the matrix B~! (equivalently, left-

multiply by Q}, we obtain B We conclude that all it takes to generate

-1, .
B , is to start with B~? and apply the sequence of elementary row oper-
ations described above.

Example 3.4 Let

1 2 3 —4
B'=|-2 3 1|, u= 2 |,
4 -3 -2 2

and suppose that £ = 3. Thus, our objective is to transform the vector u to the
unit vector e = (0,0,1). We multiply the third row by 2 and add it to the first
row. We subtract the third row from the second row. Finally, we divide the third

row by 2. We obtain
- 9 —4 -1
B =] -6 5] 3 1.
2 -15 -1
When the matrix B~! is updated in the manner we have describad, we ob-

tain an implementation of the simplex method known as the reviszd simples
method, which we summarize below,

An iteration of the revised simplex method

1. In a typical iteration, we start with a basis consistiﬁg of the basic
columns A g1y, - .., Apg(n), an associsted basic feasible solution
x, and the inverse B~! of the basis matrix.

2. Compute the row vector p’ = ¢’ B! and then compute the re-
duced costs & = ¢; — p’A;. If they are all nonnegative, the
current basic feasible solution is optimal, and the algorithm ter-
minates; else, choose some j for which &; < 0.~

3. Compute u = B7'A;. If no component of u is positive, the

“optimal cost is —co, and the algorithn terminates.
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4. U some component of u is positive, let

+ . ZB(s)

fis=1,...,mlu; >0} %

5. Let £ be such that 8* = x5 /us. Form a new basis by replacing -
A with A;. If y is the new basic feasible solution, the values
of the new basic variables are y; = 6* and yp(;y = Tpa) — uy,
i #L. )

6. Form the m x (m + 1) matrix (B~ | ul. Add to each one of -
its rows a multiple of the fth row to make the last column equal ..
to the unit vector e,. The first m columns of the result is the
matrix ﬁ_l.

W eh et b

The full tableau implementation

We finally describe the implementation of simplex method in terms of the
so-called full tableau. Here, inssead of maintaining and updating the matrix
B!, we maintain and update the m x (n + 1) matrix

B[b | A]

with columns B~ !'b and B !A;4,...,B~1A,. This matrix is called the
simplex tablear. Note that the column B~'b, called the zeroth column,
contains the values of the basic variables. The column B~1A; is called the
ith column of the tableau. The column u = B~!A; corresponding to the
variable that enters the basis is called the pivot column. If the £th basic
variable exits the basis, the £th row of the tableau is called the pivet row.
Finally, the element belonging to both the pivot row and the pivot column
is called the pivot element. Note that the pivot element is 1, and is always
positive (urless u < 0, in which case the algorithm has met the termination
condition in Step 3).

The information contained in the rows of the tableau admits the fol-
lowing interpretation. The equality constraints are initially given to us
in the form b = Ax. Given the current basis matrix B, these equality
constraints can also he expressed in the equivalent form

B 'b =B lAx,

which is precisely the information in the tableau. In other words, the rows
of the tableau provide us with the coefficients of the equality constraints
B 'b=B"'Ax.

At the end of each iteration, we need to update the tableau B~1[b | A]
and compute B~ [b | A]. This can be accomplished by left-multiplying the
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gimplex tableau with a matrix Q satisfying QB~! = B ' As axplained
earlier, this is the same as performing those elementary row operasions that
turn B! to E—l; that is, we add to each row a multiple of the pivot row to
set, all entries of the pivot column to zero, with the exception of the pivot
element which is set to one.

Regarding the determination of the exiting column A g and the
stepsize 8%, Steps 4 and 5 in the summary of the simplex method amount
to the following: xp(,y/u; is the ratio of the ith entry in the zeroth column
of the tableau to the ¢th entry in the pivot column of the tableau We only
consider those i lor which w; is positive. The smallest ratio is equal to 6*
and determines &,

Tt is customary to angment the simplex tableau by including a top
row, to be referred to as the zeroth row. The entry at the top L:ft corner
contains the value —c/px g, which is the negative of the current cost. {The
reason for the minus sign is that it allows for a simple update rule, as will
be seen shortly.) The rest of the zeroth row is the row vector of reduced
costs, that is, the vector T = ¢’ — ¢zgB 1A Thus, the structure of the
tableau is:

—cgB7b | ¢/ —c,B A

B 'b B 'A
or, in more detail,
—CgXxp T e T
Tp | |
B-'A, ... Bla,

The rule for updating the zercth row turns out to be identical to the
rule used for the other rows of the tableau: add a multisle of the pivot row
to the zeroth row to set the reduced cost of the entering variabk to zero.
We will now verify that this update rule produces the correct results for
the zeroth row.

At the beginning of a typical iteration, the zeroth row is of the form

[0]c]-g'b] Al

where g’ = ¢z B!, Hence, the zeroth row is equal to [0 | ¢/] plus a linear
combination of the rows of [b | A]. Let column j be the pivot column, and
row £ be the pivot row. Note that the pivot row is of the form a'[b | A],
where the vector h’ is the fth row of B~!. Hence, after a multizle of the
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pivot row is added to the zeroth row, that row is again equal to [¢ | ¢'] plus
a (different) linear combination of the rows of [b| A], and is of the form

0]<]—p'b] Al

for some vector p. Recall that our update rule is such that the pivot column
entry of the zeroth row becomes zero, that is,

¢Be ~PABy =6 —PA; =0

Consider now the B(i)th column for i # £. (This is a column corresponding
to a basic variable that stays in the basis.) The zeroth row entry of that
column is zero, before the change of bagis, since it is the reduced cost of
a basic variable. Because B~1A By 18 the ith unit vector and i # £, the
entry in the pivot row for that column is also equal to zero. Hence, adding
a multiple of the pivot row to the zeroth row of the tableau does not affect
the zeroth row entry of that column, which is left at zero. We conclude
that the vector p satisfies e,y — P Az, = 0 for every column Az, in

the new basis. This implies that ¢ —p’ B=0,andp' = c’Eﬁ_l. Hence,
with our update rule, the updated zeroth row of the tableau is equal to
=1
[0]c]—c5B "[b]A]

as desired.
We can now summarize the mechanics of the full tableau implemen-
tation.

An iteration of the full tableau implementation

1. A typical iteration starts with the tableau associated with a basis
matrix B and the corresponding basic feasible solution x.

2. Examine the reduced costs in the zeroth row of the tablean. If
they are all nonnegative, the current basic feasible solution is
optimal, and the algorithm terminates; else, choose some j for
which €; < 0.

3. Consider the vector u = B~1A;, which is the jth column (the
pivot column) of the tableau. ¥ no component of u is positive,
the optimal cost ig --co, and the algorithm terminates.

