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A mathematical ljasis for the application of 

power spectrum analysis to aeromagnetic map 

interpretation is developed. An ensemble of bloc!is 

of varying depth, width, thickness, and magneti- 

zation is considered as a statistical model. With 

the use of the fundamental postulate oi statistical 

mechanics, a formula which can be used to ana- 

Lyme the power spectrum of an aeromagnetic map 

is developed. The influences oi horizontal size, 

INTRODUCTION 

It has become one of the cliches of contempo- 
rary scientific writing that many a concept which 
yesterday seemed abstruse is today accepted with 
an enthusiasm that seems almost inexplicable. 
Geophysics has many examples to show of such 
shiits in the winds oi convention, and one of these 
undoubtedly has been in the attitude taken to- 
ward Fourier analysis as a tool for interpreting 
gravity and magnetic field data. Within recent 
years, spectrum analysis has quite suddenly be- 
come a technique that is not only acceptable but, 
in some places, almost de rigeul in the processing 
of aeromagnetic maps. Nowadays the two-di- 
mensional power spectrum within this context 
has become a term of common technical use. 

\Ve do not, of course, claim any special priority 
ior the idea of using power spectra in the analysis 
oi aeromagnetic data. Suggestions of this kind 
can be traced back ior at least 10 years (see, ior 
cxnmple, Horton, Hempkins and Hoffman, 1061) 
and perhaps even iarther than that. W’e have, 
ho\vever, actively been engaged in the application 
oi Fourier techniques during at least half of this 
period (Spector and Bhattacharyyn, 1960, anti

depth. thickness, and depth extent of the l~locks 

on the shape of the power spectrum are assessed. 
Examples which include polver spectra of maps 
from Canada and Central .%merica demonstrate 
the application of the approach. In the cases 
studied a double ensemble of blocks appears to 
bclst explain the ol)served p<,wer spectrum char- 
actrristics. 

Spector, 1968), and we have developed certain 
concepts which we believe have proven to be use- 
iul, particularly in aeromagnetic interpretation. 
One of these has been the use of statistical models 
and ensemble averaging. In this paper we would 
like to elaborate on the role oi this particular con- 
cept. 

AN INTERPRETATION MODEL 

Let us start with the basic model that is often 
used by geophysicists to simulate the magnetic 
effects of various geological units. This is the 
rectangular, vertical-sided parallelepiped (Figure 
1). The model has enjoyed wide and continued 
popularity over many years as a device for esti- 
mating depths to individual magnetic bodies (or 
zones) whenever their anomaly patterns are 
easily separated from neighboring influences. The 
success that this model has achieved probably can 
be explained by the observation that aeromag- 
netic anomaly patterns are shaped very largel! 
by the depths and volumes oi the sources (and 
also, of course, by the directions of their magnrti- 
zations). They are shaped relatively little by the 
details of their boundaries. In any event, success 
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THIN PLATE LINE OF DIPOLE POINT DIPOLE 

FIG. 1. The rectangular, vertical-sided parallelepiped: an interpretation model. 

does give one quite a high degree of confidence in 

the model. 

If the rectangular parallelepiped works satis- 
factorily in the case of individual anomalies, it 
ought to work even better as the unit of an en- 
semble, where wide variances are tolerated in all 
of the parameters. MThatever deficiencies there 
may be in the model will be minimized in the 
process of ensemble averaging and smoothing. 
We are thus led to make the following hypothesis: 
For the purpose of analyzing aeromagnetic maps, 
the ground is assumed to consist of a number ot 
independent ensembles of rectangular, vertical- 
sided parallelepipeds, and each ensemble is char- 
acterized by a joint frequency distribution for the 
depth h, width u, length b, depth extent t, and 

direction cosines of magnetization L, M, Ar (see 
Figure 1). 

According to this hypothesis, the map of the 
magnetic field intensity over an area, after the 
removal of the main geomagnetic component, is 
assumed to consist of the superposition of a large 
number of individual anomalies, most of them 
overlapping, which are caused by several en- 
sembles of blocks having various dimensions and 
magnetizations. It is our intention to try to effect 
a separation of the magnetic effects of the differ- 
ent ensembles in the aeromagnetic map. Notice, 
incidentally, that when the size parameters of the 

block model a and b are allowed to vary, the model 
is capable of taking on a very wide variety of 
forms such as the vertical rod, vertical ribbon 01 
plate, horizontsl lamina, horizontal rod, and the 
bottomless prism. These models adequately rep 
resent many common geological forms such as 
pipes, veins, dikes, sills, and stocks. 

