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Chap. 1 Introduction

nally, Schrijver (1986} is a comprehensive, but more advanced reference on
the subject.

1.1.
1.2.

1.3.

1.5.
1.6.

1.7,

The formulation of the diet problem is due to Stigler (1945).

The case study on DEC’s production planning was developed by Fre-
und and Shannahan (1992). Methods for dealing with the nurse
scheduling and other cyclic problems are studied by Bartholdi, Orlin,
and Ratliff (1980). More information on pattern classification can be
found in Duda and Hart (1973), or Haykir (1994).

A deep and comprehensive treatment of convex functions and their
properties is provided by Rockafellar (1970). Linear programming
arises in control problems, in ways that are more sophisticated than
what is described here; see, e.g., Dahleh and Diaz-Bobillo (1995).
For an introduction to linear algebra, see Strang (1988).

For a more detailed treatment of algorithms and their computational
requirements, see Lewis and Papadimitriou (1981), Papadimitriou
and Steiglitz (1982), or Cormen, Leiserson, and Rivest (1990).
Exercise 1.8 is adapted from Boyd and Vandenberghe (1995). Ex-
ercises 1.9 and 1.14 are adapted from Bradley, Hax, and Maznanti
(1977). Exercise 1.11 is adapted from Ahuja, Magnanti, and Orlin
(1993).
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In this chapter, we define a polyhedron as a set described by a finite number
of linear equality and inequality constraints. In particular, the feasible set
in a linear programming problem is a polyhedron. We study the basic
geometric properties of polyhedra in some detail, with emphasis on their
“corner points” (vertices). As it turns out, common geometric intuition
derived from the familiar three-dimensional polyhedra is essentially correct
when applied to higher-dimensional polyhedra. Another interesting sspect
of the development in this chapter is that certain concepts (e.g., the concept
of a vertex) can be defined either geometrically cr algebraically. While the
geometric view may be more natural, the algebraic approach is essential for
carrying out computations. Much of the richness of the subject lies in the
interplay between the geometric and the algebraic points of view.

Our development starts with a characterization of the corner points
of feasible sets in tne general form {x | Ax > b}. Later on, we focus on the
case where the feasible set is in the standard form {x | Ax = b, x > 0},
and we derive a simple algebraic characterization of the corner points. The
latter characterization will play a central role in the development of the
simplex method in Chapter 3.

The main results of this chapter state that a nonempty polyhedrcn has
at least one corner point if and only if it does not contain a line, and if this
ig the case, the search for optimal solutions to linear programming probletns
can be restricted to corner points. These resuits are proved for the most
general case of linear programming problems using geometric arguments.
The same results will also be proved in the next chapter, for the case of
standard form problems, as a corollary of our development of the simplex
method. Thus, the reader who wishes to focus on standard form problems
may skip the proofs in Sections 2.5 and 2.6. Finally, Sections 2.7 and 2.8 can
also be skipped during a first reading; any results in these sections that are
needed later on will be rederived in Chapter 4, using different techniques.

2.1 Polyhedra and convex sets

In this section, we introduce some important concepts that will be nsed
to study the geometry of linear programming, including a discussion of
convexity.

Hyperplanes, halfspaces, and polyhedra

We start with the formal definition of a polyhedron.

Definition 2.1 A polyhedron is a set that ean be described in the
form {x € " | Ax > b}, where A is an m X n matrix and b i a

vector in ®™.
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As discussed in Section 1.1, the feasible set of any linear programming
problem can be described by inequality constraints of the form Ax > b,
and is therefore a polyhedron. In particular, a set of the form {x € ®" |
Ax = b, x > 0} isalso a polyhedron and will be referred to as a polyhedron
in standard form.

A polyhedron can either “extend to infinity,” or can be confined in a
finite region. The definition that follows refers to this distinction.

»

Deﬂnitiml 5.2 A'set S ¢ R" is bounded if there exists & constant
K. such’that the absolute value of every component of every element
of 8 is less than or equal to K.

The next definition deals with polyhedra determined by a single .inear
constraint.

Definition 2.3 Let a be a nonzero vector in 8" and let b be a scalar.
(a) The set {x € R" | a'x = b} is called a hyperplane.
{b) The set {x € ®" | a'x > b} is called a halfspace.

Note that a hyperplane is the boundary of a corresponding halfspace.
In addition, the vector a in the definiticn of the hyperplane is perpendicular
to the hyperplane itself. [To see this, note that if x and y belong to the
same hyperplane, then a’x = a'y. Hence, a’'(x — y) = 0 and therefore a
is orthogonal to any direction vector confined to the hyperplane.] Finally,
note that a polyhedron is equal to the intersection of a finite number of
halfspaces; see Figure 2.1.

Convex Sets

We now define the important notion of a convex set.

Definition 2.4 A set § C R™ is convex if for any x,y € 5, and any
A€ 10,1], we have Ax + (1— A)y € 5.

Note that if A € [0,1], then Ax + (1 — A)y is a weighted average of
the vectors x, ¥, and therefore belongs to the line segment joining x and
¥. Thus, a set is convex if the segment joining any two of its elements is
contained in the set; see Figure 2.2.

Our next definition refers to weighted averages of a finite number of
vectors; see Figure 2.3.
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Figure 2.1: (a) A hyperplane and two halfspaces. (b) The poly-
hedron {x |ajx > b;, i=1,...,5} is the intersection of five halfs-
paces. Note that each vector a; is perpendicular to the hyperplane
{x | ajx = b}

Definition 2.5 Let x!,...,x* be vectors in ®" and let A;,...,\; be

nonnegative scalars whose sum is unity.

(a) The vector TF | A\ix* is said to be a convex combination of
the vectors x!, ... x¥.

1

(b) The convex hull of the vectors x?, .. .,x" is the set of all convex

combinations of these vectors.

The result that follows establishes some important facts related to

convexity.

Theorem 2.1
(a) The intersection of convex sets is convex.
(b) Every polyhedron is a convex set.

(c) A convex combination of a finite number of elements of a convex
set also belongs to that set.

(d) The convex hull of a finite number of vectors js a convex set.
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Figure 2.2: The set S is convex, but the set ) is not, because
the segment joining x and y is not contained in ¢J.

Figure 2.3: The convex hull of seven points in R%.

Proof.

(a) Let S;, ¢ € I, be convex sets where I is some index set, and suppose
that x and y belong to the intersection M;=;S;. Let A € [0,1]. Since
each S; is convex and contains x,y, we have Ax+(1—A)y € 5;, which
proves that Ax + (1 — A)y also belongs to the intersection of the sets
S,. Therefore, N;e;S; is convex.

(b) Let a be a vector and let b a scalar. Suppose that x and y satisfy
a’x > b and a’y > b, respectively, and therefore belong to the same
halfspace. Let A € [0,1]. Then, a’(Ax+(1-A)y) = M+ (1-A)b=1b,
which proves that Ax 4 (1 — A)y also belongs to the same halfspace.
Therefore a halfspace is convex. Since a polyhedron is the intersection
of a finite number of halfspaces, the result follows from part {(a).

(c) A convex combination of two elements of a convex set lies in that
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set, by the definition of convexity. Let us assume, as an induction
hypothesis, that a convex combination of k elements of a convex set
belongs to that set. Consider k + 1 elements x!,...,x*"1 of a convex
set S and let Aq,...,Ag+1 be nonnegative scalars that sum to 1. We
assume, without loss of generality, that Ary1 7 1. We then have

k+1
3 oxt = Aepx* (1 /\k+1)z )‘k : x'. (2.1)
i=1

The coefficients A;/(1 — Ak41), ¢ =1,..., k, are nonnegative and sum

10 unity; using the induction hypothesis, Zf L xt /(1= Agq1) € S.
Then, the fact that S is convex and Eq. (2.1) imply that Y, 7} B i €
S, and the induction step is complete.

(d) Let S be the convex hull of the vectors x!,...,x* and let y =
Zle Gxtz= Zle 0;x* be two elements of S, where ¢; > 0, §; > 0,
and ¢, =>% 6, = 1. Let A € [0,1]. Then,

k

Ay +(1—N) z—)\zgx +(1~)\)Zﬂx =) (AG+(1-08:)x’
=1

i=1

We note that the coefficients A¢; + (1 — A)8;, ¢ = 1,...,k, are non-
negative and sum to unity. This shows that Ay + (1 — A\)z is a convex
combination of x1,...,x* and, therefore, belongs to S. This estab-
lishes the convexity of S. O

2.2 Extreme points, vertices, and basic
feasible solutions

We observed in Section 1.4 that an optimal solution to a linear programming
problem tends to occur at a “corner” of the polyhedron over which we are
optimizing. In this section, we suggest three different ways of defining the
concept of a “corner” and then show that all three definitions are equivalent.