4. -For each ¢ for which u; i positive, compute the ratio zp)/u;.
Let £ be the index of a row that corresponds to the smallest ratio.
The column A gs) exits the basis and the column A; enters the

B basis. - _
*°5. Add to each row of the tablean a constant multiple of the £th
* row (the pivot Tow) so that us {the pivot element) becomes one
~ -~ and all other entries of the pivot column become zero. :
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N\ C= (0,100

D=(1000) ' \\

Ty

]

Figure 3.4: The feasible set in Example 3.5. Note that we
have five extreme points. These are A = (0,0,0) with cost 0,
B = (0,0,10) with cost —120, C = (0,10,0) with cost —120,
D = (10,0,0) with cost 100, and E = (4,4, 4) with cost —136. In
particular, E' is the unique optimal solution.

Example 3.5 Consider the problem

minimize —10zx; — 12x; — 12x3

subject to 1 + 2x2 + 23 < 20
2z + T3 + 2wz <20
221 + 22 + T3 < 20

X1,T2,T3 2 0.

The feasible set is shown in Figure 3.4.
After introducing slack variables, we obtain the following staniard form
problem:

minimize —10x; — 12z — 12x3

subject to 1+ 222 + 2z3 + x4 = 2
2r; + T2 + 2ma + x5 =20
2r1 + 22 + &3 + 26 = N
L1y, Te Z 0.

Note that x = (0,0, 0,20, 20,20) is a basic feasible solution and can be used to
start the algorithm. Let accordingly, B(1) = 4, B(2) = 5, and B(3) = 6. The
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corresponding basis matrix is the identity matrix I. To obtain the zeroth row of
the initial tableau, we note that c¢p = 0 and, therefore, cgxp = 0 and € = c.
Hence, we have the following in‘tial tableau:

T1 2 T3 X4 ITs Ts

g | 10 -12 -12 0 0 0

Ty = | 20 1 2 2 1 0 0
T5 = | 20 2* 1 2 0 1 0
T = | 20 2 2 1 0 0 1

‘We note a few conventions in the format of the above tableau: the label x;
on top of the ith column indicates the variable associated with that column. The
labels “z; =" to the left of the tableau tell us which are the basic variables and in
what order. For example, the first basic variable zp; is x4, and its value is 20.
Similarly, 25(2) = s = 20, and x g = x5 = 20. Strictly speaking, these labels
are not quite necessary. We know that the column in the tablean associated with
the first basic variable must be the first unit vector. Once we observe that the
column associated with the variable x4 is the first unit vector, it follows that x4
is the first basic variable.

We continue with our example. The reduced cost of z; is negative and we
let that variable enter the basis. The pivot column is u = (1,2,2). We form the
ratios zg(;)/us, ¢ = 1,2, 3; the smallest ratio corresponds to { = 2 and 1 = 3. We
break this tie by choosing ¢ = 2. This determines the pivot element, which we
indicate by an asterisk. The second basic variable z B(2), which is s, exits the
basis. The new basis is given by B(1) = 4, B(2) = 1, and B(3) = 6. We multiply
the pivot row by 5 and add it to the zeroth row. We multiply the pivot row by
1/2 and subtract it from the first row. We subtract the pivot row from the third
row. Finally, we divide the pivo: row by 2 This leads us to the new tableau:

¥ Xz X3 T4 T5 Te

100 0 -7 =2 0 5 0
ra=| 10 0D 15 1* 1 -05 0
Ty =| 10 1 05 1 0 05 0
Ts = 0 0 1 -1 0 -1 1

The corresponding basic feasible solution is x = (10,0,0,10,0,0). In terms
of the original variables x,, z2, w3, we have moved to point D = (10,0, 0) in
Figure 3.4. Note that this is a degenerate basic feasible solution, because the
basic variable x¢ is equal to zero. This agrees with Figure 3.4 where we cbserve
that there are four active constraints at peint D.

We have mentioned earlier that the rows of the tableau (other than the
zeroth row) amount to a representation of the equality constraints B 'Ax =
B~ 'b, which are equivalent to the original constraints Ax = b. In our current
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example, the tableau indicates that the equality constraints can be written in the
equivalent form:

1 = 1.520 + 3 + x4 — 0.5xs
1IC = =1 + 0.5z2 + x3 + 0.5z5
¢ = ro — I3 - rs + s

We now return to the simplex method. With the current tableau, the
variables x2 and 13 have negative reduced costs. Let us choose x3 to be the one
that enters the basis. The pivot column is u = (1,1, —1). Since uz <0, we only
form the ratios @g(;)/u:, for i = 1,2. There is again a tie, which we break by
letting £ = 1, and the first basic variable, z4, exits the basis. The pivotelement is
again indicated by an asterisk. After carrying out the necessary elementary row
operations, we obtain the following new tableau:

2 Ty Tq s e

120 0 —4 0 2 4 0
I3 = 10 0 15 1 1 -05 0
T = 0 I | 0 -1 1 0
T = 10 0 2.5* 0 1 -15 1

In terms of Figure 3.4, we have moved to point B = (0,0, 10), aad the cost
has been reduced to —120. At this point, x3 is she only variable with negative
reduced cost. We bring z2 into the basis, z¢ exits, and the resulting tableau is:

1 T2 I3 a4 Ts T6

136 V] 0 0 36 1.6 1.6

Ty = 4 0 0] 1 04 04 -—06
Ty = 4 1 ¢ 0 -08 0.4 04
T2 = 4 0 1 0 04 -—-06 0.4

We have now reached point E in Figure 3.4. Its optimality is confirmed by
observing that all reduced costs are nonnegative.

In this example, the simplex method took three changes of bads to reach
the optimal solution, and it traced the path A — D — B — F in Figure 3.4, With
different pivoting rules, a different path would have been traced. Could the
simplex method have solved the problem by tracing the path A — D - E, which
involves only two edges, with only two iterations? The answer is no. The initial
and final bases differ in thres columns, and thereiore at least three basis changes
are required. In particular, if the method were totrace the path A— D— E, there
would be a degenerate change of basis at peint D (with no edge being traversed),
which would again bring the total to three.
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Example 3.6 This example shows that the simplex method can indeed cycle.
We consider a problem described in terms of the following initial tableau.

T T2 X3 T4 T Te 7

3 (-3/4 20 -12 6 0 0 0
=10 1/4 -8 -1 9 1 0 0
=0 1/2 -12 -1/2 3 0 1 0
xr=|1 0 0 1 0 0 0 1

We use the following pivoting rules:

(a} We select a nonbasic variable with the most negative reduced cost ¢; to be
the one that enters the basis.

{b) Out of all basic variables that are eligible to exit the basis, we select the
one with the smallest subscript.

