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Introduction

Though this be madness, yet there is method in’t.
(William Shakespeare)

I think I did pretty well, considering I started out with nothing but a
bunch of blank paper.
(Steve Martin)

Pierre Simon, Marquis de Laplace, showed in 1782 that Newtonian po-
tential obeys a simple differential equation. Laplace’s equation, as it now
is called, arguably has become the most universal differential equation
in the physical sciences because of the wide range of phenomena that it
describes. The theory of the potential spawned by Laplace’s equation is
the subject of this book, but with particular emphasis on the applica-
tion of this theory to gravity and magnetic fields of the earth and in the
context of geologic and geophysical investigations.

A Brief History of Magnetic and Gravity Methods

The geomagnetic field must surely rank as the longest studied of all the
geophysical properties of the earth. Curiosity about the mutual attrac-
tion of lodestones can be traced back at least to the time of Thales, a
philosopher of ancient Greece in the sixth century B.C. (Needham [194]).
The tendency of lodestones to align preferentially in certain directions
was known in China by the first century A.D., and perhaps as early as
the second century B.C. This apparently was the first recognition that
the earth is associated with a property that affects magnetic objects,
thus paving the way for the advent of the magnetic compass in China
and observations of magnetic declination.

xiii



xiv Introduction

The compass arrived in Europe much later, probably late in the twelfth
century A.D., but significant discoveries were to follow. Petrus Pere-
grinus, a scholar of thirteenth-century Italy, performed several impor-
tant experiments on spherical pieces of lodestone. His findings, written
in 1269, described for the first time the concepts of magnetic polar-
ity, magnetic meridians, and the idea that like poles repel but opposite
poles attract. Georg Hartmann, Vicar of Nuremberg, was the first Euro-
pean to measure magnetic declination in about 1510. He also discovered
magnetic inclination in 1544, but his writings went undiscovered un-
til after Robert Norman, an English hydrographer, published his own
careful experiments on inclination conducted in 1576. In 1600, William
Gilbert, physician to Queen Elizabeth I, published his landmark treatise,
De Magnete, culminating centuries of European and Chinese thought
and experimentation on the geomagnetic field. Noting that the earth’s
magnetic field has a form much like that of a spherically shaped piece
of lodestone, Gilbert proclaimed that “magnus magnes ipse est globus
terrestris” (“the whole earth is a magnet”), and magnetism thus be-
came the first physical property, other than roundness, attributed to
the earth as a whole (Merrill and McElhinny [183]). In 1838, the Ger-
man mathematician Carl Friederich Gauss gave geomagnetic observa-
tions their first global-scale mathematical formalism by applying spher-
ical harmonic analysis to a systematic set of magnetic measurements
available at the time.

The application of magnetic methods to geologic problems advanced
in parallel with the development of magnetometers. Geologic applica-
tions began at least as early as 1630, when a sundial compass was
used to prospect for iron ore in Sweden (Hanna [110]), thus making
magnetic-field interpretation one of the oldest of the geophysical ex-
ploration techniques. Early measurements of the magnetic field for ex-
ploration purposes were made with land-based, balanced magnets sim-
ilar in principle of operation to today’s widely used gravity meters.
Max Thomas Edelmann used such a device during the first decade
of this century to make the first airborne magnetic measurements via
balloon (Heiland [121]). It was soon recognized that measurements of
the magnetic field via aircraft could provide superior uniform coverage
compared to surface measurements because of the aircraft’s ability to
quickly cover remote and inaccessible areas, but balanced-magnet in-
struments were not generally amenable to the accelerations associated
with moving platforms. It was military considerations, related to World
War 11, that spurred the development of a suitable magnetometer for
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routine aeromagnetic measurements. In 1941, Victor Vacquier, Gary
Muffly, and R. D. Wyckoff, employees of Gulf Research and Devel-
opment Company under contract with the U.S. government, modified
10-year-old flux-gate technology, combined it with suitable stabilizing
equipment, and thereby developed a magnetometer for airborne detec-
tion of submarines. In 1944, James R. Balsley and Homer Jensen of the
U.S. Geological Survey used a magnetometer of similar design in the
first modern airborne geophysical survey near Boyertown, Pennsylvania
(Jensen [143]).

A second major advance in magnetometer design was the development
of the proton-precession magnetometer by Varian Associates in 1955.
This relatively simple instrument measures the magnitude of the total
field without the need for elaborate stabilizing or orienting equipment.
Consequently, the proton-precession magnetometer is relatively inexpen-
sive and easy to operate and has revolutionized land-based and shipborne
measurements. Various other magnetometer designs have followed with
greater resolution (Reford [240]) to be sure, but the proton-precession
magnetometer remains a mainstay of field surveys.

Shipborne magnetic measurements were well under way by the 1950s.
By the mid 1960s, ocean-surface measurements of magnetic intensity
in the Northeast Pacific (Raff and Mason [234]) had discovered cu-
rious anomalies lineated roughly north-south. Fred Vine and Drum-
mond Matthews [286] and, independently, Lawrence Morley and Andre
Larochelle [186] recognized that these lineations reflect a recording of the
reversing geomagnetic field by the geologic process of seafloor spreading,
and thus was spawned the plate-tectonic revolution.

The gravity method too has a formidable place in the history of sci-
ence. The realization that the earth has a force of attraction surely
must date back to our initial awareness that dropped objects fall to the
ground, observations that first were quantified by the well-known exper-
iments of Galileo Galilei around 1590. In 1687 Isaac Newton published
his landmark treatise, Philosophiae Naturalis Principia Mathematica, in
which he proposed (among other revolutionary concepts) that the force
of gravity is a property of all matter, Earth included.

In 1672 a French scholar, Jean Richer, noted that a pendulum-based
clock designed to be accurate in Paris lost a few minutes per day in
Cayenne, French Guiana, and so pendulum observations were discov-
ered as a way to measure the spatial variation of the geopotential. New-
ton correctly interpreted the discrepancy between these two measure-
ments as reflecting the oblate shape of the earth. The French believed
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otherwise at the time, and to prove the point, the French Academy of
Sciences sent two expeditions, one to the equatorial regions of Ecuador
and the other to the high latitudes of Sweden, to carefully measure and
compare the length of a degree of arc at both sites (Fernie [88, 89, 90]).
The Ecuador expedition was led by several prominent French scientists,
among them Pierre Bouguer, sometimes credited for the first careful
observations of the shape of the earth and for whom the “Bouguer
anomaly” is named.

