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The Rapid Calculation of Potential Anomalies
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Summary

It is shown how a series of Fourier transforms can be used to calculate the
magnetic or gravitational anomaly caused by an uneven, non-uniform
layer of material. Modern methods for finding Fourier transforms
numerically are very fast and make this approach attractive in situations
where large quantities of observations are available.

1. Introduction

The matching of observed potential fields with those produced by crustal models
is a traditional method of geophysical data interpretation. The conventional way in

which the theoretical fields are found is to break up the modelinto a set _of simpler
objects (e.g. prisms or rectangular blocks) whose contributions are cal

is complicated and when a farge quantity of observations is available, this process
can be computationally very time-consuming, since the number of operations increases
roughly as the product of the number of output points and the number of points
defining the model. In recent times, however, an ingenious factorization method (see
special issue of IEEE, 1967) has made the computation of Fourier transforms par-
ticularly fast: the computation time being proportional to N In N, where N is the
number of input and the number of output points. If the calculation of gravity and
magnetic anomalies due to the model could be cast in a form based on Fourier trans-
formation, geophysicists could take full advantage of the remarkable speed of the
new algorithm.” This fact has been realized by some workers already (Dorman &
Lewis 1970; Schouten & McAmy 1972) but until now approximations have been
used that ignore the non-linear effects caused by terrain roughness. We give in this
note an exact theory for the caiculation of potential fields caused by a non-uniform
and uneven layer of material; the observation points lie in a plane that is everywhere
above the material and, therefore, the proposed technique is most suitable in
applications to aeromagnetic or surface oceanographic measurements. We later
describe how the results may be found on an uneven surface. The main result of this
paper is expressed as an infinite series of Fourier transforms; we discuss the con-
vergence of the series and give a criterion for securing the optimum convergence rate
in a given physical situation. A two-dimensional problem is solved, showing
extremely fast convergence, which should be typical of oceanographic data.
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2. Derivation of the Fourier expansion

For simplicity, we shall consider in detail the calculation of the Bouguer or
terrain correction due to the gravitational attraction of a layer of material. We find the
Fourier transform of the potential and manipulate the expression until we obtain an
expression which is itself a sum of Fourier transforms. The basic result can be
elaborated to include the case of many layers and densities varying with position,
as well as the analogous magnetic problem.

It is convenient at this point to introduce a slightly unconventional notation.
A cartesian axis system is established with 2 vertically upwards: positions in space
are represented by vectors like r = (x, y,z) and the projection of r onto the x—y

plane is denoted by . Thus X 0 f y _ \\i
F=r—221r, - | Y} ~ /0 1 %’ =
1 144 4

and the converse of this equation will be written

Note that . . ' (w /QA? I or 't\
kev = k'F, & t;h’ a

The two-dimensional Fourier transform of a function /() is defined by
FU@ = [ dS7)exp (kD) ©)
X

where k is the wave vector of the transformed function and X is taken to be the
whole x—y plane.

Consider the gravitational attraction from a layer of material, whose lower
boundary is the plane z = 0, and whose upper boundary is defined by the equation
z = h(F). At the outset we shall require that the layer vanishes outside some finite
domain, D, i.e. h(7) = 0 if |#] > R. The reason for this is that in practical situations
we can model only a finite area of terrain and certain problems of convergence are
avoided under this assumption. A further assumption is that /i is bounded and
integrable; both thesc restrictions are clearly valid for any reasonable model of
topography. The gravitational potential at a position r, due to the layer is

U(ry) = Gp f dv flre—1]

h(r)
4 g [ds [ dzfiro—1l, a
g

D

where G is Newton’s gravitational constant; for the moment p, the density, is not :
function of position. Suppose that the observation point is confined to the plan
z =z,, so that U is now only dependent on 7,; this plane must lie above all th
topography, something aeromagnetic and most oceanographic applications compl
with. Take the Fourier transform of (1): ‘

FU(Fe)] = ‘ dS, U(ry) exp (ik-ry)
X
h(r)

= fdso f ds exp (ik1t,) f delvo 1,
I Ri? :

X 0

Interchanging the
\

%

The last integral can be g’\
Bracewell 1965); after a li:

-Now the z-integral can be
FIU] =2rGp

The integral above is not y

exponential function in 2

integration, we obtg
FU] =

which is a sum of Fourier

- The terrain correction i
potential. To find this
V2U =0, so that the pote

U(ry) = -
Thus F[U ()] = U(K) exp

The vertical attraction Ag i

and from the above relatior

N

With this result we o\byféin t!
FlAg]l = —

It is easy to generalize (-
layer is not flat, but given by

FlAgl = —27G

and the extension to many I:
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Interchanging the order of integration we see that

a2 of the Bouguer or hir) )
of material. Weﬁnfi the FU] = Gp [ ds ’ dz ' dSq exp (ik 1g)/|re—1|.
sssion until we obtain an J o 1

The basic result can be

Jities varying with position, The last integral can be carried out analytically by use of polar co-ordinates (see
: Bracewell 1965); after a little algebra we obtain

tly unconventional notation.

r upwards: positions in space

rojection of r onto the x—y

h(r)
F]=Gp | ds | dz{2m exp (if-r = |Ri(zy—2))} /1.