Our first definition defines an extreme point of a polyhedron as a point
that cannot be expressed as a convex combination of two other elements of
the polyhedron, and is illustrated in Figure 2.4. Notice that this definition
is entirely geometric and does not refer to a specific representation of a
polyhedron in terms of lirear constraints.
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Figure 2.4: The vector w is not an extreme point because it is a
convex combination of v and u. The vector x is an extreme point:
ifx=Ay+(1—-XA)zand X € 0,1}, then either y ¢ P,orz ¢ P, or
X=y,orXx=2.

An alternative geometric definition defines a vertex of a polyhedron
P as the unique optimal solution to some linear programming problem with
feasible set P.

Definition 2.7 Let P be‘ a polyhedron. A vector x < P zé avertex
of P if there eousts some ¢ such tbat c x < cy for &H y satzsfymg
y € P aad y 7& x.

In other words, x is a vertex of P if and only if P is on one side of
a hyperplane (the hyperplane {y | ¢y = ¢/x}) which meets P only at the
point x; see Figure 2.5.

The two geometric definitions that we have given so far are not easy
to work with from an algorithmic point of view. We would like to have a
definition that relies on & representation of a polyhedron in terms of linear
constraints and which reduces to an algebraic test. In order to provide such
a definition, we need some more terminology.

Consider a polyhedron P C R™ defined in terms of the linear equality
and inequality constraints

a; > b, 1 € M,
a: < bi» i€ M2:
aix = b, 1 € M3,

where M;, M,, and M3 are finite index sets, each a; is a vector in ®", and
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Figure 2.5: The line at the bottom touches P at a single point
and x is a vertex. On the other hand, w is not a vertex because
there is no hyperplane that meets P only at w.

each b; is a scalar. The definition that follows is illustrated in Figure 2.6.

Definition 2.8 If a vector x* satisfies ajx* = b; for somei in My, M,
or M3, we say that the corresponding constraint is active or binding
at x*.

If there are n constraints that are active at a vector x*, then x* satis-
fies a certain system of n linear equations in n unknowns. This system has a
unique solution if and only if these n equations are “linearly independent.”
The resuls that follows gives a precise meaning to this statement, together
with a slight generalization.

Theorem 2.2 Let x* be an element of R" and let I = {i| ajx* = b;}
be the set -of indices of constraints that are active at x*. ‘Then; the
following are equivalent:

(a) There exist n vectors in the set {a; | i € I}, which are_ linearly
independent.

(b) The span of the vectors.a;, i € I, is all of X", that is, every
element of R™ can be expressed as a linear combination of the
vectors a;, i € I.

(¢)  The system of equations a;x = b,, 1 € I, has a unique solution.

Proof. Suppose that the vectors a;, ¢ € I, span R™. Then, the span of
these vectors has dimension n. By Theorem 1.3(a) in Section 1.5, n of
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Figure 2.6: Let P = {(zl,xz,x;;) | z1+z24+z3 =1, 21,22, 23 >
0}. There are three constraints that are active at each one of the
points A, B, C and D. There are only two constraints that are
active at point E, namely z1 +z2 + 3 =1 and z2 = 0.

these vectors form a basis of R™, and are therefore linearly independent.
Conversely, suppose that n of the vectors a;, ¢ € I, are linearly independent.
Then, the subspace spanned by these n vectors is n-dimensional and must
be equal to R". Hence, every element of R™ is a linear combination of the
vectors a;, i € I. This establishes the equivalence of (a) and (b).

If the system of equations a;x = b;, ¢ € I, has multiple solutions, say
x! and x?, then the nonzero vector d = x! — x? satisfies ajd = 0 for all
i € I. Since d is orthogonal to every vector a;, i € I, d is not a linear
combination of these vectors and it follows that the vectors a;, ¢ € I, do
not span R". Conversely, if the vectors a;, ¢ € I, do not span R"™, choose
a nonzero vector d which is orthogonal to the subspace spanned by these
vectors. If x satisfies alx = &; for all i £ I, we also have aj(x + d) = b; for
all i € I, thus obtaining mulsiple solutions. We have therefore established
that (b) and (c) are equivalent. O

With a slight abuse of language, we will often say that certain con-
straints are linearly independent, meaning that the corresponding vectors
a; are linearly independent. With this terminology, statement (a) in The-
orem 2.2 requires that there exist n linearly independent constraints that
are active at x*.

We are now ready to provide an algebraic definition of a corner point,
as a feasible solution at which there are n linearly independent active con-
straints. Note that since we are interested in a feasible solution, all equality
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constraints must be active. This suggests the following way of looking for
corner points: first impose the equality constraints and then require that
enough additional constraints be active, so that we get a total of n linearly
independent active constraints. Once we have n linearly independent active
constraints, a unique vector x* is determined (Theorem 2.2). However, this
procedure has no guarantee of leading to a feasible vector x*, because some
of the inactive constraints could be violated; in the latter case we say that
we have a basic (but not basic feasible) solution.

Definition 2.9 Consider a polyhedron P defined by linear equality
and inequality constraints, and let x* be an element of ®”.

(a) The vector x* is a basic solution if:
(i) Al equality constraints are active;
(ii) Out of the constraints that are active at x*, there are n of
them that are linearly independent.

(b) If x* is a basic solution that satisfies all of the constraints, we
say that it is a basic feasible solution.

In reference to Figure 2.6, we note that points A, B, and U are
basic feasible solutions. Point D is not a basic solution because it fails to
satisfy the equality constraint. Point E is feasible, but not basic. If the
equality constraint z; + x5 + 3 = 1 were to be replaced by the constraints
1+ To+ 23 < 1and z; + 22 + 23 > 1, then D would be a basic solution,
according to our definition. This shows that whether a point is a basic
solution or not may depend on the way that a polyhedron is represented.
Definition 2.9 is also illustrated in Figure 2.7.

Note that if the number m of counstraints used to define a polyhedron
P C R" is less than n, the number of active constraints at any given point
must also be less than n, and there are no basic or basic feasible solutions.

We have given so far three different definitions that are meant to cap-
ture the same concept; two of them are geometric (extreme point, vertex)
and the third is algebraic (basic feasible solution). Fortunately, all three
definitions are equivalent as we prove next and, for this reason, the three
terms can be used interchangeably.

Theorem 2.3 Let P be a nonempty polyhedron and let x* € P.
Then, the following are equivalent:

{a) x* is a vertex;
(b) x* is an extreme point;

(¢) x" is a basic feasible solution.
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Figure 2.7: The points A, B, C, D, E, F are all basic solutions
because at each one of them, there are two linearly independent
constraints that are active. Points , D, F, F are basic feasible
solutions.

Proof. For the purposes of this proof and without loss of generality, we
assume that P is represented in terms of constraints of the form ajx > b;
and alx = b,.

Vertex = Extreme point

Suppose that x* € P is a vertex. Then, by Definition 2.7, there exists
some ¢ € R such that ¢’x* < &y for every y satisfying y € P and
y#x* fyeP ze P y#xz#x,and0 < A <1, then
¢'x* < ¢’y and ¢'x* < ¢z, which implies that c'x* < ¢'(Ay + (1 - A)z)
and, therefore, x* £ Ay+{1—A)z. Thus, x* cannct be expressed as a convex
combination of two other elements of P and is, therefore, an extreme point
(cf. Definition 2.6).

Extreme point = Basic feasible solution

Suppose that x* € P is not a basic feasible solution. We will show that x*
is not, an extreme point of P. Let I = {i | alx™ = b;}. Since x” is not a
basic feasible solution, there do not exist n linearly independent vectors in
the family a;, ¢ € I. Thus, the vectors a;, 7 € I, lie in a proper subspace
of ", and there exists some nonzero vector d £ R™ such that ajd = 0,
for all i € I. Let € be a small positive number and consider the vectors
¥ = x" +ed and z = x* —ed. Notice that aly = alx* = b;, for i € I.
Furthermore, for ¢ ¢ I, we have aix* > b; and, provided that ¢ is small, we
will also have ajy > b;. (It suffices to choose € so that ¢jajd| < ajx* —b; for
all 4 ¢ I.) Thus, when ¢ is small enougt, y € P and, by a similar argument,
2z € P. We finally notice that x* = (y + =z)/2, wkich implies that x* ‘s not
an extreme point.
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Basic feasible solution = Vertex

Let x* be a basic feasible solution and let 1 = {i | alx* = &} Let
¢=3,.;a;. Wethen have

cx* = E ax* = E b;.

el i€l

Furthermeore, for any x € P and any i, we have a/x > b;, and

cx = Z ax > Z b;. (2.2)

iel iel

This shows that x* is an optimal solution to the problem of minimizing ¢’x
over the set P. Furthermore, equality holds in (2.2) if and only if alx = b,
for all 1 € I. Since x* is a basic feasible solution, there are n linearly
independent constraints that are active at x*, and x* is the unique solution
to the system of equations aix = b;, ¢ € I (Theorem 2.2). It follows that x*
is the unique minmizer of ¢’x over the set P and, therefore, x* is a vertex

of P, a

Since a vector is & basic feasible solution if and only if it is an extreme
point, and since the definition of an extreme point does not refer o any
particular representation of a polyhedron, we conclude that the property
of being a basic feasible solution is also indeperdent of the representation
used. (This is in contrast to the definition of a basic solution, which is
representation dependent, as pointed out in the discussion that followed
Definition 2.9.)