The reversible pendulum was constructed by H. Kater in 1818, thereby
facilitating absolute measurements of gravity. Near the end of the same
century, R. Sterneck of Austria reported the first pendulum instrument
and used it to measure gravity in Europe. Other types of pendulum in-
struments followed, including the first shipborne instrument developed
by F. A. Vening Meinesz of The Netherlands in 1928, and soon gravity
measurements were being recorded worldwide. The Hungarian geode-
sist, Roland von E&tvos, constructed the first torsional balance in 1910.
Many gravity meters of various types were developed and patented dur-
ing 1928 to 1930 as U.S. oil companies became interested in exploration
applications. Most modern instruments suitable for field studies, such as
the LaCoste and Romberg gravity meter and the Worden instrument, in-
volve astatic principles in measuring the vertical displacement of a small
mass suspended from a system of delicate springs and beams. Various
models of the LaCoste and Romberg gravity meter are commonly used in
land-based and shipborne studies and, more recently, in airborne surveys
(e.g., Brozena and Peters [43]).

The application of gravity measurements to geological problems can
be traced back to the rival hypotheses of John Pratt and George Airy
published between 1855 and 1859 concerning the isostatic support of
topography. They noted that plumb lines near the Himalayas were de-
flected from the vertical by amounts less than predicted by the topo-
graphic mass of the mountain range. Both Airy and Pratt argued that
in the absence of forces other than gravity, the rigid part of the crust
and mantle “floats” on a mobile, denser substratum, so the total mass in
any vertical column down to some depth of compensation must balance
from place to place. Elevated regions, therefore, must be compensated
at depth by mass deficiencies, whereas topographic depressions are un-
derlain by mass excesses. Pratt explained this observation in terms of
lateral variations in density; that is, the Himalayas are elevated because
they are less dense than surrounding crust. Airy proposed, on the other
hand, that the crust has laterally uniform density but variable thickness,
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so mountain ranges rise above the surrounding landscape by virtue of
underlying crustal roots.

The gravity method also has played a key role in exploration geo-
physics. Hugo V. Boeckh used an E6tvos balance to measure gravity
over anticlines and domes and explained his observations in terms of
the densities of rocks that form the structures. He thus was apparently
the first to recognize the application of the gravity method in the ex-
ploration for petroleum (Jakosky [140]). Indeed the first oil discovered
in the United States by geophysical methods was located in 1926 using
gravity measurements (Jakosky [140]).

About This Book

Considering this long and august history of the gravity and magnetic
methods, it might well be asked (as I certainly have done during the
waning stages of this writing) why a new textbook on potential theory
is needed now. I believe, however, that this book will fill a significant
gap. As a graduate student at Stanford University, I quickly found my-
self involved in a thesis topic that required a firm foundation in potential
theory. It seemed to me then, and I find it true today as a professional
geophysicist, that no single textbook is available covering the topic of po-
tential theory while emphasizing applications to geophysical problems.
The classic texts on potential theory published during the middle of this
century are still available today, notably those by Kellogg [146] and by
Ramsey [235] (which no serious student of potential theory should be
without). These books deal thoroughly with the fundamentals of po-
tential theory, but they are not concerned particularly with geophysical
applications. On the other hand, several good texts are available on the
broad topics of applied geophysics (e.g., Telford, Geldart, and Sheriff
[279]) and global geophysics (e.g., Stacey [270]). These books cover the
wide range of geophysical methodologies, such as seismology, electro-
magnetism, and so forth, and typically devote a few chapters to gravity
and magnetic methods; of necessity they do not delve deeply into the
underlying theory.

This book attempts to fill the gap by first exploring the principles of
potential theory and then applying the theory to problems of crustal and
lithospheric geophysics. I have attempted to do this by structuring the
book into essentially two parts. The first six chapters build the founda-
tions of potential theory, relying heavily on Kellogg [146], Ramsey [235],
and Chapman and Bartels [56]. Chapters 1 and 2 define the meaning
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of a potential and the consequences of Laplace’s equation. Special at-
tention is given therein to the all-important Green’s identities, Green’s
functions, and Helmholtz theorem. Chapter 3 focuses these theoretical
principles on Newtonian potential, that is, the gravitational potential of
mass distributions in both two and three dimensions. Chapters 4 and 5
expand these discussions to magnetic fields caused by distributions of
magnetic media. Chapter 6 then formulates the theory on a spherical
surface, a topic of obvious importance to global representations of the
earth’s gravity and magnetic fields.

The last six chapters apply the foregoing principles of potential theory
to gravity and magnetic studies of the crust and lithosphere. Chapters 7
and 8 examine the gravity and magnetic fields of the earth on a global
and regional scale and describe the calculations and underlying theory
by which measurements are transformed into “anomalies.” These discus-
sions set the stage for the remaining chapters, which provide a sampling
of the myriad schemes in the literature for interpreting gravity and mag-
netic anomalies. These schemes are divided into the forward method
(Chapter 9), the inverse method (Chapter 10), inverse and forward ma-
nipulations in the Fourier domain (Chapter 11}, and methods of data en-
hancement (Chapter 12). Here I have concentrated on the mathematical
rather than the technical side of the methodology, neglecting such topics
as the nuts-and-bolts operations of gravity meters and magnetometers
and the proper strategies in designing gravity or magnetic surveys.

Some of the methods discussed in Chapters 9 through 12 are accom-
panied by computer subroutines in Appendix B. I am responsible for the
programming therein (user beware), but the methodologies behind the
algorithms are from the literature. They include some of the “classic”
techniques, such as the so-called Talwani method discussed in Chapter 9,
and several more modern methods, such as the horizontal-gradient calcu-
lation first discussed by Cordell [66]. Those readers wishing to make use
of these subroutines should remember that the programming is designed
to instruct rather than to be particularly efficient or “elegant.”

It would be quite beyond the scope of this or any other text to fully
describe all of the methodologies published in the modern geophysical
literature. During 1992 alone, Geophysics (the technical journal of the
U.S.-based Society of Exploration Geophysicists) published 17 papers
that arguably should have been covered in Chapters 9 through 12. Mul-
tiply that number by the several dozen international journals of similar
stature and then times the 50 some-odd years that the modern method-
ology has been actively discussed in the literature, and it becomes clear
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that each technique could not be given its due. Instead, my approach
has been to describe the various methodologies with key examples from
the literature, including both classic algorithms and promising new tech-
niques, and with apologies to all of my colleagues not sufficiently cited!
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1
The Potential

Laplace’s equation is the most famous and most universal of all partial
differential equations. No other single equation has so many deep and
diverse mathematical relationships and physical applications.