D 0

Now the z-integral can be performed explicitly:

F U] =2nrGp ’ dS exp (ik F—|k|zo){exp [|K] A(F)]—1}/]K]2.

D

The integral above is not yet a Fourier transform but, upon expansion of the second
Chisntehngd by §xp0nen.tial functiop in a Taylor series and rearrangement of summation and
7 - integration, we obtain
‘\\’ ” & |'ln~2
), ~ © F U] = 2nGp exp (~|k|zo) 2= o FIr®l @)

ey —nl

; which is a-sum of Fourier transforms.
on and X is taken to be the LD feLAralngs

The terrain correction is in fact the vertical attraction of the material, not the
potential. To find this we note that, above the masses (2'ro > max {/z(fo)}), &
V2U =0, so that the potential may be written

er of material, whose Iow/cvx/;
ry is defined by the equa{i'on :

- vanishes outside some finite ;
is that in practical situations 1 = v X
problems of convergence are U(ry) = T { d* kU(k) exp (= k| 21o—ik o). (3)

bn is that / is bounded and -
or any reasonable model of
r, due to the layer is

Thus Z [U(7o)] = U(K) exp (— [E|2-1,).

he vertical attraction Ag is by the definition of potentjal

Ag = +éUjoz,
and from the above relations it follows that

ls )

AR

FAg] = ~|k| #[U].

e
oment p, the density, is not a
oint is confined to the plane
plane must lie above all the
bgraphic applications comply

With this result we obtain the desired expression

5 ’k'!n-l

=1 n!

F[Ag] = —2nGp exp (*ilziZo)n F @] 4)

It is easy to generalize (4) to include the case where the lower boundary of the
layer is not flat, but given by z = g(#), and to allow the density to vary with 7:

I % ién-—l
FAgl = —2nG exp (—|k|zo) ngl 1K

n!

Flp®){ () —-g"(®}], )

1(r)

f dz/lro—r|.
)

and the extension to many layers is obvious.
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The equivalent magnetic problem can be solved by exactly the same procedure.

We take a magnetized layer of material with upper and lower boundaries as before.
It is commonly assumed in magnetic model calculations that the direction of
magnetization is constant, but the intensity may vary: thus

M(F) = M, M (7);

this restriction is not essential for our technique but simplifies the calculations.
Another simplification frequently employed results from the fact that perturbations
to the observed field due to the magnetized material are always very small (<10 per
cent), and that magnetic measurements at sea are made of the total field |B|. The
magnetic anomaly A|B| can be approximated by ’

A|B| = B, AB,

where B, is the unit vector in the direction of the unperturbed field and AB is the
perturbing field. With these conditions in force the equivalent magnetic result to (5)is

z0) By (ik, [KJ) My - (ik, [K])

FAIB|] = 3o exp (— |k

3 ik n==2 : s
EJiygfmumwm—fmn ©

When, in addition, a constant thickness of magnetized material is assumed, (6) can
be rewritten in a form that is faster computationally:

FAB|] = duq exp (—|k|zo) By (ik, [K]) My ik, [KI)

I < Iﬁ[:i a =\ Hi

k| ho)) >, FIMEBN®E], )

n=0 !

(1—exp{~

where /1, is the thickness of the layer; note the summation now begins at n = 0.
Having obtained the Fourier transforms by one of the above expressions, we can

recover the required field by using the inverse transform on the resultant function.

It is interesting to note that all the equations hold for a two-dimensional geometry,

when a scalar wave number, k, replaces the vector k

3. Convergence of the series

Equation (4) has meaning only when the series of Fourier transforms converges
and, moreover, rapidity of convergence is vitally important if the expression is to have

practical utility. First we need a bound on # [i"(7)] as n becomes large. From the

definition of the Fourier transform

\F) < | dS ()] lexp (ik-7)|

RO

ds |h"(7)]

Il
v— ©

< AHY,

where A4 is the area of D, the support of 4, and H = max |A(7)|, both quantities

being bounded by assumption. Inserting this bound and comparing the series wit
that for exp (|kI'H), we find that (4) is uniformly and absolutely convergent in an

.\1
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bounded domain of the k-plane (Whittaker & Watson 1962, p. 581). Practically,
an upper bound on |k| comes from the non-zero separation of the observation
points.