We finally note the following important fact.

Corollary 2.1 Given a finite number of lineer inequality constraints,
there can only be a finite number of basic or basic feasible solutions.

Proof. Consider a system of m linear inequality constraints imposed on
a vector x € R™. At any basic solution, there are n linearly independent
active constraints. Since any n linearly independent active constraints de-
fine a unique point, it follows that different basic solutions correspond to
different sets of n linearly independent active constraints. Therefore, the
number of basic solutions is bounded above by the number of ways that we
can choose n constraints out of a total of m, which is finite. L]

Although the number of basic and, therefore, basic feasible solutions
is guaranteed to be finite, it can be very large. For example, the unit cube
{x eR0<x;€1,i=1,... ,n} is defined in terms of 2n constraints,
but has 2™ basic feasible solutions.
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Adjacent basic solutions

Two distinct basic solutions to a set of linear constraints in R™ are said to
be adjacent if we can find n — 1 linearly independent constraints that are
active at both of them. In reference to Figure 2.7, D and E are adjacent
to B; also, A and € are adjacent to D. If two adjacent basic solutions are
also feasible, then the line segment tha: joins them is called an edge of the
feasible set (see also Exercise 2.15).

2.3 Polyhedra in standard form

The definition of a basic solution {Definition 2.9} refers to general palyhe-
dra. We will now specialize to polyhedra in standard form. The definitions
and the results in this section are central to the development of the simplex
method in the next chapter.

Let P = {x € ®" | Ax = b, x > 0} be a polyhedron in standard
form, and let the dimensions of A be m x n, where m is the number of
equality constraints. In most of our discussion of standard form problems,
we will make the assumption that the m rows of the matrix A are lin-
early independent. (Since the rows are n-dimensional, this requires that
m < n.) At the end of this section, we show that when P is nonempty,
linearly dependent rows of A correspond to redundant constraints that can
be discarded; therefore, our linear independence assumption can be made
without loss of generality.

Recall that at any basic solution, there must be n linearly indepen-
dent constraints that are active. Furthermore, every basic solution must
satisfy the equality constraints Ax = b, which provides us with m active
constraints; these are linearly independent because of our assumption on
the rows of A. In order to obtain a total of n active constraints, we need
to choose n — m of the variables z; and set them to zero, which makes the
corresponding nonnegativity constraints z; > 0 active. However, for the
resulting set of n active constraints to be linearly independent, the choice
of these n — m variables is not entirely arbitrary, as shown by the following
result.

Theorém 2.4 Consider the constraints Ax = b and x > 0 and as-
sume that the mxn matrix A has linearly independent rows. A vector
x € R* is a basic solution if and only if we have Ax =b, and there
exist indices B(1),...,B{m} such that:

(a) The columns Apy,...,Ap(my are linearly independent;

(b) Ifis B(1),..., B(m), then z; = 0. :

Proof. Censider some x € £ and suppose that there are indices B(1},...,
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B(m) that satisfy (a) and (b) in the statement of the theorem. The active
constraints z; = 0, ¢ # B(1),...,B{m), and Ax = b imply that

m n
ZAB(i)-’BB(i) = ZAzI’ =Ax=Dh.
i=1

=1

Since the columns Ap;), i = 1,...,m, are linearly independent, TB(Ys -,
TB(m) are uniquely determined. Thus, the system of equations formed by
the active constraints has a unique solution. By Theorem 2.2, there are n
linearly independent active constraints, and this implies that x is a basic
solution.

For the converse, we assume that x is a basic solution and we will
show that conditions (a) and (b) in the statement of the theorem are satis-
fied. Let EB(1),- -, LRk be the components of x that are nonzero, Since
x is a basic solution, the system of equations formed by the active con-
straints 3.1 ; A;z; = b and 2; = 0,4 # B(1),...,B(k), have a unique
solution (cf. Theorem 2.2); equivalently, the equation ZLI Apze =b
has a unique solution. It follows that the columns A B()s- -, Apix) are
linearly independent. [If they were not, we could find scalars Xj,..., Ag,
not all of them zero, such that Zle A g = 0. This would imply that
Zle Api)(Ts@) + M) = b, contradicting the uniqueness of the solution.]

‘We have shown that the columns A B{1):- -1 Ap(k) are linearly inde-
pendent and this implies that k < m. Since A has m linearly independent
rows, it also has m linearly independent columns, which span ®™. It follows
icf. Theorem 1.3(k) in Section 1.5] that we can find m—k additional columns
Ay, Apm) so that the colurns Apuy, it =1,...,m, are linearly
independent. In addition, if ¢ # B(1),..., B(m), then i # B(1),..., B(k)
(because k < m), and x; = 0. Therefore, both conditions {a) and (b) in
the statement of the theorem are satisfied.

In view of Theorem 2.4, all basic solutions to a standard form poly-
hedron can be constructed according to the following procedure.

Procedure for constructing basic solutions
1. Choose m linearly independent columns A B(1): -+ Ap(
2. Let z; =0 for all i £ B(1),..., B(m).
8. Solve the system of m equations kAx = b for the unknowns B(1))
- o+ sy TB(m)- '

If a basic solution constructed according to this procedure is nonneg-
ative, then it is feasible, and it is a basic feasible solution. Conversely, since
every basic feasible solution is a basic solution, it can be obtained from this
procedure. If x is a basic solution, the variables ¢ B(1)1- -1 TB(m) are called
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basic variables; the remaining variables are called nonbasic. The columns
Apays-. ., ABm) are called the basic columns and, since they are linearly
independent, they form a basis of R™. We will sometimes talk about two
bases being distinet or different, our convention is that distinct bases in-
volve different sets {B(1),..., B{m)} of basic indices; if two bases involve
the same set of indices in a different order, they will be viewed as one and
the same basis.

By arranging the m basic columns next to each other, we obtain an
m x m matrix B, called a basis matriz. (Note that this matrix is invertible
because the basic columns are required to be linearly independent.} We can
similarly define a vector xp with the values of the basic variables. Thus,

\ | [ TBu
B=| Apmy Appm - Apm | Xp = :
o | i

The basic variables are determined by solving the equation Bxg = b whose
unique solution is given by

Xg = Bilb.

Example 2.1 Let the constraint Ax = b be of the form

1121000 8
01601 00| |12
10000 10|%Tt 4
01 006 01 6

Let us choose A4, As, Ag, A7 as our basic columns. Note that they are linearly
independent and the corresponding basis matrix is the identity. We then obtain
the basic solution x = (0,0,0,8,12,4,6) which is nonnegative and, therefore,
is a basie feasible solution. Another basis is obtained by choosing the columns
A, A5, Ag, A7 (note that they are linearly independent). The corresponding
basic solution is x = (0,0,4,0, —12,4,6), which is not feasible because zs =
12 < Q.

Suppose now that there was an eighth column Ag, identical to A;. Then,
the two sets of columns {As,As, Ag, A7} and {As, As, Ag, As} coincide. Cn
the other hand the corresponding sets of basic indices, which are {3,5,6,7} and
{3,5,6,8}, are different and we have twe different bases, according to our con-
ventions.

For an intuisive view of basic solutions, recall our interpretation of
the constraint Ax =b, or 3| A;z;, = b, as a requirement to synthesize
the vector b € R™ using the resource vectors A; (Section 1.1). In a basic
solution, we use only m of the resource vectors, those associated with the
basic variables. Furthermore, in a basic feasible solution, this is accom-
plished using a nonnegative amount of each basic vector; see Figure 2.8.
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Figure 2.8: Consider a standard form problem with n = 4 and
m = 2, and let the vectors b, Ay, ..., A4 be as shown. The vectors
A, A; form a basis; the corresponding basic solution is infeasible
because a negative value of z2 is needed to synthesize b from A,
A; The vectors Ay, Az form another basis; the corresponding
basic solution is feasible. Finally, the vectors Ay, A4 do not form
a basis because they are linearly dependent.