(G. F. D. Duff and D. Naylor)

Every arrow that flies feels the attraction of the earth.
(Henry Wadsworth Longfellow)

Two events in the history of science were of particular significance to
the discussions throughout this book. In 1687, Isaac Newton put forth
the Universal Law of Gravitation: Each particle of matter in the uni-
verse attracts all others with a force directly proportional to its mass
and inversely proportional to the square of its distance of separation.
Nearly a century later, Pierre Simon, Marquis de Laplace, showed that
gravitational attraction obeys a simple differential equation, an equation
that now bears his name. These two hallmarks have subsequently devel-
oped into a body of mathematics called potential theory that describes
not only gravitational attraction but also a large class of phenomena,
including magnetostatic and electrostatic fields, fields generated by uni-
form electrical currents, steady transfer of heat through homogeneous
media, steady flow of ideal fluids, the behavior of elastic solids, prob-
ability density in random-walk problems, unsteady water-wave motion,
and the theory of complex functions and conformal mapping.

The first few chapters of this book describe some general aspects of
potential theory of most interest to practical geophysics. This chapter
defines the meaning of a potential field and how it relates to Laplace’s
equation. Chapter 2 will delve into some of the consequences of this
relationship, and Chapters 3, 4, and 5 will apply the principles of po-
tential theory to gravity and magnetic fields specifically. Readers finding
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these treatments too casual are referred to textbooks by Ramsey [235],
Kellogg [146], and MacMillan [172].

1.1 Potential Fields

A few definitions are needed at the outset. We begin by building an
understanding of the general term field and, more specifically, potential
field. The cartesian coordinate system will be used in the following devel-
opment, but any orthogonal coordinate system would provide the same
results. Appendix A describes the vector notation employed throughout
this text.

1.1.1 Fields

A field is a set of functions of space and time. We will be concerned
primarily with two kinds of fields. Material fields describe some physical
property of a material at each point of the material and at a given
time. Density, porosity, magnetization, and temperature are examples of
material fields. A force field describes the forces that act at each point
of space at a given time. The gravitational attraction of the earth and
the magnetic field induced by electrical currents are examples of force
fields.

Fields also can be classed as either scalar or vector. A scalar field is
a single function of space and time; displacement of a stretched string,
temperature of a volume of gas, and density within a volume of rock
are scalar fields. A vector field, such as flow of heat, velocity of a fluid,
and gravitational attraction, must be characterized by three functions of
space and time, namely, the components of the field in three orthogonal
directions.

Gravitational and magnetic attraction will be the principal focus of
later chapters. Both are vector fields, of course, but geophysical instru-
ments generally measure just one component of the vector, and that
single component constitutes a scalar field. In later discussions, we often
will drop the distinction between scalar and vector fields. For example,
gravity meters used in geophysical surveys measure the vertical compo-
nent g, (a scalar field) of the acceleration of gravity g (a vector field),
but we will apply the word “field” to both g and g, interchangeably.

A vector field can be characterized by its field lines (also known as
lines of flow or lines of force), lines that are tangent at every point to the
vector field. Small displacements along a field line must have z, y, and 2



1.1 Potential Fields 3

components proportional to the corresponding z, y, and z components
of the field at the point of its displacement. Hence, if F is a continuous
vector field, its field lines are described by integration of the differential
equation

(1.1)

Exercise 1.1 We will find in Chapter 3 that the gravitational attraction of
a uniform sphere of mass M, centered at point @, and observed outside
the sphere at point P is given by g = —yM#/r2, where v is a constant, =
is the distance from @ to P, and £ is a unit vector directed from @ to P.
Let @ be at the origin and use equation 1.1 to describe the gravitational
field lines at each point outside of the sphere.

1.1.2 Points, Boundaries, and Regions

Regions and points are also part of the language of potential theory, and
precise definitions are necessary for future discussions. A set of points
refers to a group of points in space satisfying some condition. Generally,
we will be dealing with infinite sets, sets that consist of a continuum of
points which are infinite in number even though the entire set may fit
within a finite volume. For example, if r represents the distance from
some point (), the condition that » < 1 describes an infinite set of points
inside and on the surface of a sphere of unit radius. A set of points is
bounded if all points of the set fit within a sphere of finite radius.

Consider a set of points £&. A point P is said to be a limit point of £
if every sphere centered about P contains at least one point of £ other
than P itself. A limit point does not necessarily belong to the set. For
example, all points satisfying < 1 are limit points of the set of points
satisfying r < 1. A point P is an interior point of £ if some sphere about
P contains only points of ¢. Similarly, P is an exterior point of £ if a
sphere exists centered about P that contains no points of £.

The boundary of £ consists of all limit points that are not interior to £.
For example, any point satisfying » = 1 lies on the boundary of the set
of points satisfying r < 1. A frontier point of £ is a point that, although
not an exterior point, is nevertheless a limit point of all exterior points.
The set of all frontier points is the frontier of £. The distinction between
boundary and frontier is a fine one but will be an issue in one derivation
in Chapter 2.

A set of points is closed if it contains all of its limit points and open
if it contains only interior points. Hence, the set of points described by
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r < 1 is closed, whereas the set of points 7 < 1 is open. A domain is an
open set of points such that any two points of the set can be connected
by a finite set of connected line segments composed entirely of interior
points. A region is a domain with or without some part of its boundary,
and a closed region is a region that includes its entire boundary.

1.2 Energy, Work, and the Potential

Consider a test particle under the influence of a force field F (Figure 1.1).
The test particle could be a small mass m acted upon by the gravitational
field of some larger body or an electric charge moving under the influence
of an electric field. Such physical associations are not considered until
later chapters, so the present discussion is restricted to general force and
energy relationships.