We then obtain the following sequence of tableaux (the pivot element is indicated
by an asterisk):

Sec. 3.3
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I g T3 Ta Ts re 7
3 | -1/2 16 0 0 -1 1 0
z3=|0 | -6/2 5 1 0 2 —6 0
ca=|0 | -1/4 16/3 0 1 1/3 -2/3 0
zr=|1 5/2 -5 0 0 =2 6 1
T Tz X3 4 Ty e T
3|-7/4 4 12 0 0 -2 0
zz;=10 | -5/4 28 1/2 0 1 -3 0
za= |0 | 1/6 —4 —-1/6 1 0 1/3* 0
zr=|1 0 0 1 0 90 0 1
I T2 rz Ta s Te 7
3|-3/4 20 -1/2 6 0 0 0
zs=]0 | 1/4 -8 -1 9 1 0 0
=0 | 1/2 —12 -1/2 3 0 1 0
zr= |1 0 0 1 0 0 o0 1

T T2 T3 Ty TE5 Te D7
3 0 -4 -7/2 33 3 0 0
=0 1 -32 —4 36 4 0 0
ze = |0 0 4* /2 -15 -2 1 0
zr= |1 0] 0 1 o o0 0 1
Ty X2 T3 Tq Ts e It
3 o 0 -2 18 1 1 0
;= |0 1 0 8* -84 12 g8 0
=10 0 1 3/8 -15/4 -1/2 1/4 O
z7=|1 0 o 1 0 0 0 1
xy *2 T3 T4 5 T T7
3 1/4 0 90 -3 -2 3 0
3= |0 1/8 0 1 -21/2 -3/2 1 0
za=|01)-3/64 1 0 3/16% 1/16 -1/8 0
zr=]1 -1/8 0 0 21/2 3/2 -1 1

After six pivots, we have the same basis and the same tableau that we started
with. At each basis change, we had 8° = 0. In particular, for each interme-
diate tableau, we had the same feasible solution and the same cost. The same

sequence of pivots can be repeated over and over, and the simplex method never
terminates.

Comparison of the full tableau and the revised simplex
methods

Let us pretend that the problem is changed to

minimize ¢'x+0'y
subject to Ax+Iy=Db
x,y > 0.

We implement the simplex method on this new problem, except that we
never allow any of the components of the vector y to become basic. Then,
the simplex method performs basis changes as if the vector y were entirely
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absent. Note also that the vector of reduced costs in the augmented problem
is
[ 0] —cyB AT =[¢ | —csB ']

Thus, the simplex tableau for the augmented problem takes the form

' p—1 i ' B—1
-cxB™'b c —-cpB

B-'b BlA B!

In particular, by following the mechanics of the full tableau method on the
above tableau, the inverse basis matrix B™! is made available at each iter-
ation. We can now think of the revised simplex method as being essentially
the same as the full tableau method applied to the above augmented prob-
lem, except that the part of the tablean containing B~ A is never formed
explicitly; instead, once the entering variable x; is chosen, the pivot column
B~!A, is computed on the fly. Thus, the revised simplex method is just
a variant of the full tableau method, with more efficient bookkeeping. If
the revised simplex method also updates the zeroth row entries that lie on
top of B™! (by the usual elementary operations), the simplex multipliers
p’ = c¢gB~! become available, thus eliminating the need for solving the
linear system p’'B = ¢ at each iteration.

We now discuss the relative merits of the two methods. The full
tableau method requires a constant (and small) number of arithmetic op-
erations for updating each entry of the tableaun. Thus, the amount of com-
putation per iteration is proportional to the size of the tableau, which is
O(mn). The revised simplex method uses similar computations to update
B! and ¢);B!, and since ony O(m?) entries are updated, the compu-
tational requirements per iteration are O(m?). In addition, the reduced
cost of each variable x; can be computed by forming the inner product
p'A;, which requires O(m) operations. In the worst case, the reduced cost
of every variable is computed, for a total of O(mn) computations per it-
eration. Since m < n, the worst-case computational effort per iteration is
O(mn+m?) = O(mn), under either implementation. On the other hand, if
we consider a pivoting rule that evaluates one reduced cost at a time, until
a negative reduced cost is found, a typical iteration of the revised simplex
method might require a lot less work. In the best case, if the first recuced
cost computed is negative, and the corresponding variable is chosen to en-
ter the basis, the total computational effort is only G(m?). The conclusion
is that the revised simplex method cannot be slower than the full tableau
method, and could be much faster during most iterations.

Another important element in faver of the revised simplex method
is that memory requirements are reduced from O(mn) to O(m?). As n is
often much larger than m, this effect can be quite significant. It could be
counterargued that the memory requirements of the revised simplex method

Sec. 3.3 Implementations of the simplex method 107

are also O(mn) because of the need to store the matrix A. However, in
most large scale problems that arise in applications, the matrix A is very
sparse (has many zero entries) and can be stored compactly. (Note that the
sparsity of A does not usually help in the storage of the full simplex tablean
because even if A and B are sparse, B~ A is nat sparse, in general.)

We summarize this discussion in the following table:

Full tableau | Revised simplex
Memory O(mn) O(m?)
Worst-case time O(mn) Olmn)
Best-case time Of(mn) o(m?)

Table 3.1: Comparison of the full tableau method and revised
simplex. The time requirements refer to a single iteration.

Practical performance enhancements

Practical implementations of the simplex method aimed at solving problems
of moderate or large size incorporate a number of additional ideas from
numerical linear algebra which we briefly mention.

The first idea is related to reinversion. Recall that at each iteration
of the revised simplex method, the inverse basis matrix B~! is updated
according to certain rules. Each such iteration may introduce roundoff
or truncation errors which accumulate and may eventually lead to highly
inaccurate results. For this reason, it is customary to recompute the matrix
B~ from scratch once in a while. The efficiency of such reinversions can be
greatly enhanced by using suitable data structures and certain techniques
from computational linear algebra.

Another set of ideas is related to the way that the inverse basis matrix
B! is represented. Suppose that a reinversion has been just carried oui
and B~! is available. Subsequent to the current iteration of the revised
simplex method, we have the option of generating explicitly and storing
the new inverse basis matrix B . An alternative that carries the same
information, is to store a matrix Q such that QB! =B . Note that Q
basically prescribes which elementary row operations need to be applied to
B! in order to produce B 1tis not a full matrix, and can be completely
specified in terms of m coefficients: for each row, we need to know what
multiple of the pivot row must be acded to it.

Suppose now that we wish to solve the system Bu = A ; for u, where
A; is the entering column, as is required by the revised simplex method.

We have u = E_lAJ- = QB 'A;, which shows that we can first compute



xeuwruoneziwndo Jeaul|

108 Chap. 3  The simplex method

B7'A; and then left-multiply by Q (equivalently, apply a sequence of el-
ementary row operations) to produce u. The same idea can also be used
to represent the inverse basis matrix after several simplex iterations, as a
product of the initial inverse basis matrix and several sparse matrices like
Q.