Correspondence of bases and basic solutions

‘We now elaborate on the correspondence between basic sclutions and bases.
Different basic solutions must correspond to different bases, because a basis
uniquely determines a basic solution. However, two different bases may lead
to the same basic solution. (For an extreme example, if we have b = 0,
then every basis matrix leads to the same basic solution, namely, the zero
vector.) This phenomenon has some important algorithmic implicazions,
and is closely related to degeneracy, which is the subject of the next section.

Adjacent basic solutions and adjacent bases

Recall that two distinct basic solutions are said to be adjacent if there are
n — 1 linearly independent constraints that are active at both of them.
For standard form problems, we also say that two bases are adjacent if
they share all but one basic column. Then, it is not hard to check that
adjacent basic solutions can always be obtained from two adjacent bases.
Conversely, if two adjacent bases lead to distinct basic solutions, then the
latter are adjacent.

Example 2.2 In reference to Example 2.1, the bases {A4, As, As, A7} and
{A3, As,As, A7} are adjacent because all but one columns are the same. The
corresponding basic solutions x = (0,0, 0,8,12,4,6) and x = (0,0,4,0,—12,4,6)
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are adjacent: we have n = 7 and a total of six common linearly independent
active constraints; these are z; > 0, z» > 0, and the four equality constraints.

The full row rank assumption on A

We close this section by showing that the full row rank assumption on the
matrix A results in no loss of generality.

Theorem 2.5 Let P = {x | Ax =b, x > 0} be a nonempty polyhe-
dron, where A is a matrix of dimensions m X n, with rows al,..., .
Suppose that rank(A) = k < m and that the rows a,...,a] are
linearly independent. Consider the polyhedron

Q={x|ax=b,...a x=b, x>0}
Then Q = P.

Proof. We provide the proof for the case where i, = 1,...,i; = k, that
is, the first k rows of A. are linearly independent. The general case can be
reduced to this one by rearranging the rows of A.

Clearly P C () since any element of P automatically satisfies the
constraints defining (. We will now show that Q C P.

Since rank(A} = k, the row space of A has dimension k and the rows
ay, ..., a, form a basis of the row space. Therefore, every row a’ of A can
be expressed in the form a) = Z;;l Ay, for seme scalars ;. Let x be
an element of P and note that

k k
/ I .
bj=ax= 2 )\Ua]-x= E Asjby, i=1,...,m.
i=1 =1

Consider now an element y of Q. We will show that it belongs to P. Indeed,

for any 1,
k k
a:y = Z )\ija;y = Z /\ijbj = bi,
i=1 i=1
which establishes that y € P and Q C P. ]

Notice that the peolyhedron @ in Theorem 2.5 is in standard form;
namely, @ = {x | Dx = f, x > 0} where D is 2 k x n submatrix of A,
with rank equal to &, and f is a k-dimensional subvector of b. We conclude
that as long as the feasible set is nonempty, a linear programming problem
in standard form can be reduced to an equivalent standard form problem
(with the same feasible set) in which the equality constraints are linsarly
independent.
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Example 2.3 Consider the (nonempty) polyhedron defined by the constraints

211 + w2 + T3 = 2

Ty + T2 =1
1 4+ x3.=1
E],mz,zazﬂ‘

The corresponding matrix A has rank two. This is because the last two rows
(1,1,0) and (1,0,1) are linearly independent, but the first row is equal to the
sum of the other two. Thus, the first constraint is redundant and after it is
eliminated, we still have the same polyhedron.

2.4 Degeneracy

According to our definition, at a basic solution, we must have n lirearly
independent active constraints. This allows for the possibility that the
number of active constraints is greater than n. (Cf course, in n dimensions,
no more than n of them can be linearly independent.) In this case, we say
that we have a degenerate basic solution. In other words, at a degenerate
basic solution, the number of active constraints is greater than the minimum
necessary.

Definition 2.10 A basic solution x € R is said to be degenerate if -
more than n of the constraints are active at x.

In two dimensions, a degenerate basic solution is at the intersection
of three or more lines; in three dimensions, a degenerate basic solution is at
the intersection of four or mare planes; see Figure 2.9 for an illustration. It
turns out that the presence of degeneracy can strongly affect the behavior
of linear programming algorithms and for this reason, we will now develop
some more intuition.

Example 2.4 Corsider the polyhedron P defined by the constraints

T+ z2+ 223 < 8
r2+ 653 £ 12
o < 4
72 <
x1,Z2,23 2> 0.

The vector x = (2,6,0) is a nondegenerate basic feasible solution, because there
are exactly three active and linearly independent constraints, namely, =1 + 22 +
2z3 < 8, 3 < 6, and x5 > 0. The vector x = (4,0,2) is a degenerate basic
feasible solution, because there are four active constraints, three of them linearly
independent, namely, z; + x2 + 273 < 8, 22 + 623 <12, £; < 4, and z2 > 0.
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Figure 2.9: The points 4 and C are degenerate basic feasible
solutions. The points B and F are nondegenerate basic feasible
solutions. The point D is a degenerate basic solution.

Degeneracy in standard form polyhedra

At a basic solution of a polyhedron in standard form, the m equality con-
straints are always active. Therefore, having more than n active constraints
is the same as having more than n — m variables at zero level. This leads
us to the next definition which is a special case of Definition 2.10.

Definition 2.11 Consider the standard form polyhedron P = {x €
R* | Ax = b, x > 0} and let x be a basic solution. Let m be the
number of rows of A. The vector x is a degenerate basic solution if
more than n — m of the components of x are zero.

Example 2.5 Consider once more the polyhedron of Example 2.4. By intro-
ducing the slack variables x4, ..., 7, we can transform it into the standard form
P= {x: (#1,...,27) | Ax=b, x > 0},Where

112100 0 8
|0 160100 | o2
A=li1 00001 0} =1y

¢ 100001 6

Consider the basis consisting of the linearly independent columns Ai, A,, As,
A, To calculate the corresponding basic solution, we first set the nonbasic
variables x4, x5, and x¢ to zero, and tken solve the system Ax = b for the
remaining variables. to obtain x = (4,0,2,0,0,0,6). This is a degenerate basic
feasible solution, because we have a total of four variables that are zero, whereas
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n—m =7 —4=3. Thus, while we initially set only the three nonbasic variables
to zero, the solution to the system Ax = b turned out to satisfy one more of
the constraints (namely, the constraint zz; > 0) with equality. Consider ncw the
basis consisting of the linearly independent columns A, Az, Ay, and Ay. The
corresponding basic feasible solution is again x = (4,0,2,0,0,0,6).

The preceding example suggests that we can think of degeneracy in
the following terms. We pick a basic solution by picking n linearly indepen-
dent constraints to be satisfied with equality, and we realize that certain
other constraints are also satisfied with equality. If the entries of A or
b were chosen at random, this would almost never happen. Also, Figure
2.10 illustrates that if the coefficients of the active constraints are slightly
perturbed, degeneracy can disappear (cf. Exercisz 2.18). In practical prob-
lems, however, the entries of A and b often have a special (nonracdom)
structure, and degeneracy is more common than the preceding argument
would seem to suggest.

Figure 2.10: Small changes in the constraining inequalities can
remove degeneracy.

In order to visualize degeneracy in standard form pelyhedra, we as-
sume that n — m = 2 and we draw the feasible set as a subset of the
two-dimensional szt defined by the equality constraints Ax = b; see Fig-
ure 2.11. At a nondegenerate basic solution, exactly n—m of the constraints
x; > 0 are active; the corresponding variables are nonbasic. In the case of
a degenerate basic solution, more than n — m of the constraints z; > 0 are
active, and there are usually several ways of choosing which n —m variables
to call nonbasic; in that case, there are several bases correspending to that
same basic soluticn. (This discussion refers to the typical case. However,
there are examples of degenerate basic solutions to which there corresponds
only one basis.)

Degeneracy is not a purely geometric property

We close this section by pointing out that degeneracy of basic feasible solu-
tions is not, in general, a geometric (representation independent) preperty,
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Figure 2.11: An (n — m)-dimensional illustration of degener-
acy. Here, n = 6 and m = 4. The basic feasible solution A is
nondegenerate and the basic variables are z:,x2, 23, zs. The ba-
sic feasible solution B is degenerate. We car. choose 1, xs as the
nonbasic variables, Other possibilities are to choose 21,5, or to
choose x5, x5. Thus, there are three possible bases, for the same
basic feasible solution B.

but rather it may depend on the particular representation of a polyhedron.
To illustrate this point, consider the standard form polyhedron {cf. Figure
2.12)

P= {(wl,xz,ws) |21 — 22 =0, 21+ 22+ 223 = 2, @, 29,23 > 0}_
We have n = 3, m = 2 and n—m = 1. The vector (1, 1,0} is nondegenerate

because only one variable is zero. The vector (0,0,1) is degenerate because
two variables are zero. However, the same polyhedron can also be described

3
(0,0,1)

Ty

(1,1,09)

x.