The kinetic energy expended by the force field in moving the particle
from one point to another is defined as the work done by the force
field. Newton’s second law of motion requires that the momentum of
the particle at any instant must change at a rate proportional to the
magnitude of the force field and in a direction parallel to the direction
taken by the force field at the location of the particle; that is,

d
AF = mav, (1.2)

Fig. 1.1. While under the influence of force field F, a particle of mass m leaves
point Py at time to and moves by an arbitrary route to point P, arriving at
time t.
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where A is a constant that depends on the units used, and v is the
velocity of the particle. We select units in order to make A = 1 and
multiply both sides of equation 1.2 by v to obtain

1 d,

F-ve_-m—
v=gmov

d
= ZE, (1.3)

where FE is the kinetic energy of the particle. If the particle moves from
point Py to P during time interval ¢p to ¢ (Figure 1.1), then the change
in kinetic energy is given by integration of equation 1.3 over the time
interval,

¢
E——E():/F-th'

to

P
=/F-ds
Po

:W(PaP0)> (14)

where ds represents elemental displacement of the particle. The quantity
W (P, Py) is the work required to move the particle from point Py to P.
Equation 1.4 shows that the change in kinetic energy of the particle
equals the work done by F.

In general, the work required to move the particle from Py to P differs
depending on the path taken by the particle. A vector field is said to be
conservative in the special case that work is independent of the path of
the particle. We assume now that the field is conservative and move the
particle an additional small distance Az parallel to the x axis, as shown
in Figure 1.2. Then

W(P, Py) + W(P + Az, P) = W(P + Az, Fy),
and rearranging terms yields
W(P + Az, Py) — W(P, P)) = W(P + Az, P)

P+Ax

= / Fw(x,y,z)dx.

P
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y

P P+Ax

W

z

Fig. 1.2. A particle of mass travels through a conservative field; the particle
moves first from Pp to P, then parallel to the & axis an additional distance Ax.

The integral can be solved by dividing both sides of the equation by Ax
and applying the law of the mean,

W(P + A.T, Po) - W(P, Po)
Az

= Fy(z + eAx,y, 2),

where 0 < € < 1. As Az becomes arbitrarily small, we have

ow
—=F,. 1.5
or ’ (1.5)
We can repeat this derivation for the y and z directions, multiply each
equation by appropriate unit vectors, and add them to equation 1.5 to
obtain

oW oW ow
F(l“,y,z)z(gva—y,g)
=VW. (1.6)

Hence, the derivative of the work in any direction is equal to the com-
ponent of force in that direction. The vector force field F' is completely
specified by the scalar field W, which we call the work function of F
(Kellogg [146]).

We have shown, therefore, that a conservative field is given by the
gradient of its work function. With equations 1.4 and 1.6, we also can
show the converse relationship. If the work function W has continuous



1.2 Energy, Work, and the Potential 7

derivatives, then we can integrate equation 1.6 as follows:

P
W(P,P0)=/F-ds

Po

P
ow ow ow

Po

P

=/dW

Po
= W(P) — W(P,). (1.7)

Hence, the work depends only on the values of W at endpoints P and
Py, not on the path taken, and this is precisely the definition of a con-
servative field. Consequently, any vector field that has a work function
with continuous derivatives as described in equation 1.6 is conservative.
A corollary to equation 1.7 results if the path of the particle is a closed
loop. Then P equals Py, W(P, Py) = 0, and no net work is required to
move the particle around the closed loop.

The potential ¢ of vector field F is defined as the work function or as
its negative depending on the convention used. Kellogg [146] summarizes
these conventions as follows: If particles of like sign attract each other
(e.g., gravity fields), then F = V¢ and the potential equals the work
done by the field. If particles of like sign repel each other (e.g., electro-
static fields), then F = —V¢, and the potential equals the work done
against the field by the particle. In the latter case, the potential ¢ is the
potential energy of the particle; in the former case, ¢ is the negative of
the particle’s potential energy.

Note that any constant can be added to ¢ without changing the im-
portant result that

F=V¢.
This constant is chosen generally so that ¢ approaches 0 at infinity. In
other words, the potential at point P is given by

P

#(P) = /F-ds. (1.8)

o0
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The value of the potential at a specific point, therefore, is not nearly so
important as the difference in potential between two separated points.

1.2.1 Egquipotential Surfaces

As its name implies, an equipotential surface is a surface on which the
potential remains constant; that is,

o&(z,y, 2) = constant .

If § is a unit vector lying tangent to an equipotential surface of F, then
§-F = % at any point and must vanish according to the definition
of an equipotential surface. It follows that field lines at any point are
always perpendicular to their equipotential surfaces and, conversely, any
surface that is everywhere perpendicular to all field lines must be an
equipotential surface. Hence, no work is done in moving a test particle
along an equipotential surface. Only one equipotential surface can exist
at any point in space. The distance between equipotential surfaces is a
measure of the density of field lines; that is, a force field will have greatest
intensity in regions where its equipotential surfaces are separated by
smallest distances.

Exercise 1.2 Prove that equipotential surfaces never intersect.

1.3 Harmonic Functions

To summarize the previous section, a conservative field F has a scalar
potential ¢ given by F = V¢ (or F = —V¢, depending on sign conven-
tion). Moreover, if F = V¢, then F is conservative and is said to be a
potential field. In the following we discuss another property of potential
fields: The potential ¢ of field F, under certain conditions to be discussed
in Chapter 2, satisfies an important second-order differential equation
called Laplace’s equation,

Vi =0, (1.9)

at points not occupied by sources of F. Several surprising and illustrative
results follow from this statement. We start by discussing the physical
meaning of Laplace’s equation, first with the trivial one-dimensional case
and then the general equation.
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1.3.1 Laplace’s Equation

Consider a stretched rubber band subject to a static force directed in the
y direction, as shown in Figure 1.3. The displacement ¢ of the rubber
band in the y direction is described by the differential equation
d2
ad_a:f =—F(z),

where « is a constant and F(x) is the force in the y direction per unit
length in the z direction. If F(x) = 0, the rubber band lies along a
straight line, and

d’¢

da?
The second-order derivative of a function is a measure of the function’s
curvature, and the previous equation illustrates the obvious result: The
stretched rubber band has no curvature in the absence of external forces.
This is simply the one-dimensional case of Laplace’s equation, but it il-
lustrates an important property of harmonic functions that will extend
to two- and three-dimensional cases. Laplace’s equation is not satisfied
along any part of the band containing a local minimum or maximum.
Indeed, if ¢(z) in this example is to satisfy Laplace’s equation, the max-
imum and minimum displacements must occur at the two end points of
the rubber band, as shown in Figure 1.3.

Now consider a membrane stretched over an uneven frame, such as

=0.