The last idea we mention is the following. Subsequent to a “rein-
version,” one does not usually compute B~! explicitly, but B~ is instead
represented in terms of sparse triangular matrices with a special structure.

The methods discussed in this subsection are designed to accomplish
two objectives: improve numerical stability (minimize the effect of roundoff
errors) and exploit sparsity in the problem data to improve both running
time and memory requirements. These methods have a critical effect in
practice. Besides having a better chance of producing numerically trust-

worthy results, they can also speed up considerably the running time of ]

the simplex method. These techniques lie much closer to the subject of
numerical linear algebra, as opposed to optimization, and for this reason
we do not pursue them in any greater depth.

3.4 Anticycling: lexicography and Bland’s
rule

In this section, we discuss anticycling rules under which the simplex method
is gnaranteed to terminate, thus extending Theorem 3.3 to degenerate prob-
lems. As an important corollary, we conclude that if the optimal cost is fi-
nite, then there exists an optimal basis, that is, a basis satisfying B-'b > 0
and @ =c¢' ~czFB A >0,

Lexicography

We present here the lexicographic pivoting rule and prove that it prevents
the simplex method from cycling. Historically, this pivoting rule was de-
rived by analyzing the behavior of the simplex method on a nondegenerate
problem obtained by means of a small perturbation of the right-hand side
vector b. This connection is pursued in Exercise 3.15.

We start with a definition.

Deﬁnition 3. 5 A vector u £ w Js saxd to be le:ucographwajly
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For example,
L
(0,23 0} > (0,21, 4),

©, 4,50 < (1,2 1, 2).

1. Choose an entenng column A arb1tmr11y, as ong as its reduced

‘cost ¢; 1s negative. Lét u = B- 'A; be the jth column of the
tablegy.

2. For each i with w; > 0 divide the ith row: of the tableau (mclud-
ing” t.he entry in the zeroth column) by u., a.nd choose the iexlco-

Example 3.7 Consider the following tableau {the zeroth row is omitted), and
suppose that the pivot column is the third one (5 = 3).

1 5 3

0
214 6 -1
3|0 7 9

Note that there is a tie in trying to determine the exiting variable because
zr)/ur = 1/3 and zp(s)/us = 3/9 = 1/3. We divide the first and third rows of
the tableau by u1 = 3 and us = 9, respectively, to obtain:

¥3 10 53 1

* * * *

3 o 79 1

The tie between the first and third rows is resolved by performing a lexicographic
comparison. Since 7/9 < 5/3, the third row is chosen to be the pivot row, and
the variable zp(3) exits the basis.

We note that the lexicographic pivoting rule always leads to a unique
choice for the exiting variable. Indeed, if this were not the case, two of the
rows in the tableau would have to be proportional. But if two rows of the
matrix B~ A are proportional, the matrix B—!A has rank smaller than m
and, therefore, A also has rank less than m, which contradicts our standing
assumption that A has linearly independent rows.
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Theorem 3.4 Suppose that the simplex algorithm starts with all the

rows'in. the s,iz"nﬂplex ta,bleau, other tha.u tbe zemth row, !exzcograpm»

Then:

(a) Every row.of the sunp]ex tableau, other than the zeroth row;
remains lexicographically positive throughout the algorithm.

(b) The zeroth row strictly increases lexicographically st each iter:
tion. :

{c) The simplex method terminates after a finite number of iter
tions.

Proof.
(a) Suppose that all rows of the simplex tableau, other than the zeroth

row, are lexicographically positive at the beginning of a simplex iter- '\.
ation. Suppose that x; enters the basis and that the pivot row is the
£th row. According to the lexicographic pivoting rule, we have 1 > 0

and
(¢th row) é (ith row)

Ug Uy

To determine the new tableau, the £th row is divided by the positive }
pivot element u; and, therefore, remains lexicographically positive. §
Consider the ith row and suppose that u; < 0. In order to zero the {
(i,4)th entry of the tableau, we need to add a positive multiple of
the pivot row to the ith row. Due to the lexicographic positivity of :

both rows, the ith row will remain lexicographically positive after this
addition. Finally, consider the ith row for the case where u; > 0 and

1 # £. We have
(new ith row) = (old sthrow) — %(old £th row).
¢

Because of the lexicographic inequality (3.5}, which is satisfied by the
old rows, the new ith row is also lexicographically positive.

(b) At the beginning of an iteration, the reduced cost in the pivot calumn
is negative. In order to make it zero, we need to add a positive
multiple of the pivot row. Since the latter row is lexicographically
positive, the zeroth row increases lexicographically.

(¢) Since the zeroth row increases lexicographically at each iteration, it
never returns to a previous value. Since the zeroth row is determined
completely by the current basis, no basis can be repeated twice and
the simplex method must terminate after a finite number of iterations.

a

The lexicographic pivoting rule is straightforward to use if the simplex
method is implemented in terms of the full tableau. It can also be used

. ifiFfandu>0.  (35) |
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in conjunction with the revised simplex method, provided that the inverse
basis matrix B~ is formed explicitly (see Exercise 3.16}. On the other
hand, in sophisticated implementations of the revised simplex method, the
matrix B~! is never computed explicitly, and the lexicographic rule is not
really suitable.

We finally note that in order to apply the lexicographic pivoring rule,
an initial tableau with lexicographically positive rows is required. Let us
assume that an initial tableau is available (methods for obtaining an initial
tableau are discussed in the next section). We can then rename the vari-
ables so that the basic variables are the first m ones. This is equivalent
to rearranging the tableau so that the first m columns of B~ 1A are the m
unit vectors. The resulting tableau las lexicographically positive rows, as
desired.

Bland’s rule

The smallest subscript pivoting rule, also known as Bland's rule, is as fol-
lows.

Smallest subscript pivoting rule

1. Find the smallest j for which the reduced cost %; is negatlve and
have the column A; enter the basis. :

2. Out of all variables x; that are tied in the test for choosing an
exiting variable, select the one with the smallest value of .

This pivoting rule is compatible with an implementation of the re-
vigsed simplex method in which the reduced costs of the nonbasic variables
are computed one at a time, in the natural order, until a negative one is
discovered. Under this pivoting rule, it is known that cycling never occurs
and the simplex method is guaranteed to terminate after a finite number
of iterations.