Figure 2.12: An example of degeneracy in a standard form problem.
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Figure 2.13: The polyhedron P contains a line and does not

have an extreme point, while @ does not contain a line and has
extreme points.

in the (nonstanderd) form
P= {(931@2@3) | Z1—22=0, 21+ 22+ 205 =2, 2, > 0, z3 20}-

The vector (0,0,1) is now a nondegenerate basic feasible solution, because
there are only three active constraints.

For another example, consider a nondegenerate basic feasible solution
x* of a standard form polyhedron P = {x | Ax = b, x > 0}, where A
is of dimensions m x n. In particular, exactly n — m of the variables ]
are equal to zero. Let us now represent P in the form P = {x | Ax >
b, —Ax > —b, x > 0}. Then, at the basic feasible solution x*, we have
n — m variables set to zero and an additional 2m inequality constraints are
satisfied with equality. We therefore have n + m active constraints and x*
is degenerate. Hence, under the second representation, every basic feasible
solution is degenerate,

We have established that a degenerate basic feasible solution under
one representation could be nondegenerate under another representation.
Still, it can be shown that if a basic feasible solution is degenerate under one
particular standard form representation, then it is degenerate under every
standard form representation of the same polyhedron (Exercise 2.19).

2.5 Existence of extreme points

We obtain in this section necessary and sufficient conditions for a polyhe-
dron to have at least one extreme point. We first observe that not every
polyhedron has this property. For example, if n > 1, a halfspace in ®" is a
polyhedron without extreme points. Also, as argued in Section 2.2 (cf. the
discussion after Definition 2.9), if the matrix A has fewer than n rows, then
the polyhedron {x € ®" | Ax > b} does not have a basic feasible solution.
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It turns out that the existence of an extreme point depends on whether
a polyhedron contains an infinite line or not; see Figure 2.13. We need the
following definition.

Definition 2.12 A polyhedron P ¢ R" contains a line if there exists
a vector x € P and a nonzero vector d € R"™ such that x+ Xd € P for
all scalars \. :

We then have the following result.

Theorem 2.6 Suppose that the polyhedron P = {x ¢ R" | alx >
b;, i =1,...,m} is nonempty. Then, the following are equivalent:

(a) The polyhedron P has at least one extreme point.
(b) The polyhedron P does not contain a line.

(c) There exist n vectors out of the family ai,...,a,,, which are
linearly independent.

Proof.
(b) = (a)

We first prove that if P does not contain a line, then it has a basic feasible
solution and, therefore, an extreme point. A geometric interpretation of
this proof is provided in Figure 2.14.

Let x be an element of P and let I = {i | alx = b;}. Ifn of the vectors
a;, i € I, corresponding to the active constraints are linearly independent,
then x is, by definition, a basic feasible solution and, therefore, a basic
feasible solution exists. If this is not the case, then all of the vectors a;,
i € I, lie in a proper subspace of R™ and therz exists a nonzero vector
d € ®" such that ajd = 0, for every i € I. Let us consider the line
consisting of all points of the form y = x + Ad, where A is an arbitrary
scalar, For i € I, we have ajy = a/x + Aa/d = ajx = b;. Thus, those
constraints that were active at x remain active at all points on the line.
However, since the polyhedron is asstumed to contain no lines, it follows
that as we vary ), some constraint will be eventually violated. At the
point where some eonstraint is about to be violated, a new constraint must-
become active, and we conclude that there exists some A* and some j ¢ I
such that al(x + A*d) = b;.

We claim that a; is not a linear combination of the vectors a;, i € I.
Indeed, we have alx # b; (because j ¢ I) and aj(x + A*d) = b; (by the
definition of A*). Thus, aid # 0. On the other hand, ald = 0 for every
i € I (by the definition of d) and therefore, d is orthogonal to any linear
combination of the vectors a;, 7 € I. Since d is not orthogonal to a;, we
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Figure 2.14: Starting from an arbitrary point of a polyhedron,
we choose a direction along which all currently active constraints
remain active. We then move along that direction until a new
constraint is about to be violated. At that point, the number of
linearly incependent active constraints has increased by at least
one. We repeat this procedure until we end up with n linearly
independent, active constraints, at which point we have a basic
feasible solution.

conclude that a; is a not a linear combination of the vectors ai, iel
Thus, by moving from x to x 4+ A*d, the number of linearly independent
active constraints has been increased by at least one. By repeating the same
argument, as many times as needed, we eventually end up with a point at
which there are n linearly independent active constraints. Such a point is,
by definition, a basic solution; it is also feasible since we have stayed within
the feasible set.

(a) = (¢)

If P has an extreme point X, then x is also a basic feasible solution (cf. The-
orem 2.3), and there exist n constraints that are active at x, with the
corresponding vectors a; being linearly independent.

(c) = (b)
Suppose that n of the vectors a; are linearly independent and, without
loss of generality, let us assume that a;,...,a, are linearly independent.

Suppose that P contains a line x + Ad, where d is a nonzero vector. We
then have a(x +Ad) > b; for all ¢ and all A. We conclude that ajd = 0 for
all i. (If atd < 0, we can violate the constraint by picking A very large; a

symmetric argument applies if ajd > 0.) Since the vectors a;, i =1,...,1,
are linearly independent, this implies that d = 0. Thisis a contradiction
and establishes that P does not contain a line, [l

Notice that a bounded polyhedron does not contain a line. Similarly,
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the positive orthant {x | x > 0} does not contain a line. Since a polyhedron
in standard form is contained in the positive orthant, it does not contain a
line either. These observations establish the following important corollary
of Theorem 2.6.

Corollary 2.2 Every nonempty bounded polyhedron and every
nonempty polyhedron in standard form has at least one basic feasi-
ble sclution.

2.6 Optimality of extreme points

Having established the conditions for the existence of extreme points, we
will now confirm -he intuition developed in Chapter 1: as long as a linear
programming problem has an optimal solution and as long as the feasible
set has at least one extreme point, we can always find an optimal solution
within the set of extreme points of the feasible set. Later in this section,
we prove a somewhat stronger result, at the expense of a more complicated
proof.

Theorem 2.7 Consider the linear programring problem of minimiz-
ing ¢'x over a polyhedron P. Suppose that P has at least one extreme
point and that there exists an optimal solution. Then, there exists an
optimal solution which is an extreme point of P.

Proof. {See Figure 2.15 for an illustration.) Let @ be the set of all optimal
solutions, which we have assumed to be nonempty. Let P be of the form
P = {x € ®" | Ax > b} and let v be the optimal value of the cost c’x.
Then, § = {x € ®* | Ax = b, ¢’x = v}, which is also a polyhedron. Since

o
&
»

fasiny

Figure 2.15: Tlustration of the proof of Theorem 2.7. Here, G
is the set of optimal solutions and an extreme point x* of Q is alsc
an extreme point of P.
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@ C P, and since P contains no lines (¢f. Theorem 2.6),  contains no lines
either. Therefore, [ has an extreme point.

Let x* be an extreme point of Q. We will show that x* is also an
extreme point of P. Suppose, in order to derive a contradiction, that x*
is not an extreme point of P. Then, there exist y € P, z € P, suck that
y # x*, & # x*, and some A € [0, 1] such that x* = Ay + (1 - A)z. It follows
that v = ¢'x* = Ac'y + (1 - A)c’z. Furthermore, since v is the optimal
cost, ¢'y > v and ¢’z > v. This implies that ¢’y = ¢’z = v and therefore
z € Q and y € (). But this contradicts the fact that x* is an extreme point
of Q. The contradiction establishes that x* is an extreme point of P. In
addition, since x* belongs to @, it is optimal. i

The above theorem applies to polyhedra in standard form, as well as
to bounded polyhedra, since they do not contain a line.

Qur next result is stronger than Theorem 2.7. It shows that the
existence of an optimal solution can be taken for granted, as long as the
optimal cost is finite.

Theorem 2.8 Consider the linear programming problem of minimiz-
ing ¢'x over a polyhedron P. Suppose that P has at least one extreme
point. Then, either the optimal cost is equal to —co, or there exists
an extreme point which is optimal.

Proof. The proof is essentially a repetition of the proof of Theorem 2.6.
The difference is that as we move towards a basic feasible solution, we will
also make sure that the costs do not increase. We will use the following
terminology: an element x of P has renk k if we can find k, but not more
than k, linearly independent constraints that are active at x.