F(x)=0

Fig. 1.3. Displacement in the y direction of a stretched rubber band due to
an applied force F(z). (a) Static force F(z) is nonzero and varies along the z
axis. (b) F(z) = 0 so that ¢(z) has no maxima or minima except at the ends
of the band.
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Zmin

Fig. 1.4. Stretched membrane attached to an uneven loop of wire. Note that
the membrane reaches maximum and minimum values of z at the wire.

might be formed by a thin film of soap spread across a twisted loop of
wire (Figure 1.4). Let ¢(z,y) represent the displacement of the mem-
brane in the z direction. In the absence of external forces, the displace-
ment of the membrane satisfies Laplace’s equation in two dimensions,

Fe 8¢ _,,
ox2 = Oy?

This condition would not be satisfied at any point of the membrane
containing a peak or a trough. Hence, Laplace’s equation requires that
maximum and minimum displacements can occur only on the frame,
that is, on the boundary of the membrane.

As a three-dimensional example, let ¢(x,y, z) represent the concen-
tration of a solute in a fluid, such as salt dissolved in water. If the salt
is concentrated at some point within the fluid, then V2¢ # 0 at that
point. In regions of the fluid where V2¢ = 0, the salt apparently has ar-
ranged itself so that no localized zones of excess concentration (maxima)
or excess dilution (minima) occur in the region. It is useful, therefore,
to consider the differential operator V2 as a means to determine the
variations in the concentration of a distribution; if V2¢ = 0 through-
out a region, then ¢ at each point of the region is never more (or less)
concentrated than all surrounding parts of the region.
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With these preliminary remarks, we define a harmonic function as any
function that (1) satisfies Laplace’s equation; (2) has continuous, single-
valued first derivatives; and (3) has second derivatives. We might expect
from the previous examples (and soon will prove) that a function that
is harmonic throughout a region R must have all maxima and minima
on the boundary of R and none within R itself. The converse is not
necessarily true, of course; a function with all maxima and minima on
its boundary is not necessarily harmonic because it may not satisfy the
three criteria listed.

The definition of the second derivative of a one-dimensional function
demonstrates another important property of a harmonic function. The
second derivative of ¢(z) is given by

Jim 5 {000 - G 10 - a0) 4 oo+ 20} = -3 T

If ¢ satisfies the one-dimensional case of Laplace’s equation, then the
right-hand side of the previous equation vanishes and

6(x) = 3 lim [§(z — Az) + b(z + Ag)]
2 Az—0

Hence, the value of a harmonic function ¢ at any point is the average

of ¢ at its neighboring points. This is simply another way of stating the

now familiar property of a potential: A function can have no maxima or

minima within a region in which it is harmonic. We will discuss a more

rigorous proof of this statement in Chapter 2.

1.3.2 An Example from Steady-State Heat Flow

Consider a temperature distribution T specified throughout some region
R of a homogeneous material. All heat sources and sinks are restricted
from the region. According to Fourier’s law, the flow of heat J at any
point of R is proportional to the change in temperature at that point,
that is,

J=—kVT, (1.10)

where k is thermal conductivity, a constant of the medium. Equation 1.10
tells us, on the basis of the discussion in Section 1.2, that temperature
is a potential, and flow of heat J is a potential field analogous to a force
field. Field lines for J describe the pattern and direction of heat transfer,
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A
n

Fig. 1.5. Heat flow J through a region R containing no heat sources or sinks.
Region R is bounded by surface S, and ii is the unit vector normal to S.

in the same sense that gravitational field lines describe the gravitational
forces acting upon a particle of mass.

Consider the free flow of heat in and out of a region R bounded by
surface S, as shown by Figure 1.5. The total heat in region R is given

by

H:cp/Tdv, (1.11)
R

where ¢ is the specific heat and p is the density of the material. The
change in total heat within R must equal the net flow of heat across
boundary S; that is,

dH .
S

:k:/VT~ﬁdS,
S

where 11 is the unit vector normal to S. The divergence theorem (Ap-
pendix A) can be used to convert the surface integral into a volume
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integral; that is,

ﬂ:k/v-VTazv
dt
R
=k/V2Tdv. (1.12)
R

From equation 1.11, the change in heat over time is also given by

dH oT

= = = d 1.1

= = | (1.13)
R

and combining equations 1.13 and 1.12 provides

/ (cpa—T - kV2T> dv=0. (1.14)
ot
R

This integral vanishes for every choice of the region R. If the integrand,
which we assume is continuous, is not zero throughout R, then we could
choose some portion of R so as to contradict equation 1.14. Hence, the
integrand itself must be zero throughout R, or

9 or
where k = k/cp is thermal diffusivity. Equation 1.15 is the equation of
conductive heat transfer. If all heat sources and sinks lie outside of region
R and do not change with time, then steady-state conditions eventually

will be obtained and equation 1.15 becomes
V2T =0 (1.16)

throughout R. Hence, temperature under steady-state conditions satis-
fies Laplace’s equation and is harmonic.

The temperature distribution accompanying steady-state transfer of
heat is an easily visualized example of a harmonic function, one which
clarifies some of the theoretical results discussed earlier. For example,
imagine a volume of rock with no internal heat sources or heat sinks
(Figure 1.5) and in steady-state condition. On the basis of previous dis-
cussions, we can state a number of characteristics of the temperature
distribution within the volume of rock. (1) We conclude that the tem-
perature within the volume of rock cannot reach any maximum or min-
imum values. This is a reasonable result; if temperature is in a steady-
state condition, all maxima and minima should occur at heat sources
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and sinks, and these have been restricted from this part of the rock. (2)
Furthermore, maximum and minimum temperatures must occur on the
boundary of the volume and not within the volume. After all, some point
of the boundary must be closer to any external heat sources (or sinks)
than all interior points; likewise, some point of the boundary will be
farther from any external heat source (or sink) than all interior points.
(3) It also is reasonable that the temperature at any point is the average
of the temperatures in a small region around that point.
Exercise 1.3 One end of a glass rod is kept in boiling water and the opposite
end in ice water until the temperature of the rod reaches equilibrium.
Suddenly the two ends are switched so that the hot end is in ice water

and the cold end is in boiling water. Describe how the temperature of
the rod changes with time. Is the temperature harmonic?