Let us now consider the power spectrum (i.e. 
the square of the Fourier amplitude spectrum) of 
the total magnetic field intensity anomaly over a 
single rectangular block. The expression, which 
was first given by Bhattacharyya (1966), is here 
transcribed into polar wavenumber coordinates in 
the u, v frequency plane. Thus ii 

where k/4ab is the magnetic moment,‘unit volume 
of the body (k is a magnetic moment/unit depth), 

sin (ar cos 0) 
.s(r,q = - .~ 

sin (br cos 0) 
--. ~~~~~~~ , 

ur (‘OS 0 hr cos 8 

R;(O) = [u2 + (I cm 0 + m sin O)Z], 

R;(e) = [X’ + (L c0se + MsinO)‘J; 

1, m, IZ are direction cosines of the geomagnetic 
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field vector TO and I+ JI, N are direction cosines 
of the magnetic moment vector k. The symbols 
ir, I, a, and 11 arc explained in Figure I. 

The simplicity of equation (1) is striking when 
we compare it with the exceedingly cumbersome 
formula for the magnetic field anomaly itself (see 
Bhattacharyya, 196-l). Moreover, the parameters 
which define the model separate from one another 
in the polver spectrum in quite a remarkable way. 

AN ENSEMBLE OF BLOCKS 

\\‘c now use the iundamental postulate of sta- 
tistical mechanics to obtain from equation (1) a 
formula which we can apply directly to the power 
spectra of aeromagnetic maps. The postulate 
states that the mathematical expectation of the 
value oi the power density function is equal to the 
cr~scn~6lc sewage of E. It is strictly valid only ior 
large samples, but in actual fact works very well 
even if the number of bodies present is as small as 
5 or 6. Thus \ve may write 

(I.,.) = 
s s 

. I:.@(a, b,/, h,Z, D, k)dl’, (2) 

where + is the ensemhle joint frequency distribu- 
tion for tht parameters n, b, etc. and I and D are 
respectively the inclination and declination oi the 
magnetic moment vector k. Integration is over 
the entire 7-dimensional parameter space. 

The question that now arises is what form to 
use for a, \Ve assume that the parameters vary 
indeprndently of one another, so that we ma\ 
write @(a, b, . ) =@(a) 4(h) . . , but these 
a’s are prior frequency distributions in the sense 
that there is no way in which we can deduce them 
from the observations. Accordingly, we assume 
that each @ is rectangular, this being the simplest 
form to deal with analytically. If we assume that 
the width, n, is uniformly distributed in (0, 24, t 
in (0, 2i), 11 in L&Ah, Z in ft_AI, and D in D-t 
AD, ecluation (2) becomes 

(f:(y, 0) i 

1 
= f ” 

s s 
. E(r, fi’)dndbdtdhdIdDdk, (3) 

where V’ is the ‘I-dimensional parallelepiped which 
is defined by the limits of the frequency distribu- 
tion functions. 

Putting the expression (1) under the integral 
sign in (3), we obtain 

(E(Y, 0)) = d R;(o) 

(R;(e) ,(c ?*I )((l - r- y2)(SyY, l9) ). (4) 

Ii JYC make the further assumption that ior a 
moderately large number of bodies the average 
values of I and D will not differ appreciably from 
the inclination and declination, respectivel\T, of 
the geomagnetic field, as long as AZ and AD are not 
too large (say 5 20”), we may put R: = R: in ex- 
pression (4). LVe can then define a ne\v iorm for 
the polver spectrum, which we \vrite as 

(E(y, 0) 1 my, 0,) = X0) 

T 

= 47r2K”(e-2h’~((l - ect’)L)(S2(r, 0)). (5) 

This is called “reduction (01 the power spectrum) 
to the north magnetic pole.” What the phrase 
means is that if all the bodies were magnetized in 
the direction of TO and if observations had been 
taken close to the north magnetic pole, the poiver 
spectrum should have an ensemble average given 
by (5). There is no difficulty in theory about re- 
ducing the power spectrum to the north magnetic 
pole because Rr(B) is always known. Care must be 
taken in low magnetic latitudes, however, and 
close to the geomagnetic equator, RT becomes so 
exceedingly asymmetrical that special numerical 
procedures must be used. The validity of the as- 
sumption that f and IT are equal to the inclination 
and declination of the geomagnetic field can only 
be judged according to whether or not the ma- 
jority of the anomaly patterns look “normal” for 
the given magnetic latitude. 