Let us assume that the optimal cost is finite. Let P = {x ¢ R" |
Ax > b} and consider some x € P of rank k < n. We will show that there
exists some y € P which has greater rank and satisfies ¢’y < ¢’x. Let
I = {i|aix =}, where al is the ith row of A. Since k¥ < n, the vectors
a;, ¢ € I, lie in a proper subspace of R, and we can choose some nonzero
d € ®” orthogonal to every a;, ¢ € I. Furthermore, by pessibly taking the
negative of d, we can assume that ¢’d < 0.

Suppose that ¢’d < 0. Let us consider the half-line y = x + Ad,
where ) is a positive scalar. As in the proof of Theorem 2.6, all points
on this half-line satisfy the relations aly = b;, i € I. If the entire half-
line were contained in P, the optimal cost woud be —oo, which we have
assumed not to be the case. Therefore, the half-line eventually exits P.
When this is about to happen, we have some A* > 0 and j & I such that
aj(x 4+ Ad) = b;. We let y = x + 1*d and note that 'y < ¢’x. Asin the
proof of Theorem 2.6, a; is linearly independernt from a;, ¢ € I, and the
rank of y is at least & + 1.
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Suppose now that ¢’d = 0. We consider the line y = x + Ad, where
A is an arbitrary scalar. Since P contains no lines, the line must eventually
exit P and when that is about to happen, we are again at a vector y of rank
greater than that of x. Furthermore, since ¢’d = 0, we have ¢’y = c¢'’x.

In either case, we have found a new point y such that ¢’y < ¢'x, and
whose rank is greater than that of x. By repeating this process as many
times as needed, we end up with a vector w of rank n {thus, w is a basic
feasible solution) such that ¢’'w < ¢'x.

Let wl,...,w" be the basic feasible solut:ons in P and let w* be a
basic feasible solution such that c¢'w* < ¢'w® for all i. We have already
shown that for every x there exists some i such that ¢’w* < ¢’x. It follows
that ¢'w* < ¢’x for all x € P, and the basic feasible solution w* is optimal.

d

For a general linear programming problem, if the feasible set has
no extreme points, then Theorem 2.8 does not apply directly. On the
other hand, any linear programming problem can be transformed into an
equivalent problem in standard form to which Theorem 2.8 does apply.
This establishes the following corollary.

Corollary 2.3 Consider the linear programming problem of minimiz-
ing ¢'x over a ronempty polyhedron. Then, either the optimal cost is
equal to —oo or there exists an optimal solution.

The result in Corollary 2.3 should be contrasted with what may hap-
pen in optimization problems with a ronlinear cost function. For example,
in the problem of minimizing 1/z subject to z > 1, the optimal cost is not
—o0, but an optimal solution does not exist.

2.7 Representation of bounded polyhedra*

So far, we have been representing polyhedra in terms of their defining in-
equalities. In this section, we provide an alternative, by showing that a
bounded polyhedron can also be represented as the convex hull of its ex-
treme points. The proof that we give here is elementary and constructive,
and its main idea is summarized in Figure 2.16. There is a similar repre-
sentation of unbounded polyhedra involving extreme points and “extreme
rays” (edges that extend to infinity). This representation can be developed
using the tools that we already have, at the expense of a more complicated
proof. A more elegant argument, based on duality theory, will be presented
in Section 4.9 and will alse result in an alternative proof of Theorem 2.9
below.
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Figure 2.16: Given the vector z, we express it as a convex com-
bination of y and u. The vector u belongs o the polyhedron Q
whose dimension is lower than that of P. Using induction on di-
mension, we can express the vector u as a convex combination of
extreme poirts of Q. These are also extreme points of P.

Theorem 2.9 A norempty and bounded palyhedron is the convex
hull of its extreme points.

Proof. Every convex combination of extreme points is an element of the
polyhedron, since polyhedra are convex sets. Thus, we only need to prove
the converse result and show that every element of a bounded polyhedron
can be represented as a convex combination of extreme points.

We define the dimension of a polyhedron P C R™ as the smallest
integer k such that P is contained in some k-dimensional affine subspace
of #*. (Recall from Section 1.5, that a k-dimensional affine subspace is a
translation of a k-dimensional subspace.) Our proof proceeds by induction
on the dimension of the polyhedron P. If P is zero-dimensional, it consists
of a single point. This point is an extreme point of P and the result is true.

Let us assume that the result is true for all polyhedra of dimension less
than k. Let P = {x € ®" | alx > b;, ¢ = 1,...,m} be a nonempty bounded
k-dimensional polyhedron. Then, P is contained in a k-dimensional affine
subspace S of " which can be assumed to be of the form

S:{x0+,\1x1+-~+)§kxkU\],---,/\kem},

where x!,. .., x¥ are some vectors in R*. Let f;,...,f,_r be n -k lirearly

independent vectors that are orthogonal to x!,...,x*. Let g; = £/x?, for

Sec. 2.7  Representation of bounded polyhedra* 69
i=1,...,n — k. Then, every element x of S satisfies
f{ngiv Z=1,,‘ﬂ*k (23)

Since P C S, the same must be true for every element of P.

Let z be an element of P. If z is an extreme point of P, then z
is a trivial convex combination of the extreme points of P and ttere is
nothing more to be proved. If Z is not an extreme point of P, let us choose
an arbitrary extreme point y of P and form the half-line consisting of all
points of the form z + A(z — y), where A is a nonnegative scalar. Since
P is bounded, this half-line must eventually exit P and violate cne of the
constraints, say the constraint al,x > b;-. By considering what happens
when this constraint is just about to be violated, we find some A* > 0 and
u € P, such that

u=z+ XNz —y),
and
a,fi- u= bit .
Since the constraint aj.x > b;- is violated if X grows beyond X*, it follows
that al,(z — y) < 0.
Let @ be the polyhedron defined by

Q= {xePl|a.x=b-}
= {xE?R“[anZbi, i=1,...,m, aL.x=bh.}.

Since z,y € P, we have fz = g; = f/y which shows that z—y is orthogonal
to each vector f;, for ¢ = 1,...,n—k. Onthe other hand, we have shown that
al.(z—y) < 0, which implies that the vector a;. is not a linear combination
of, and is therefore linearly independent from, the vectors f;. Note that

QC{xeR ax=0b, fx=g;, i=1,...,n—k},

since Eq. (2.3) holds for every element of P. The set on the right is defined
by n— k41 linearly independent equality constraints. Hence, it is an affine
subspace of dimension k — 1 (see the discussion at the end of Section 1.5).
Therefore, () has dimension at most k — 1.

By applying the induction hypothesis to Q and u, we see that u can
be expressed as a convex combination

u= Z)\ivi

of the extreme points v? of @, where A; are nonnegative scalars that sum
to one. Note that at an extreme point v of @, we must have alv=bforn
linearly independent vectors a;; therefore, v must also be an extreme point
of P. Using the definition of A*, we also have

zfu—&-)\*y
Tl A
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Therefore,

)‘*y /\12 i
2EIE A *;1+A*V’

which shows that z is a convex combination of the extreme points of P. [J

Example 2.6 Consider the polyhedron
P= {(11,I27$3) | x1 + 22+ &3 S 1, X1,%2,T3 > 0}

It has four extreme points, namely, x* = (1,0,0), x* = (0,1,0), x* = (0,0, 1), and
x* = (0,0,0). The vector x = (1/3,1/3,1/4) belongs to P. It can be represented
as

There is a converse to Theorem 2.9 asserting that the convex hull of
a finite number of points is a polyhedron. This result is proved in the next
section and again in Section 4.9.

2.8 Projections of polyhedra:
Fourier-Motzkin elimination*

In this section, we present perhaps the oldest method for solving linear pro-
gramming problems. This method is not practical because it requires a very
large number of steps, but it has some interesting theoretical corollaries.

The key to this method is the concept of a projection, defined as
follows: if x = (a1,...,2,) is a vector in R™ and k < n, the projection
mapping 7; : R — R* projects x onto its first k¥ coordinates:

Trk(x) = Wk(xl" .- azn) = (3:17 e ’I'k)'
We also define the projection II;(S) of a set S C R™ by letting
T (S) = {me({x) | x € S};

see Figure 2.17 for an illustration. Note that S is nonempty if and only if
I1(S) is nonempty. An equivalent definition is

.{(S) = {(xl,...,zk) I there exist T41,...,2n 8.t (Z1,. .., Tn) ES}.