Finding a solution to Laplace’s equation, if indeed one exists, is a
boundary-value problem of, in this case, the Dirichlet type; that is, find
a representation for ¢ throughout a region R, given that V2¢ = 0 within
R and given specified values of ¢ on the surface that bounds R. For
example, the steady-state temperature can be calculated, in principle,
throughout a spherically shaped region of homogeneous matter by solv-
ing equation 1.16 subject to specified boundary conditions. We will have
considerably more to say about this subject in later chapters.

1.3.3 Complex Harmonic Functions

This section provides a very brief review of complex functions sufficient
to draw one important conclusion: The real and imaginary parts of a
complex function are harmonic in regions where the complex function is
analytic. For additional information about complex functions, the inter-
ested reader is referred to the textbook by Churchill [59)].

First we need some definitions. In the following,  and y are real
variables describing a two-dimensional cartesian coordinate system. The
coordinate system represents the complex plane, and any point of the
plane is identified by the complex number z = z + iy, where i = v/—1.
As discussed in Section 1.1.2 for general cases, we can consider sets of
points of the complex plane. A neighborhood of a point zg of the complex
plane is the set of all points such that |z — 29| < €, where € is a positive
constant. An interior point of a set of points has some neighborhood
containing only points of the set. Sets that contain only interior points
are called open regions. Open, connected regions of the complex plane
are called domains.
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If a complex number w is prescribed for each value of a set of com-
plex numbers z, usually a domain, then w is a complex function of the
complex variable z, written w(z). Complex functions can be written in
terms of their real and imaginary parts,

w(z) = u(z) + iwv(2),

where u(2) and v(z) are real functions of the complex variable 2. For
example, if

w(z) =z
=z - y2+2izy,

then u(z,y) = 2 — y? and v(z,y) = 2zy, and the domain of definition
in this case is the entire complex plane.

The derivative of a complex function requires special consideration. In
order for a real function f(z) to have a derivative, the ratio of the change
in f to a change in z, Af/Az, must have a limit as Az approaches 0.
Similarly, for the derivative of complex function w(z) to exist in a do-
main, it is necessary that the ratio

. Aw
r(z) = Jim —=,
have a limit. In the complex plane, however, there are different paths
along which Az can approach zero, and the value of the ratio r(z) may
depend on that path. For example, the complex function w(z) = 22 has
r(2) = 2(xo + tyo) at point (xo, yo), independent of how Az approaches
zero, whereas the complex function w(z) = z2? + y% — i 2zy is dependent
on the path taken as Az — 0. In this latter case, the ratio has no limit
and the derivative does not exist.

A function w(z) = u(z,y) + iv(z,y) is said to be analytic in a do-
main of the complex plane if the real functions u(z,y) and v(z,y) have
continuous partial derivatives and if w(z) has a derivative with respect
to z at every point of the domain. The Cauchy-Riemann conditions
provide an easy way to determine whether such conditions are met. If
u(z,y) and v(z,y) have continuous derivatives of first order, then the
Cauchy-Riemann conditions,

ou v
5 = 5y’ (1.17)
du_ _Ov. (1.18)

8_y Oz
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are necessary and sufficient conditions for the analyticity of w(z). The
derivative of the complex function is given by

@—a_u_f_'a_v
dz oz ‘oz
v o
Oy oy

Now consider a complex function analytic within some domain T'. The
two-dimensional Laplacian of its real part u(x,y) is given by

Pu  Ou

V= + =

0x2  Oy?

The Cauchy—Riemann conditions are applicable here because w(z) is
analytic; hence, we assume that derivatives of second order exist and
employ the Cauchy—-Riemann conditions to get

9 %v v
U= —— — ——
oxdy  Oxdy
=0.

Consequently, the real part of a complex function satisfies the two-
dimensional case of Laplace’s equation in domains in which the func-
tion is analytic, and since the necessary derivatives exist, the real part
of w(z) must be harmonic. Hence, if a complex function is analytic in
domain T, it has a real part that is harmonic in T. Likewise, it can be
shown that the imaginary part of an analytic complex function also is
harmonic in domains of analyticity.

Exercise 1.4 Use the Cauchy-Riemann conditions to show that the imagi-
nary part of an analytic function satisfies Laplace’s equation.

Conversely, if « is harmonic in 7', there must exist a function v such that
4 + 4v is analytic in T', and v is given by

/ ou ou

Z0

We will have occasion later in this text to use these rather abstract prop-
erties of complex numbers in some practical geophysical applications.
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1.4 Problem Set
. The potential of F is given by (22 + %)~ L.

(a) Find F.
) Describe the field lines of F.
(c) Describe the equipotential surfaces of F.

) Demonstrate by integration around the perimeter of a rectangle
in the x, y plane that F is conservative. Let the rectangle extend
from x; to zg in the x direction and from y; to y; in the y
direction, and let x; > 0.

. Prove that the intensity of a conservative force field is inversely
proportional to the distance between its equipotential surfaces.

. If all mass lies interior to a closed equipotential surface S on which
the potential takes the value C, prove that in all space outside of S
the value of the potential is between C and 0.

. If the lines of force traversing a certain region are parallel, what may
be inferred about the intensity of the force within the region?

. Two distributions of matter lie entirely within a common closed
equipotential surface C. Show that all equipotential surfaces outside
of C also are common.

. For what integer values of n is the function (2®+y?+22)% harmonic?
. You are monitoring the magnetometer aboard an interstellar space-

craft and discover that the ship is approaching a magnetic source
described by

B =

IR 2

(a) Remembering Maxwell’s equation for B, will you report to Mis-
sion Control that the magnetometer is malfunctioning, or is this
a possible source?

(b) What if the magnetometer indicates that B is described by

)
7'2

. The physical properties of a spherical body are homogeneous. De-
scribe the temperature at all points of the sphere if the temperature
is harmonic throughout the sphere and depends only on the distance
from its center.

. As a crude approximation, the temperature of the interior of the
earth depends only on distance from the center of the earth. Based



18

10.

The Potential

on the results of the previous exercise, would you expect the temper-
ature of the earth to be harmonic everywhere inside? Explain your
answer?

Assume a spherical coordinate system and let r be a vector directed
from the origin to a point P with magnitude equal to the distance
from the origin to P. Prove the following relationships:

V.r=3,

r
Vr = —,

p
v-(%)=0 r#0

1 r
v;:—s, 7"7407
Vxr=0,
1 A-r
A V;——Ts s 7’760,
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Consequences of the Potential

It may be no surprise that human minds can deduce the laws of
falling objects because the brain has evolved to devise strategies
for dodging them.