PROPERTIES OF THE POWER SPECTRUM 

It is useful as a general rule to look at power 
spectra in one-dimensional or profile form rather 
than in two-dimensional or map iorm. This is 
mainly because the quantity (S*, is a somewhat 
bumpy function 01 0 when a is moderately large, 
and the bumpiness imparts a certain irregularity 
to the contours. .%ccordingly, taking the average 
of (5) with respect to 0 gives 

(L<(r)) = Wk’(e-“‘“)((l - e-1’)2)iS~(r)), (6) 

where 

(5yY)) = +Jor iS’(Y,tqhl& 
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Notice that the ensemble parameters 6, I;, t, and 
ti are completely factored in this expression. In the 
logarithmic form of (G), therefore, their influcnccs 
will simply add. The additive property is one of 
the chief reasons logarithmic spectra are preferred 
for analysis. 

Effect of depth 

The ensemble average depth R enters only into 
the factor (eW2”‘) =eP’” sinh (2rAh)j-CrAh. Nor- 
mally one would set A lz at a value not greater 
than 0.51;; otherwise & itseli ha.s no interpreta- 
tional value. For values of r which are <l/b, 
therefore (e-2hr) =K~~” and the logarithm of this 
factor ap;roximates a straight line whose slope is 
-2h. The ePZXr term is invariably the dominating 
factor in the power spectrum. Map spectra are 
usually declining functions of I whose rate of de- 
cay is largely determined by the mean clept h of the 
bodies. 

The mean depth extent of the sources enters 
only into the factor 

(C?(Y)) = ((1 - e-tr)Z) 

= 1 - (3 - e-27r)(1 - e--27r)/J;tr. 

The parameter i plays a rather interesting role in 
shaping the power spectrum. When combined 
with the depth factor e& (for not too large values 
of Y), the effect of (C*(Y)) is to introduce a peak 
into the spectrum whose position shifts toward 
smaller wavenumbers with increasing values of I 
(Figure 2). If the majority of the bodies in the 
area extend to such depths that their bottoms 
cannot be discerned clearly through the map 
window (a phrase which we shall explain pres- 
ently), t becomes so large that the spectrum peak 
cannot be seen at all. In that case we get the 
spectrum for an ensemble of bottomless prisms, a 
spectrum which has its maximum value at r=O. 

Whether the sourcesappear to be depth-limited 
or not will depend very much upon the size of the 
map. Since we must work with maps of finite area, 
we cannot, of course, calculate their Fourier 
transforms at wavenumber intervals smaller than 
1/2L, where L is the maximum length of the 
sample. If there were no restrictions upon either 
the size of the map or the size of the computer 
available to us, then presumably we could see 
right down to the Curie point, isotherm; but in 

see to that depth would require a map at least 200 
kmX200 km and would involve upwards ol 
40,000 T-values digitized on a 1 .O km square grid. 

Effect of Size 

The mean size of the bodies tsnters into the 
factor 

and has the effect of tapering the sljcctrum toward 
the higher wavenumbers, i.e. of speeding its de- 
cay. The magnitude of the effect is indicated in 
Figure 3, which shows In{.?(v) jv(.rsus r for sev- 
eral values of a. If we do not allo\\ for the (S’*(Y)) 
factor (by assuming the sources 10 be poles or di- 
poles), estimates of 5 which are Ilased upon the 
rate of decay of the power spectrum will be ton 
large. The important property or these curves to 
note is the degree to which they ~cnd to become 
straight lines (signifying exponell (ia. decay) to- 
ward the larger wavenumbers. 