3.5 Finding an initial basic feasible solution

In order to start the simplex method, we need to find an initial basic feasibie
solution. Sometimes this is straightforward. For example, suppose that we
are dealing with a problem involving constraints of the form Ax < b, where
b > 0. We can then introduce nomnegative slack variables s and rewrite
the constraints in the form Ax + s =b. The vector (x,s) defined by x = 0
and s = b ig a basic feasible solution and the corresponding basis matrix is
the identity. In general, however, finding an initial basic feasible solution
is not easy and requires the solution of an auxiliary linear programming
problem, as will be seen shortly.



xeuwruoneziwndo Jeaul|

112 Chap. 3  The simplex method

Consider the problem

minimize ¢'x
subject to Ax = b
x > 0

By possibly multiplying some of the equality constraints by —1, we can |
assume, without loss of generality, that b > 0. We now introduce a vector |
y € R™ of artificial variables and use the simplex method to solve the §

auxiliary problem

minimize y1+y2 + 4+ Ym

subjectto Ax+y = b
x>0
y=>0

Initialization is easy for the auxiliary problem: by letting x = 0 and §
y = b, we have a basic feasible solution and the corresponding basis matrix §

is the identity.

If x is a feasible solution to the original problem. this choice of x }
together with y = 0, yields a zero cost solution to the auxiliary problem. j
Therefore, if the optimal cost in the auxiliary problem is nonzero, we con- 1
clude that the original problem is infeasible. If on the other hand, we cbtain §
a zero cost solution to the auxiliary problem, it must satisfy y = 0, and x §

is a feasible solution to the criginal problem.

At this point, we have accomplished our objectives only partially. We
have a method that either detects infeasibility or finds a feasible solution to
the original problem. However, in order to initialize the simplex method for |

the original problem, we need a basic feasible solution, an associated basis

matrix B, and — depending on the implementation — the corresponding |
tableau. All this is straightforward if the simplex method, applied to the ;

auxiliary problem, terminates with a basis matrix B consisting exclusively
of columns of A. We can simply drop the columns that correspond to the
artificial variables and continue with the simplex method on the original
problem, using B as the starting basis matrix.

Driving artificial variables out of the basis

The situation is more complex if the criginal problem is feasible, the simplex
method applied to the auxiliary problem terminates with a feasible solution
x* to the original problem, but some of the artificial variables are in the
final basis. (Since the final value of the artificial variables is zero, this
implies that we have a degenerate basic feasible solution to the auxiliary
problem.) Let k be the number of columns of A that belong to the final basis
(k < m) and, without loss of generality, assume that these are the columns
Agpuy,-..,Apwy). (In particular, zp;y,...,zpk) are the only variables
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that can be at nonzero level.) Note that the columns A pyy,. .., Ag) must
be linearly independent since they are part of a basis. Under our standard
assumption that the matrix A has full rank, the columns of A span R™,
and we can choose m — k additional columns Ap(ky1y,- - Appm) of A, to
obtain a set of m linearly independent columns, that is, a basis consisting
exclusively of columns of A. With this basis, all nonbasic components of
x* are at zero level, and it follows that x* is the basic feasible solution
associated with this new basis as well. At this point, the artificial variables
and the corresponding columns of the tableau can be dropped.

The procedure we have just described is called driving the artificial
variables out of the basis, and depends crucially on the assumption that the
matrix A has rank m. After all, if A has rank less than m, constructing a
basis for R™ using the columns of A is impossible and there exist redundant
equality constraints that must be eliminated, as described by Theorem 2.5
in Section 2.3. All of the above can be carried out mechanieally, in terms
of the simplex tableau, in the following manner.

Suppose that the £th basic variable is an artificial variable, which is
in the basis at zero level. We examine the £th row of the tableau and find
some j such that the ¢th entry of B-1A; is nonzero. We claim that A;
is linearly independent from the columns Apiy,..., Agny. To see this,
note that B~'Ap,;, = e;, i = 1,... .k, and since k < /, the ¢th entry of
these vectors is zero. It follows that the £th entry of any linear combination
of the vectors B~'Ag(),...,B 1A, is also equal to zero. Since the
#th entry of B~'A; is nonzero, this vector is not a linear combination
of the vectors B‘IAB(U, . ..,B‘lAB(;ﬂ). Equivalently, A; is not a linear
combination of the vectors Ag(yy,..., Apx), which proves our claim. We
now bring A; into the basic and have the £th basic variable exit the basis.
This is accomplished in the usual manner: perform those elementary row
operations that replace B~'A; by the £th nnit vector. The only difference
from the usual mechanics of the simplex method is that the pivot element
(the £th entry of B™1A ;) could be negative. Because the £th basic variable
was zero, adding a multiple of the £th row to the other rows does not change
the values of the basic variables. This means thLat after the change of basis,
we are still at the same basic feasible solution to the auxiliary problem,
but we have reduced the number of basic artificial variables by one. We
repeat this procedure as many times as needed until all artificial variables
are driven out of the basis.

Let us now assume that the #th row of B-1A is zero, in which case
the above described procedure fails. Note that the £th row of B~1A is
equal to g'A, where g’ is tne £th row of B™!. Hence, g’A = 0’ for some
nonzero vector g, and the matrix A has linearly dependent rows. Since we
are dealing with a feasible problem, we must also have g’b = 0. Thus, the
constraint g’ Ax = g'b is redundant and can be eliminated (cf. Theorem 2.5
in Section 2.3). Since this constraint is the information provided by the £th
row of the tableau, we can eliminate that row and continue from there.
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Example 3.8 Consider the linear programming problem:

minimize 3 + T2+ z3
subject to 1 + 2x2 + 3z3 =3
—21 + 2z + 6x3 =2
41'2 + 91‘3 =5
3z + x4 = 1
Il,...,Z420.

In order to find a feasible solution, we form the auxiliary problem

minimize s + ¢ + 7 + T8
subject to xr1 + 2z + 33 + x5 = 3
—zr1 + 222 + 623 + w6 =2
4z2 + 9x3 + z7 =5
3z3 + T4 4+ zg = 1
T1, ] >4

A basic feasible solution to the auxiliary problem is obtained by letting
(5, 26, 27, 25) = b = (3,2,5,1). The corresponding basis matrix is the identity.
Furthermore, we have ¢cg = (1,1,1,1). We evaluate the reduced cost of each one
of the original variables z;, which is —czA,, and form the initial tableau:

R T3 X4 Z5 Te I7 I8

-1 0 -8 -21 -1 0 0 0 0

5 = 3 1 2 3 U] 1 0 0 0
rg = 2 | -1 2 6 [y 0 1 0 0
x7 = 5 0 4 9 0 0 0 1 0
rg = 1 0 0 3 * 0 0 0 1

We bring x4 into the basis and have zg exit the basis. The basis matrix B is still
the identity and only the zeroth row of the tableau changes. We obtain:

T T2 I3 Ti Is Te T7 T8

—10 0 -8 -18 0 0 0 0 1
5 = 3 1 2 3 0 1 0 0 0
Tg = 2 | -1 2 6 60 0 1 0 o0
I7 = 5 0 4 9 0 0 0 1 0
Ts = 1 0 0 ¥ 1. 0 0 o0 1
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We now bring x3 into the basis and have x4 exit the basis. The new tableau is:

1 T2 T3 Ts Ts Te 7 xs

4] 0 -8 0 6 0 0 0 7
zs=| 2| 1 2 0 -1 1 0 0 -1
ze=| 0|-1 2* 0 -2 0 1 0 =2
@;=| 2| 0 4 0 -3 0 0 1 -3
z3=|1/3| 0 0 1 1/3 ¢ 0 0 1/3

We now bting 2 into the basis and x¢ exits. Note that this is a degenerate pivot
with 8* = 0. The new tableau is:

1 T2 ookt T4 xs Tre x7 1.3

-4 -4 0 0 -2 0 4 0 -1

5= 2 > 0 0 1 1 -1 0 1
z;=| 0 |-1/2 1 0 -1 0 1/2 0 -1
zr=| 2 2 0 0 1 0 -2 1 1
z3=|1/3 0 0 113 0 0 0 1/3

We now have ¢, enter the basis and z5 exit the basis. We obtain the following
tableau:

1 X2 X3 T4 Zs5 re It xs
00 0o o0 0o 2 2 0 1
;= 1|1 0 0 1/2 1/2 -1/2 0 1/2
za=|1/2 | 0 1 0 —3/4 1/4 1/4 D -3/4
zz=| 0|0 0 0 0 -1 -1 1 0
z3=|1/3 | 0 0 1 1/3 0 0 0 1/3

Note that the cost in the auxiliary problem has dropped to zero, indicating that
we have a feasible solution to the original problem. However, the artificial variable
z7 is still in the basis, at zero level. In order to obtain a basic feasible solution
to the original problem, we need to drive z7 out of the basis. Note that z7 is the
third basic variable and that the third entry of the columns B™1A;, j =1,...,4,
associated with the original variables, is zero. This indicates that the matrix
A has lincarly dependent rows. At this point, we remove the third row of the
tableau, because it corresponds to a redundant constraint, and also remove all of
the artificial variables. This leaves us with the following initial tableau for the
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original problem:

T1 ¥2 I3 Tq
* * * * *
m=| 1|1 0 0 172

za=11210 1 0 -3/4
#3= |13 0 0o 1 1/3

We may now compute the reduced costs of the original variables, fill in the ze- ]

roth row of the tableau, and start executirg the simplex method on the original
problem.

We observe that in this example, the artificial variable zs was unnecessary.

Instead of starting with x5 = 1, we could have started with z, = 1 thus elimi- 3
nating the need for the first pivot. More generally, whenever there is a variable
that appears in a single constraint and with a positive coefficient (slack variables

being the typical example), we can always let that variable be in the initial basis
and we do not have to associate an artificial variable with that constraint.

The two-phase simplex method

We can now summarize a complete algorithm for linear programming prob-
lems in standard form.

Phase I:

1.” By multiplying somé of the constraints by —1, change the prob-
- lemso that b > 0.

"2. Introduce arsificial variables y1.. .., ym, if necessary, and apply
the simplex method to the auxiliary problem with cost 3., 3.

3. If the optimal cost in the auxiliary problem is positive, the crig-
inal problem is infeasible and the algorithm ferminates,

4. ' If the optimal cost i the auxiliary probleru is zero, a feasible
solution to the original problem has been found. K no artificial -
variable is in the final basis, the artificial variables and the cor-
responding columns are eliminated, and a feaszble basis for the
original problém is available.

5. Ifthe £th basic-variable is an artificial one, examine the fth.entry
of the-columins B™*A;, j = 1,...,n. If all of these entries are
_zero, the £th row represents a redundant constraint and is elimi-
“nated.. Otherwise, if the £th entry of the jth column is ‘nonzero, -
““apply a change of basis (with this entrv servmg as the pivot
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element): the fth basic variable exits and x; enters the basis.
Hepeat this operation until all artificial variables are drlven out
of the basis.
‘Phase I1:
1. Let the final basis and tableau obtamed from Phase I be the
initial basis and tableau for Phase II.

2. Compute the reduiced costs of all variables for ‘this initial basjs,
- using the cost coeflicients of the original problem: )

The above two-phase algorithm is & complete method, in the sense
that it can handle all possible outcomes. As long as cyeling is avoided (due
to either nondegeneracy, an anticycling rule, or luck), one of the following
possibilities will materialize:

(a) If the problem is infeasible, this is detected at the end of Phase I.

{b) If the problem is feasible but the rows of A are linearly dependent,
this is detected and corrected at the end of Phase I, by eliminating
redundant equality constraints.

(¢) If the optimal cost is equal to —oo, this is detected while running
Phase II.

(d) Else, Phase II terminates with an optimal solution.

The big-M method

We close by mentioning an alternative approach, the big-M method, that
combines the two phases into a single one. The idea is to introduce a cost

function of the form
n m
Z Cj %5 + M Z Yis
j=1 i=1

where M is a large positive constant, and where 3; are the same artificial
variables as in Phase T simplex. For a sufficiently large choice of M, if the
original problem is feasible and its optimal cost is finite, all of the artificial
variables are eventually driven to zero (Exercise 3.26), which takes us back
to the minimization of the original cost function. In fact, there is no reason
for fixing a numerical value for M. We can leave M as an undetermined
parameter and let the reduced costs be functions of M. Whenever M is
compared to another number (in order to determine whether a reduced cost
is negative), M will be always treated as being larger.
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Example 3.9 We consider the same linear programming problem as in Exam-

ple 3.8:
minimize 1 + zZ2 + z3

subject to 1 + 222 + 3z3 =

—z1 + 222 + 6z3

4z + 9z3

3z + x4 =

[ ST Yl (X ‘

We use the big-M method in conjunction with the following auxiliary problem, ]

in which the unnecessary artificial variable xg is omitted.

If
—_n by W

minimize T + X2 + z3 + Mz + Mz + Mzo
subject to z1 + 2x2 + 3z + x5
-z + 2x2 + 63 + ze
4z + 93 + oz
3x3 + 4
T1y. .27 2 0.

i

= Ut N W

I

A basic feasible solution to the auxiliary problem is obtained by letting
(5, 26, 7,@4) = b = (3,2,5,1). The corresponding basis matrix is the identity. 3
Furthermore, we have cp = (M, M, M,0). We evaluate the reduced cost of each §
one of the original variables z;, which is &; — ¢ A;, and form the initial tableau:

1 T2 T3 T4 Iz Te Ty

—-10M 1 -8M+1 -18M+1 0 0o o0 o

&5 = 3 1 2 3 0 1 0 o
Te = 2 | ~1 2 6 0O 0o 1 ¢
T7 = 5 0 4 9 0 0 0 1
T4 = 1 0 0 3 1. 0 0 ¢

The reduced cost of z3 is negative when M is large enough. We therefore bring
#3 into the basis and have 74 exit. Note that in order to set the reduced cost
of 3 to zero, we need to multiply the pivot row by 6M — 1 /3 and add it to the }
zeroth row. The new tableau is:

1 T2 3 Ta Tz T X7

—4M —1/3 1 —8M+1 0 6M-1/3 © 0 O

T5 = 2 1 2 0 -1 1t 0 0
Te = 0 |-1 2 0 -2 0 1 0
T7 = 2 0 4 0 -3 0 0 1
T3 = 1/3 0 ] 1 i/3 0 0 o

The reduced cost of =3 is negative when M is large enough. We therefore bring §
z7 into the basis and x¢ exits. Note that this is a degenerate pivot with §* = 0. 4
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The new tableau is:

21 22 &3 x4 s rs x7
—4M—% —4M+g 0 0 —2M+§ 0 4M—% 0
T = 2 2* 0 0 1 1 -1 0
Ty = 0 -1/2 1 o0 -1 0 /2 0
Zr = 2 2 0 0 1 0 -2 1
T3 = 1/3 0 0 1 1/3 0 0 0
We now have z; enter and x5 exit the basis. We obtain the following tableau:

ry Ty I3 T4 zs5 Tg &7

—11/6 0 0 0 -1/12 2M-3/4 2M+1/4 O

x = 11 0 o 1/2 1/2 -1/2 0

To= 1/2 0 1 0 -3/4 1/4 /4 0

T7 = 0 0o 0 o 0 -1 -1 1

T3 = 1/3 0o 0 1 1/3* 0 0 0

We now bring x4 into the basis and z3 exits. The new tableau is:

T1 X2 T3 T4 x5 e IT7

—7/4 | 0 0 1/4 0 2M-3/4 2M+1/4 0O

m=| 1211 0 -3/2 0 1/2 -1/2 0©
z2=| 54| 0 1 9/4 0 1/4 /4 0©
a7 = Do o 0 0 -1 -1 1
2= 1[0 o 3 1 0 0 0

With M large enough, all of the reduced costs are nonnegative and we have
an optimal solution to the auxiliary problem. In addition, all of the artificial
variables have been driven to zero, and we have an optimal solution to the original
problem.

3.6 Column geometry and the simplex
method

In this section, we introducs an alternative way of visualizing the workings
of the simplex method. This approach provides some insights into why the
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simplex method appears to be efficient in practice.
We consider the problem

minimize ¢'x

subject to Ax = b
! e'x 1 (3.6)

x > 0,

where A is an m x n matrix and e is the n-dimensional vector with all ;

components equal to one. Although this might appear to be a special type
of a linear programming problem, it turns out that every problem with a
bounded feasible set can be brought into this form (Exercise 3.28}. The

constraint ¢'x = 1 is called the converity constraint. We also introduce |
an auxiliary variable z defined by z = ¢'x. If A A, ... A, are the n |
columns of A, we are dealing with the problem of minimizing 2z subject to |

the nonnegativity constraints x > 0, the convexity constraint Y"1 | x; = 1,
and the constraint

%o on[ 5]

In order to capture this problem geometrically, we view the horizontal |

plane as an m-dimensional space containing the columns of A, and we

view the vertical axis as the one-dimensional space associated with the cost !
components ¢;. Then, each point in the resulting three-dimensional space

corresponds to a point {A;, ¢;); see Figure 3.5.

In this geometry, our objective is to constrict a vector (b, z), which
is a convex combination of the vectors (A;, ¢i), such that z is as small as
possible. Note that the vectors of the form (b, z) lie on a vertical line, which
we call the requirement line, and which intersects the horizontal plane at
b. If the requirement line does not intersect the convex hull of the points

(As,¢;), the problem is infeasible. If it does intersect it, the problem is

feasible and an optimal solution corresponds to the lowest point in the
intersection of the convex hull and the requirement line. For example, in
Figure 3.6, the requirement line intersects the convex hull of the points
(Ai,¢;}; the point G corresponds to an optimal solution, and its height is
the optimal cost.

We now need some terminology.
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(A

R i Ao | (Agcy)

Figure 3.5: The column geometry.

Thus, three points are either collinear or they are affinely independent
and determine a two-dimensional simplex (a triangle). Similarly, four points
either lie on the same plane, or they are affinely independent and determine
a three-dimensional simplex (a pyramid).

Let us now give an interpretation of basic feasible solutions to prob-
lem (3.6) in this geometry. Since we have added the convexity constraint,
we have a total of m+ 1 equality constraints. Thus, a basic feasible solution
is associated with a collection of m+ 1 linearly independent columns (A;, 1)
of the linear programming problem (3.6). These are in turn associated with
m+1 of the points (A, ¢;), which we call basic poinis; the remaining points
(A;, c;)} are called the nonbasic points. It is not hard to show that the m+1
basic points are affinely independent (Exercise 3.29) and, therefore, their
convex hull is an m-dimensional simplex, which we call the basic simplez.
Let the requirement line intersect the m-dimensional basic simplex at some
point (b,z). The vector of weights z; used in expressing (b, z) as a convex
combination of the basic points, is the current basic feasible solution, and =z
represents its cost. For example, in Figure 3.6, the shaded triangle CDF is
the basic simplex, and the point H corresponds to a basic feasible solution
associated with the basic points C, D, and F.

Let us now interpret a change of basis geometrically. In a change of
basis, a new point (A, ¢;) becomes basic, and one of the currently basic
points is to become nonbasic. For example, in Figure 3.6, if C, D, F,
are the current basic points, we could make point B basic, replacing F
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Figure 3.6: Feasibility and optimality in the column geometry.

(even though this turns out not to be profitable]. The new basic simplex

would be the convex hull of B, C, D, and the new basic feasible solution
would correspond to point I. Alternatively, we could make point E basic,
replacing €, and the new basic feasible solution would now correspond to
point G. After a change of basis, the intercept of the requirement line with
the new basic simplex is lower, and hence the cost decreases, if and only
if the new basic point is below the plane that passes through the old basic
points; we refer to the latter plane as the dual plane, For example, point
E is below the dual plane and having it enter the basis is profitable; this is

not the case for point B. In fact, the vertical distance from the dual plane |

to a point {A;, ¢;) is equal to the reduced cost of the associated variable z;
(Exercise 3.30); requiring the new basic point to be below the dual plane

is therefore equivalent to requiring the entering column to have negative .

reduced cost.
We discuss next the selection of the basic point that will exit the
basis. Each possible choice of the exiting point leads to a different basic

simplex. These m basic simplices, together with the original basic simplex |

(before the change of basis) form the boundary (the faces) of an (m + 1)-
dimensional simplex. The requirement line exits this (m + 1)-dimensional

simplex through its top face and must therefore enter it by crossing some !
other face. This determines which one of the potential basic simplices will |

be obtained after the change of basis. In reference to Figure 3.6, the basic
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points C, D, F, determine a two-dimensional basic simplex. If point E
is to become basic, we obtain a three-dimensional simplex (pyramid) with
vertices C, D, E, F. The requirement line exits the pyramid through its
top face with vertices C, D, F. It enters the pyramid through the face with
vertices D, E| F; this is the new basic simplex.