Suppose now that we wish to decide whether a given polyhedron
P C R" is nonenpty. If we can somehow eliminate the variable z, and
construct the set [I,,_;(P} C R* !, we can instead consider the presum-
ably easier problem of deciding whether II,,_;(P) is nonempty. If we keep
eliminating variables one by one, we eventually arrive at the set I, (P) that
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£

Figure 2.17: The projections II;(S) and II2(S) of a rotated

three-dimersional cube.

involves a single variable, and whose emptiness is easy to check. The main
disadvantage of this method is that while each step reduces the dimension
by one, a large number of constraints is usually added. Exercise 2.20 deals
with a farily of examples in which the number of constraints increases
exponentially with the problem dimension.

‘We now describe the elimination method. We are given a polyhedron
P in terms of linear inequality constraints of the form

n
E aijzjzbi, i:l,.,.,m.
=1

We wish to eliminate z,, and construct the projection II,_;(P).
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Elimination algorithm

1. Rewrite each constraint 3°7_, a;;z; > b; in the form' -

n—1 ;
ﬂmng—ijzj-l—b;, i=1,...,m;
. =1
if @i, 3 0, divide both sides by o;,. By letling X = {T1,. -+ 1 Tn-1),
we obtain an equivalent representation of P involving the follow-
ing constraints:

z, 2 di+ fi’i, if ayn > 0, (24)
di + f,’-i 2 T, if aj <0, (2.5)
0 > dp + X, if ggn = 0. (2.6)

Here, each d;, d;, dx is a scalar, and each f;, f;, fi is a vector in
R""'l. N
2. Let Q be the polyhedron in 8"~ defined by the constraints

dj”r‘".ﬂsf 2z di+£% ~ if aim >0and a; <0, (27)
0.2 d+EX, i axn =0 (2.8)

Example 2.7 Consider the polyhedron defined by the constraints

T +x2 > 1

1 +xa+223 2 2
2oy +3z3 > 3
1 — 4z > 4
—2r14+22 -3 > 5

We rewrite these constraints in the form

0

vV

Z1l-z —m
zz 2> 11— (21/2) — (22/2)
T3 > 1-(22:/3)
>
2

“14 (a/9)
—5—2x1+ 32

X3

3.
Then, the set @ is cefined by the constraints

02 1-x1—2
—1+4+z1/4 > 1—(21/2) — (22/2)
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—1+z1/4 > 1-(22:/3)
—5—2z;+72 > 1—(21/2) — (22/2)
—5—2x14+x2 > 1—(21:1/3).

Theorem 2.10 The polyhedron @ constructed by the elimination al-
gorithm is equal to the projection Il,,_(P) of P.

Proof. If X € IL,_;(P), there exists some x,, such that (X,z,) € P. In
particular, the vector x = (X,z,) satisfies Egs. (2.4)-(2.6), from which it
follows immediately that X satisfies Eqs. (2.7)-(2.8), and X € ). This shows
that IT,_1(P) C Q.

We will now prove that @ < 1I,_(P). Let X € Q. It follows from
Eq. (2.7) that

min _(d; + £iX) > max (d; + £/x).
{j\ajn-((])( J 7 ) {z{am>0}( )
Let z, be any number between the two sides of the above inequality. It
then follows that (X, x,) satisfies Eqs. (2.4)-(2.6) and, therefore, belongs to

the polyhedron P. O
Notice that ‘or any vector x = (r;,..., =, ), we have
Tno2(Tn_1(X)) = (T1,.. ., Tn_2) = Tp_2(x).

Accordingly, for any polyhedron P, we also have
Hn—2(Hn—1(P)) = HH—Q(P)'

By generalizing this observation, we see that if we apply the elimination al-
gorithm k times, we end up with the set IL,,_x (P); if we apply it n—1 times,
we end up with IT; (P). Unfortunately, each application of the elimination
algorithm can increase the number of constraints substantially, leading to
a polyhedron II; (P) deseribed by a very large number of constraints. Of
course, since I1; (P) is one-dimensional, almost all of these constraims will
be redundant, but this is of no help: in order to decide which ones are
redundant, we must, in general, enumerate thern.

The elimination algorithm has an important theoretical consequence:
since the projection II;(P) can be generated by repeated application of the
elimination algorithm, and since the elimination algorithm always produces
a polyhedron, it follows that a projection II;(P) of a polyhedron is also a
polyhedron. This fact might be considered obvious, but a proof simpler
than the one we gave is not apparent. We now restate it in somewhat
different language.
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(5:;'

Corollary 24 Let PC %"”" be a polyhedmn Then, the set

Cx eR | there ‘exists y e Rk such that (x,¥) € P}

is also a pojyhedron

b

A variation of Corollary 2.4 states that the image of a polykedron
under a linear mapping is also a polyhedron.

Corollary 2.5 Let PC R" bea polyhedmn and let A beanmXxn.
matrix. Then, the set Q@ = {Ax | x € P} is also a polyhedron.

Erwn e gy

Proof. We have Q@ = {y € R™ | there exists x € R" such that Ax
y, X € P}. Therefore, @ is the projection of the polyhedron {(x,y)
R+ | Ax =y, x € P} onto the y coordinates.

Om 1l

Corollary 2.6 The convex hull of a finite number of vectors is a poly- :
" hedroz. ot '

Proof. The convex hull

k k
{Z)\ixl dhi=1 A2 0}

i=1 i=1

of a finite number of vectors x', ..., x" is the image of the polyhedron

k
{(,\},...,,\k) | Sa=1, ,\120}
i=1

under the linear mapping that maps (A1,...,Ax) to Ele Aix*' and is, there-
fore, a polyhedron. ]

We finally indicate how the elimination algorithm can be used to
solve linear programming problems. Consider the problem of minimizing
¢’'x subject to x belonging to a polyhedron P. We define a new variable zo
and introduce the constraint ¢ = ¢'x. If we use the elimination algorithm
n times to eliminate the variables x1,...,x,, we are left with the set

Q = {xo | there exists x € P such that xo = ¢'x},

and the optimal cost is equal to the smallest element of ¢J. An optimal
solution x can be recovered by backtracking (Exercise 2.21).
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2.9 Summary

We summarize our main conclusions so far regarding the solutions to linear
programming problems.
(a) If the feasible set is nonempty and bounded, there exists an optimal
solution. Furthermore, there exists an optimal solution which is an
extreme point.

(b) If the feasible set is unbounded, there are the following possibilities:
(i) There exists an optimal sclution which is an extreme point.

(ii) There exists an optimal sclution, but no optimal solution is an
extreme point. (This can only happen if the feasible set has
no exireme points; it never happens when the problem is in
standard form.)

(iti} The optimal cost is —oo.

Suppose now that the optimal cost is finite and that the feasible set
contains at least one extreme point. Since there are only finitely many
extreme points, tae problem can be solved in a finite number of steps, by
enumerating all extreme points and evaluating the cost of each one. This
is hardly a practical algorithm because the number of extreme poirts can
increase exponentially with the number of variables and constraints. In the
next chapter, we will exploit the geometry of the feasible set and develop
the simplex method, a systematic procedure that moves from one extreme
point to another, without having to enumerate all extreme points.

An interesting aspect of the material in this chapter is the distinction
between geometric (representation independent) properties of a polyhedron
and those properties that depend on a particular representation. In that
respect, we have established the following:

(a) Whether or not a point is an extreme point (equivalently, vertex, or
basic feasible solution) is a geometric property.

{b) Whether or not a point is a basic solution may depend on the way
that a polyhedron is represented.

(¢} Whether or not a basic or basic feasible solution is degenerate may
depend on the way that a polyhedron is represented.

2.10 Exercises

Exercise 2.1 For each one of the following sets, determine whether it is a poly-
hedron.

(a) The set of all (z,y) € R* satisfying the constraints

rcosf+ysing < 1, V9 e0,m/2
x> {0,
y 2 0
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(b) The set of all z € R satisfying the constraint £Z — 82 + 15 < 0.
(c) The empty set.

Exercise 2.2 Let f: ®" 1> R be a convex function and let ¢ be some constant.
Show that the set § = {x € R* | f(x) < ¢} is convex.

Exercise 2.8 (Basic feasible solutions in standard form polyhedra with
upper bounds) Consider a polyhedron defined by the constraints Ax = b and
0 £ x < u, and assume that the matrix A has linearly independent rows. Provide
a procedure analogous to the one in Section 2.3 for constructing basic solutions,
and prove an analog of Theorem 2.4.

Exercise 2.4 We know that every linear programming problem can be con-
verted to an equivalent problem in standard form. We also know that nonempty
polyhedra in standard form have at least one extreme point. We are then tempted
o conclude that every nonempty polyhedron has at least one extreme point. Ex-
plain what is wrong with this argument.