(Paul Davies)

Only mathematics and mathematical logic can say as little as the
physicist means to say.
(Bertrand Russell)

In Chapter 1, we learned that a conservative vector field F can be ex-
pressed as the gradient of a scalar ¢, called the potential of F, and
conversely F is conservative if F = V¢. It was asserted that such po-
tentials satisfy Laplace’s equation at places free of all sources of F and
are said to be harmonic. This led to several important characteristics of
the potential. In the same spirit, this chapter investigates a number of
additional consequences that follow from Laplace’s equation.

2.1 Green’s Identities

Three identities can be derived from vector calculus and Laplace’s equa-
tion, and these lead to several important theorems and additional in-
sight into the nature of potential fields. They are referred to as Green’s
identities.t

t The name Green, appearing repeatedly in this and subsequent chapters, refers to
George Green (1793-1841), a British mathematician of Caius College, Cambridge,
England. He is perhaps best known for his paper, Essay on the Application of
Mathematical Analysis to the Theory of Electricity and Magnetism, and was ap-
parently the first to use the term “potential.”

19
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2.1.1 Green’s First Identily

Green’s first identity is derived from the divergence theorem (Appendix
A). Let U and V be continuous functions with continuous partial deriva-
tives of first order throughout a closed, regular region R, and let U have
continuous partial derivatives of second order in R. The boundary of R
is surface S, and 0 is the outward normal to S. If A = VVU, then

/V-Adv:/v-(vvmdv
R R

= /[vv VU + VV3U]dv.
R

Using the divergence theorem yields

/[VV.VU+VV2U]dS=/A.ﬁSv
S

R

=/VVU‘ﬁdS

s
U

—/V% ds,

s
that is,
VVeUdv+ [ VU -VVdv = V?E);z— ds. (2.1)
R R s

Equation 2.1 is Green’s first identity and is true for all functions U and
V that satisfy the differentiability requirements stated earlier.

Several very interesting theorems result from Green’s first identity if
U and V are restricted a bit further. For example, if U is harmonic and
continuously differentiable in R, and if V = 1, then VU =0, VV =0,
and equation 2.1 becomes

U
5. 45 =0. (2.2)
S

Thus the normal derivative of a harmonic function must average to zero
on any closed boundary surrounding a region throughout which the func-
tion is harmonic and continuously differentiable (Figure 2.1). It also can
be shown (Kellogg [146, p. 227]) that the converse of equation 2.2 is
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Fig. 2.1. Region R subject to force field F. Surface S bounds region R. Unit
vector A is outward normal at any point on S.

true; that is, if U and its derivatives of first order are continuous in R,
and g—g integrates to zero over its closed boundary, then U must be har-
monic throughout R. Hence, equation 2.2 is a necessary and sufficient
condition for U to be harmonic throughout the region.

Equation 2.2 provides an important boundary condition for many geo-
physical problems. Suppose that vector field F has a potential U which
is harmonic throughout some region. Because g—g = F - 11 on the surface

of the region, equation 2.1 can be written as

/F-ﬁdszo, (2.3)
S

and applying the divergence theorem (Appendix A) yields

/V«de:O.
R

In words, the normal component of a conservative field must average to
zero on the closed boundary of a region in which its potential is harmonic.
Hence, the flux of F into the region exactly equals the flux leaving the
region, implying that no sources of F exist in the region. Moreover, the
condition that V - F = 0 throughout the region is sufficient to conclude
that no sources lie within the region.
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Steady-state heat flow, for example, is harmonic (as discussed in Chap-
ter 1) in regions without heat sources or sinks and must satisfy equa-
tion 2.3. If region R is in thermal equilibrium and contains no heat
sources or sinks, the heat entering R must equal the heat leaving R.
Equation 2.3 is often called Gauss’s law and will prove useful in subse-
quent chapters.

Now let U be harmonic in region R and let V = U. Then, from Green'’s

first identity,
ou
2
= . 4
/(VU) dv /Uan ds (2.4)
R S

Consider equation 2.4 when U = 0 on S. The right-hand side vanishes
and, because (VU)? is continuous throughout R by hypothesis, (VU)? =
0. Therefore, U must be a constant. Moreover, because U = 0 on §
and because U is continuous, the constant must be zero. Hence, if U
18 harmonic and continuously differentiable in R and if U vanishes at
all points of S, U also must vanish at all points of R. This result is
intuitive from steady-state heat flow. If temperature is zero at all points
of a region’s boundary and no sources or sinks are situated within the
region, then clearly the temperature must vanish throughout the region
once equilibrium is achieved.

Green’s first identity leads to a statement about uniqueness, some-
times referred to as Stokes’s theorem. Let U; and Us be harmonic in R
and have identical boundary conditions, that is,

Ur(S) = Ua(S).

The function U; —Us also must be harmonic in R. But U; —Us vanishes on
S and the previous theorem states that Uy — Uz also must vanish at every
point of R. Therefore, U; and Uz are identical. Consequently, a function
that s harmonic and continuously differentiable in R is uniquely deter-
mined by its values on S, and the solution to the Dirichlet boundary-
value problem is unique. Stokes’s theorem makes intuitive sense when
applied to steady-state heat flow. A region will eventually reach thermal
equilibrium if heat is allowed to flow in and out of the region. It seems
reasonable that, for any prescribed set of boundary temperatures, the
region will always attain the same equilibrium temperature distribution
throughout the region regardless of the initial temperature distribution.
In other words, the steady-state temperature of the region is uniquely
determined by the boundary temperatures.
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The surface integral in equation 2.4 also vanishes if g—g =0onsS. A
similar proof could be developed to show that if U is single-valued, har-
monic, and continuously differentiable in R and if g—g =0onS, thenU
18 a constant throughout R. Again, steady-state heat flow provides some
insight. If the boundary of R is thermally insulated, equilibrium tem-
peratures inside R must be uniform. Moreover, a single-valued harmonic
function is determined throughout R, except for an additive constant, by
the values of its normal derivatives on the boundary.

Exercise 2.1 Prove the previous two theorems.

These last theorems relate to the Neumann boundary-value problem and
show that such solutions are unique to within an additive constant.

The uniqueness of harmonic functions also extends to mixed boundary-
value problems. If U is harmonic and continuously differentiable in R
and if

oU
— +hU =
on + g
on S, where h and g are continuous functions of S, and h is never

negative, then U s unique in R.