We can now visualize pivoting through the following physical analogy.
Think of the original basic simplex with vertices C, D, F, as a solid object
anchored at its vertices. Grasp the corner of the basic simplex at the vertex
C' leaving the basis, and pull the corner down to the new basic point E.
While so moving, the simplex will hinge, or pivot, on its anchor and stretch
down to the lower position. The somewhat peculiar terms (e.g., “simplex”,
“pivot”) associated with the simplex method have their roots in this column
geometry.

Example 3.10 Cousider the problem illustrated in Figure 3.7, in which m = 1,
and the following pivoting rule: choose a point (A, ¢;) below the dual plane to
become basic, whose vertical distance from the dual plane is largest. According to
Exercise 3.30, this is identical to the pivoting rule that selects an entering variable
with the most negative reduced cost. Starting from the initial basic simplex
consisting of the points (Aj,cs), (As, cs), the next basic simplex is determined
by the peints (As, ¢a), (As, ¢s5), and the next one by the points (As, ¢s), (As, cs).
In particular, the simplex method only takes two pivots in this case. This example
indicates why the simplex method may require a rather small number of pivots,
even when the number of underlying variables is large.

Figure 3.7: The simplex method finds the optimal basis after
two iterations. Here, the point indicated by a number ¢ corre-
sponds to the vector (Ai, e:).
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required by the algorithm, when applied to a random problem drawn ac- |

cording to the postulated probability distribution. Unfortunately, there is
no natural probability distribution over the set of linear programming prob-
lems. Nevertheless, a fair number of positive results have been obtained for
a few different types of probability distributions. In one such result, a set of
vectors ¢, ay, . .., &, € RN and scalars by, ..., b, is given. Fori=1,... ,m,
we introduce either constraint ajx < b; or ajx > b;, with equal probabil-

ity. We then have 2™ possible linear programming problems, and suppose 1

that L of them are feasible. Haimovich (1983) has established that under

a rather special pivoting rule, the simplex method requires no more than °

n/2 iterations, on the average over those I feasible problems. This linear

dependence on the size of the problem agrees with observed behavior; sore {

empirical evidence is discussed in Chapter 12.

3.8 Summary

This chapter was centered or. the development of the simplex method, which
is a complete algorithm for solving linear programming problems in stan-
dard form. The cornerstones of the simplex method are:

(a) the optimality conditions {nonnegativity of the reduced costs) that -

allow us to test whether the current basis is optimal;

(b) a systematic method for performing basis changes whenever the op- |

timality concitions are violated.

At a high level, the simplex method simply moves from one extreme |

point of the feasible set to another, each time reducing the cost, until an
optimal solution is reached. However, the lower level details of the simplex
method, relating to the organization of the required computations and the

assoclated bookkeeping, play an important role. We have described three |

different implementations: the naive cne, the revised simplex method, and
the full tableau implementation. Abstractly, they are all equivalent, but
their mechanics are quite different. Practical implementations of the sim-
plex method follow our general description of the revised simplex method,

but the details are different, because an explicit computasion of the inverse |

basis matrix is usually avoided.
We have seen that degeneracy can cause substantial difficulties, in-

cluding the possibility of nonterminating behavior (cycling). This is because |
in the presence of degeneracy, a change of basis may keep us at the same °

basic feasible solution, with no cost improvemsnt resulting. Cycling can
be avoided if suitable rules for choosing the entering and exiting variables
(pivoting rules) are applied (e.g., Bland’s rule or the lexicographic pivoting
rule).

Starting the simplex method requires an initial basic feasible solution,
and an associated tableau. These are provided by the Phase I simplex

algorithm, which is nothing but the simplex method applied to an auxiliary
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problem. We saw that the changecver from Phase I to Phase II involves
some delicate steps whenever some artificial variables are in the final basis
constructed by the Phase [ algorithm.

The simplex method is a rather efficient algorithm and is incorporated
in most of the commercial codes for linear programming. While the number
of pivots can be an exponential function of the number of variables and
constraints in the worst case, its observed behavior is a lot better, hence
the practical usefulness of the method.

3.9 Exercises

Exercise 3.1 (Local minima of convex functions) Let f : R — R be a
convex function and let § C R" be a convex set. Let x* be an element of S.
Suppose that x™ is a local optimum for the problem of minimizing f{x) over &;
that is, there exists some ¢ > 0 such that f(x*) < f(x) for all x € § for which
lx — x| € e. Prove that x* is globally optimal; that is, f(x") < f(x) for all
x€S.

Exercise 3.2 (Optimality conditions) Consider the problem of minimizing
¢'x over a polyhedron P. Prove the following:

(a) A feasible solution x is optimal if and only if ¢’d > 0 for every feasible
direction d at x.

(b) A feasible sclution x is the unique optimal solution if and only if ¢'d > 0
for every nonzero feasible direction d at x.

Exercise 3.3 Let x be an element of the standard form polyhedron P = {x ¢
R" | Ax =b, x > 0}. Prove that a vector d € R" is a feasible direction at x if
and only if Ad =0 and d; > 0 for every 7 such that z; = 0.

Exercise 3.4 Consider the problem of minimizing ¢'x over the set P = {x €
R | Ax=b, Dx < f, Ex < g}. Let x* be an element of P that satisfies
Dx* =f, Ex" < g. Show that the set of feasible directions at the point x* is the
set

{de®" | Ad=0, Dd<0}.

Exercise 3.5 Let P = {x ER otz taa=1 x> 0} and consider the
vector x = (0,0, 1). Find the set of feasible directions at x.

Exercise 3.6 (Conditions for a unique optimum} Let x be a basic feasible
solution associated with some basis matrix B. Prove the following:

(a) If the reduced cost of every nombasic variable is positive, then x is the
unique optimal solution.

(b) Ifx is the unique optimal solution and is nondegenerate, then the reduced
cost of every nonbasic variable is positive.
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3.7.

3.9.

Chap. 83  The simplex method }

The example showing that the simplex method can take an exponen- 4
tial number of iterations is due to Klee and Minty (1972). The Hirsch ;
conjecture was made by Hirsch in 1957. The first results on the aver- J
age case behavior of the simplex method were obtained by Borgwardt
(1982) and Smale (1983). Schrijver (1986) contains an overview of )
the early research in this area, as well as proof of the n/2 bound on !

the number of pivots due to Haimovich (1983).

The results in Exercises 3.10 and 3.11, which deal with the smallest ?
examples of cycling, are due to Marshall and Suurballe (1969). The §
matrix inversion lemma [Exercise 3.13(a)] is known as the Sherman- §

Morrison formula.
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