A stronger result, which gives valuable insight into the rate of convergence can
be shown as follows. Rearrange (4) thus

2nGp = —kzg) 2nG

o k =1 n! k
where we are writing & for |k|. Now compare the series for S with

o /]{ n o
= Z Aexp (—kzy) (_L,),,, > AL (k):
i n=1

from the bound on # [A"] we know every L, is larger in magnitude than the corres-
ponding term in S. It is easily shown that

L(k) < (H/zo)",

independently of the value of k, when z, > 0. Therefore, when H <z, and z, > 0,
the series for S’ is uniformly convergent in the whole k-plane, by the Weierstrass
M-test (Whittaker & Watson 1962, p. 49), and hence this is true of S also. That
Hjzy <1 and zy > 0 follows from the condition that the observations plane lies
entirely above the material in question, as we have already assumed.

From the computational viewpoint, the useful result is that the series for S
converges at least as rapidly as > (H/z,)", no matter what the value of k. Thus the
smaller H/z, can be made, the faster the guaranteed rate of convergence. It may not
appear at first that we have any control over H/z, in a given calculation, but this is
in fact not the case. In setting up (4) we chose z = 0 to be the bottom of the layer of
material; this level is entirely arbitrary* in gravity problems, so that we have complete
freedom in our choice of z origin. A displacement of the origin does not affect the
validity of (4) but it does alter the numerical values of z, and A(7) and thereby H.
The obvious strategy is to position the z = 0 plane so as to make H/z, as small as
possible; with a little thought it can easily be seen that this occurs when
hpox = =i = H, ie. when the greatest and smallest values of /1 are equally
distant from z = 0. Because this result is based on upper bounds of various terms,
faster convergence might occur with a different origin position. Nonetheless,
numerical experiments indicate that the choice given here falls very close to the
optimum one; this will be illustrated with an example.

An almost identical analysis of convergence can be made on (7), while in the case
of (5) and (6) we need only revise the definition of H to be

H = max {[A(F)], [¢(I}

for the same conclusions to be valid.

4. Numerical example

The numerical implementation of the results in Section 2 is fairly straightforward.
It will be obvious to those familiar with ‘Fast Fourier Transforms’ that the terrain

* If it is important to retain a known thickness of material, the attraction from a uniform slab
can always be added to or subtracted from the answer in the shifted frame.
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and model functions must be provided on a rectangular* lattice of points in the
x—y plane and that the answers appear at those co-ordinates. In a real survey
such a regular disposition of observations is quite impossible: interpolation of the
measurements onto a grid will always be necessary before the technique can be applied.
Furthermore, the use of a discrete transform causes the various Fourier integrals in
Section 2 to be approximated by sums; this is a serious defect only when the
observation plane approaches the source material more closely than the horizontal
spacing between data points. Another artifact of the numerical transform is the
introduction of a false periodicity in the data, as if the model repeated itself over and
over again. This can give rise to spurious fields at the edges of the model, but they
can be reduced by adding a border of dummy points to separate the true model
from the neighbouring images.

To illustrate the technique, a simple two-dimensional calculation of the magnetic
case was performed. The ocean-bottom topography (shown in Fig. 1) is that
found over the Gorda Rise (41° N, 127° W) and was kindly provided by Dr Tanya
Atwater. The model consists of a constant thickness layer (500 m thick) magnetized
uniformly to an intensity of 1:-0Am~? (0-00lemucm™?) at a dip of —60° and
declination 0°, while the regional field was assumed to have dip and declination 60°
and 30°: thus the material is reversely magnetized. The profile runs from west to east
and the field is calculated at the surface, 2-1 km above the mean level of the bottom,
which shows a relief of +0-4km. Two short sloping sections have been appended
to the ends of the profile to avoid discontinuity anomalies caused by the false
periodicity. The magnetic anomaly computed by our method agreed to an accuracy
of a few per cent with that given by a standard program (Mudie 1972). The
discrepancies between the calculations are due entirely to the different treatment
accorded to the ends of the model: the standard program assumes a very long,

uniformly magnetized slab is attached to each end, and this naturally gives rise to -

* Two-dimensional transforms can also be performed on skewed (i.e. non-orthogonal) axes, so
that the basic unit is a parallelogram.

5 hl

km 1

I 1
0 5 10

km

F1G. 1. A uniformly magnetized model and its computed magnetic anomaly at the

ocean surface. The scale at the left indicates depth below the surface. The

orientation of the profile and the direction of the field and magnetization are given

in the text. The tesla is the SI unit of magnetic induction (InT' = 10~°T = 1y =
) 1075G).
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