Exercise 2.5 (Extreme points of isomorphic polyhedra) A mapping f is
called affine if it is of the form f(x) = Ax + b, where A is a matrix and b is a
vector. Let P and @} be polyhedra in ®” and R™, respectively. We say that P
and Q are isomorpiic if there exist affine mappings f : P+ Qand g: Q — P
such that g(f(x)) =x for all x € P, and f(g(y)) =y forall y € Q. (Intuitively,
isomorphic polyhedra have the same shape.)

(a) If P and Q are isomorphic, show that there exists a one-to-one corraspon-
dence between their extreme points. In particular, if f and g are as above,
show that x is an extreme point of P if and only if f(x) is an extreme point
of Q.

(b) (Introducing slack variables leads to an isomorphic polyhedron)
Let P={x € R" | Ax > b, x > 0}, where A is a matrix of dimensions
kxn Let @={(x,z) e R"** | Ax—2=b, x>0, z > 0}. Show that P
and @ are isomorphic.

Exercise 2.6 (Carathéodory’s theorem) Let A;,..., A, be a collection of

vectors in R™.
C= {Z,\Ai Aoy e > o}.
i=1

(a) Let
Show that any element of C' can be expressed in the form 37 | A:A;, with
Ai 2 0, and with at most m of the coeficients A; being nonzero. Hint:
Consider the polyhedron

A= {(A],...,An) eR”

Zn:AiA.i=y, )\1,.,.,Xn20}.

=1

(b) Let P be the convex hull of the vectors A;:

b= {i*i—"ﬁ il/\i=1, ,\1....,,\"20},
=1 i=
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Show that any element of P can be expressed in the form 57| \; A;, where
> Ai=1land A; > 0 for all i, with at most m + 1 of the coefficients A;
being nonzero.

Exercise 2.7 Suppose that {x € ®" |alx > b;, i = 1,...,m} and {x € R" |
gix = hi, i =1,..., k} are two representztions of the same nonempty polyhedron.
Suppose that the vectors ai, ..., a,, span #*. Show that the same must be true
for the vectors g,...,2x.

Exercise 2.8 Consider the standard form polyhedron {x | Ax = b, x > 0},
and assume that the rows of the matrix A are linearly independent. Let x be a
basic solution, and let J = {| z; # 0}. Show that a basis is associated with the
basic solution x if and only if every column A;, i € J, is in the basis.

Exercise 2.9 Consider the standard form polyhedron {x | Ax = b, x > 0},
and assume that the rows of the matrix A are linearly independent.
(a) Suppose that two different bases lead to the same basic solution. Show
that the basiz solution is degenerate.
{b) Consider a degenerate basic solution. Is it true that it corresponds to two
or more distinct bases? Prove or give a counterexample.
(c) Suppose that a basic solution is degenerate. Is it true that there exists an
adjacent basic solution which is degenerate? Prove or give a counterexam-
ple.

Exercise 2.10 Consider the standard form polyhedron P={x | Ax=h, x >
0}. Suppose that the matrix A has dimensions m x n and that its rows are
linearly independent. For each one of the following statements, state whether it
is true or false. If t-ue, provide a proof, else, provide a counterexample.

{(a) Ifn=m+1,then P has at most two basic feasible solutions.

{b) The set of all optimal sclutions is bounded.

(c) At every optimal solution, no more than m variables can be positive.

(d) 1If there is more than one optimal solution, then there are uncountably
many optimal solutions.

(e) If there are several optimal solutions, then there exist at least twe basic
feasible solutions that are optimal.

(f) Consider the problem of minimizing max{c'x,d'x} over the set P. If this
problem has an optimal solution, i must have an optimal solution which
is an extreme point of P.

Exercise 2.11 Let P = {x € R" | Ax > b}. Suppose that at a particular
basic feasible solution, there are & active constraints, with & > n. Is it true
that there exist exactly (1':) bases that lead to this basic feasible solution? Here
(i) = k!/(n!(k — n)!) is the number of ways that we can choose n out of k given
items.

Exercise 2.12 Consider a nonempty polyhedron P and suppose that for each
variable x; we have either the constraint z; > 0 or the constraint z; <0 Isit
true that P has at least one basic feasible solution?
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Exercise 2.13 Consider the standard form polyhedron P = {x | Ax=b, x >
0}. Suppose that the matrix A, of dimensions m x n, has linearly independent
rows, and that all basic feasible solutions are nondegenerate. Let x be an element
of P that has exactly m positive components.

(a) Show that x is a basic feasible solution.

{b) Show that the result of part (a) is false if the nondegeneracy assumption is
removed.

Exercise 2.14 Let P be a bounded polyhedron in R™, let a be a vector in 7,
and let b be some scalar. We define

Q={xeP\a’x=b}.

Show that every extreme point of ) is either an extreme point of P or a convex
combination of two adjacent extreme points of P.

Exercise 2.15 (Edges joining adjacent vertices) Consider the polyhedron
P={xe® |ax>b, it =1, ..,m} Suppos: that u and v are distinct
basic feasible solutions that satisfy alu = ajv = &, i = 1,...,n — 1, and that
the vectors a,...,an,_1 are linearly independent. {In particular, u and v are
adjacent.) Let L = {Au+ (1 — A)v | 0 <X < 1} be the segment that joins u and
v. Provethat L={z€ P |ajz=0b;, i=1,...,n— 1}

Exercise 2.16 Consider theset (x € R |71 ==z, 1 =0, 0 <z < 1}
Could this be the feasible set of a problem in standard form?

Exercise 2.17 Consider the polyhedron {x € ®* | Ax < b, x > 0} and a
nondegenerate basic feasible solution x*. We introduce slack variables z and
construct a corresponding polvhedron {(x,z) | Ax+2z=b, x>0, z 2 0} in
standard form. Show that (x*,b— AX") is a nondegenerate basic feasible solution
for the new polyhedron.

Exercise 2.18 Consider a polyhedron P = {x | Ax > b}. Given any ¢ > 0,
show that there exists some b with the following two properties:

(a) The absolute value of every component of b — b is bounded by e.

(b) Every basic feasible solution in the polyhedron P = {x | Ax > b} is
nondegenerate.

Exercise 2.19* Let P C R" be a polyhedron in standard form whose definition
involves m linearly independent equality constraints. Its dimension is defined as
the smallest integer k such that P is contained in some k-dimensional affine
subspace of R".

(a) Explain why the dimension of P is at most n—m.

(b) Suppose that P has a nondegenerate basic feasible solution. Show that the
dimension of P is equal to n — m.

(c) Suppose that x is a degenerate basic feasible solution. Show that x isdegen-
erate under every standard form representaticn of the same polyhedron (in
the same space ®"). Hint: Using parts (&) and (b), compare the number of
equality constraints in two representations of P under which x is degenerate
and nondegenerate, respectively. Then, count active constraints.
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Exercise 2.20* Consider the Fourier-Motzkin elimination algorithm.

{a) Suppose that the number m of constraints defining a polyhedron P is even.
Show, by means of an example, that the elimination algorithm may produce
a description of the polyhedron I,_(P) involving as many as m?/4 linear
constraints, but no more than that.

(b) Show that the elimination algorithm produces a description of the one-
dimensional polyhedron IT; (P) involving no more than 1rn,2n71/22n'2 con-
straints.

(c) Letn = 2P +p+2, where p is a nonnegative integer. Consider a polyhedron
in R™ defined by the 8(3) constraints

ta ta ko, <1, 1<i<j<k<n,

where all possible combinations are present. Show that after p eliminations,

we have at least
22P+2

constraints. (Note that this number increases exponentialy with n.)

Exercise 2.21 Suppose that Fourier-Motzkin elimination is used in the manner
described at the end of Section 2.8 to find the optimal cost in a linear programming
problem. Show how this approach can be augmented to obtain an optimal selution
as well.

Exercise 2.22 Let P and Q be polyhedra in R*. Let P+ Q@ = {x+y|x €
P yeq}
{a) Show that P + @Q is a polyhedron.

(b) Show that every extreme point of P + @Q is the sum of an extreme point of
P and an ext-eme point of ).

2.11 Notes and sources

The relation between algebra and geometry goes far back in the history of
mathematics, but was limited to two and three-dimensional spaces. The
insight that the same relation goes through in higher dimensions only came
in the middle of the nineteenth century.

2.2, Our algebraic definition of basic (feasible) solutions for general poly-
hedra, in terms of the number of linearly independent active con-
straints, is not common. Newvertheless, we conmsider it to be quite
central, because it provides the main bridge between the algebraic
and geometric viewpoint, it allows for a unified treatment, and shows
that there is not much that is special abous standard form problems.

2.8. Fourier-Motzkin elimination is due to Fourier (1827}, Dines (1918),
and Motzkin (1936).