DOUBLE ENSEMBLE CASE 

To make use of the theory al this stage, one 
would have to be presented will) a map whose 
power spectrum clearly indicates I he presence of 
only a single ensemble of sources. Such cases do 
exist, but they are rare. Even mart’ rare, however, 
are situations in which three or more ensembles 
can clearly be discerned. By long odds, the most 
common occurrence is where just two sets of 
sources are discernible in the specl rum. They are 
easily recognized, as later examples will show, by 
the marked change that takes place, in the spectral 
decay rate. Thus the average depl h of burial L is 
the most influential parameter ol the ensemble, 
and a substantial change in the value of this pa- 
rameter will be reflected unmistakably in the 
power spectrum by a distinct change in the decay 
rate. 

Let us suppose, therefore, that in accordance 
with observation there are two ensembles of 
sources. Each ensemble fills a M c,ll-defined rec- 
tangular volume of parameter sllace. Ensemble 
averaging accordingly requires II y to integrate 
over the two regions, and we get 

(I<) = (E)r + (K),,. 

Suppose that region I is characterized by param- 
eters K, II, T, and /I, anti regioil /I t,p k, ,&, I, 
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FIG. 4h. Power spectrum analysis of an aeromagnetic map of l:igure 4a 

and u. We assume that both ensembles have their 
mean direction of magnetization more or less 
along the geomagnetic vector. Reducing the 
spectrum to the north magnetic pole, therefore, 
gives the following formula: 

(K(r)) = WZ%+H~(S+, ii), 

+ 4*%“(C2(r, t,)eCZ~(Y(r, n)). (7) 

It is assumcti that T is sufficiently large in relation 
to the map window L that the bottom surfaces of 
the deeper ensemble cannot be detected. Such 
is almost always the case in practice. 

The power spectrum of the double ensemble 
thus consists of two parts. The first, which relates 
to the deeper sources, is relatively strong at the 
small wavenumbers and decays away rapidly. 
The second, which arises from the shallower cn- 
semhle of sources, dominates the short wavc- 
length end of the spectrum. 

EXAMPLES 

‘l‘he examples sho\\n in Figures 4, 5, and 6 are 
three among many we have examined which il- 
lustrate the fact that a formula of the type (7) 
may he fitted to the majority of aeromagnetic 
power spectra. Actually, we have not yet en- 
countered an instance in which it has proved im- 
possible. 

Example I: Matolzipi Lake ared, Province oj Quebec, 
Canada, (Figure 3) 

This is an area of Precambrian rock which has 
been subjected to intense regional metamorphism. 

Iron formation outcrops in various places within 
this area. The power spectrum indicates that a 
major contribution to the aeromagnetic map is 
from bodies which lie at depths of about 2 km 
and that the outcropping iron formation has very 
limited depth extent (about 150 m). 

Example 2: Central America (Figure 5) 

The entire area is overlain with a thick veneer 
of Tertiary volcanic lava. The aeromagnetic map 
is extremely complex. The power spectrum indi- 
cates that the ltvas have an average thickness of 
about 1.5 km, and that below them there is a 
deeper set of sources which are rather weakly mag- 
netic as compared with the volcanics. A sequence 
of nonmagnetic material, probably sediments, 
which have an estimated thickness of 2 km, ap- 
pears to overlay the deeper magnetic basement. 

Example 3: P&v> uctr, Province cl Ontario, Camufa 

(Figure 6) 

This is again Precambrian country with numer- 
ous outcroppings of steeply-dipping gneiss and 
schist. The area is immediately north of Lake 
Superior. The power spectrum indicates that some 
rather strong source(s) lies at considerable depths 
within this region and that the near-surtace bodies 
have quite a large depth extent. Deeper bodies 
are thought to be metavolcanic remnants. 

If it is possible to fit aeromagnetic power 
spectra with formulas of the type (7), the same 
formula may be used as a basis for designing 
numerical filters to remove one part or the other 
from the spectrum. 
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~:IG. Oa. .A total field intensity map of l’etry, Ontario, with contour intervals at 20 gammas. 
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FIG. 6b. A power spectrum analysis of an aeromagnetic map of Figure 6a. 

FIG. 5b. A power spectrum analysis of an aeromagnetic map of Figure 5a. 
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