Exercise 2.2 Prove the previous theorem.

We have shown that under many conditions Laplace’s equation has
only one solution in a region, thus describing the uniqueness of harmonic
functions. But can we say that even that one solution always exists? The
answer to this interesting question requires a set of “existence theorems”
for harmonic functions that are beyond the scope of this chapter. Inter-
ested readers are referred to Chapter XI of Kellogg [146, p. 277] for a
comprehensive discussion.

2.1.2 Green’s Second Identity

If we interchange U and V in equation 2.1 and subtract the result from
equation 2.1, we obtain Green’s second identity:

/[UV2V - VV2U]dv = / [UZ—Z - VZ—Z] s, (2.5)
R S

where it is understood that U and V are continuously differentiable and
have continuous partial derivatives of first and second order in R.
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A corollary results if U and V are both harmonic:

oV U
/[U% —V%] dS=0. (2.6)

This relationship will prove useful later in this chapter in discussing
certain kinds of boundary-value problems. Also notice that if V =1 in
equation 2.5 and if U is the potential of F, then

/V2Udv=/F-ﬁds.

R S

In regions of space where U is harmonic, we have the same result as in
Section 2.1.1,

/F'ﬁdS=0,
s

namely, that the normal component of a conservative field averages to
zero over any closed surface.

2.1.83 Green’s Third Identity

The third identity is a bit more difficult to derive. We begin by letting
V= % in Green’s second identity (equation 2.5), where r is the distance
between points P and Q inside region R (Figure 2.2):

11 o1 18U
/[UW;—;WU] dv:/[U—————] ds, P#Q. (2.7)
R S

Integration is with respect to point Q. It is easily shown that V21 =0
so long as P # Q. To insure that P # @, we surround P with a small
sphere ¢ and exclude it from R. Equation 2.7 becomes

2
[T o2t s [ [ 2t 1 s
R o

onr ron onr ron
S
Exercise 2.3 Show that % is harmonic for any region where r # 0. What
happens at r = 07

(2.8)
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S

qO ds

Fig. 2.2. Derivation of Green’s third identity. Point P is inside surface S but
is excluded from region R. Angle d2 is the solid angle subtended by dS at
point P.

First consider the integral over o (Figure 2.2). We use the relationships,

o 0
o= o
(91 1
arr 2’

cos0dS =r2dQ,

where dfQ is the solid angle subtended at P by dS and § = 0. The last
integral of equation 2.8 becomes

/iU+1aU r2dQ = /UdQ+/r—dQ
72 r o

o

=470 + ri—UdQ

[

As the sphere becomes arbitrarily small, the right-hand side of the pre-
vious expression approaches 47U (P), and equation 2.8 becomes

VU 18(]
U(P) = ——/ 47r ran /U——dS (2.9)
S

Equation 2.9 is Green’s third identity.
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The significance of Green’s third identity will become clear in later
chapters. In Chapter 3 (equation 3.5), for example, we will show that
a mass distribution described by a density p(Q) has a gravitational po-
tential at point P given by

where @ is the point of integration, r is the distance from P to @}, and y is

a constant. This integral has the same form as the first integral of Green’s

third identity if p = —#V2U . Similarly, the second integral of Green’s

identity has the same form as the potential of a surface distribution of
18U

mass 0, where 0 = — 5. We will show in Chapter 5 (equation 5.2) that

the magnetic potential of a distribution of magnetization M is given by

1
V(P):Cm/M-VQ;dv,
R

where Cy, is a constant, and this has the same form as the third integral
of Green’s third identity if M is spread over S and directed normal to S.
But remember that no physical meanings were attached to U in deriving
Green’s third identity; that is, U was only required to have a sufficient
degree of continuity. Green’s third identity shows, therefore, that any
function with sufficient differentiability can be expressed as the sum of
three potentials: the potential of a volume distribution with density pro-
portional to —V2U, the potential of a surface distribution with density
proportional to g—g, and the potential of a surface of magnetization pro-
portional to —U. Hence, we have the surprising result that any function
with sufficient differentiability is a potential

An important consequence follows from Green’s third identity when
U is harmonic. Then equation 2.9 becomes

1 [[18U 81
U(P) = E/ [;% —Ua—n;] ds. (2.10)
S

This important result shows that a harmonic function can be calculated
at any point of a region in which it is harmonic simply from the values
of the function and its normal derivatives over the region’s boundary.
This equation is called the representation formula (Strauss [274]), and
we will return to it later in this chapter and again in Chapter 12.
Green’s third identity demonstrates an important limitation that faces
any interpretation of a measured potential field in terms of its causative
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sources. It was shown earlier that a harmonic function satisfying a given
set of Dirichlet boundary conditions is unique, but the converse is not
true. If U is harmonic in a region R, it also must be harmonic in each
subregion of R. Likewise equation 2.10 must apply to the boundary of
each subregion. It follows that the potential within any subregion of
R can be related to an infinite variety of surface distributions. Hence,
no unique boundary conditions exist for a given harmonic function. This
property of nonuniqueness will be a common theme in following chapters.

2.1.4 Gauss’s Theorem of the Arithmetic Mean

Another consequence of Green’s third identity occurs when U is har-
monic, the boundary S is the surface of a sphere, and point P is at the
center of the sphere. If o is the radius of the sphere, then equation 2.10

becomes
1 oU 1 1
U(P) = Tra 8—ndS—E U<—55) ds.
s

The first integral vanishes according to Green’s first identity, so that

(P)=4-3
S

U(P ! /UdS. (2.11)

Hence, the value of a harmonic function at any point is simply the av-
erage of the harmonic function over any sphere concentric about the
point, so long as the function is harmonic throughout the sphere. This
relationship is called Gauss’s theorem of the arithmetic mean.

We discussed the mazimum principle by example in Section 1.3: If U
is harmonic in region R, a closed and bounded region of space, then U
attains its mazimum and minimum values on the boundary of R, except
in the trivial case where U is constant. Now we are in a position to prove
it. The proof is by contradiction. Let 3 represent a set of points of R at
which U attains a maximum M (Figure 2.3). Hence,

U(X)=M.

Y. cannot equal the total of R because we have stated that U is not
constant, and ¥ must be closed because of the continuity of U. Suppose
that ¥ contains at least one interior point of R. It can be shown that if
Y. has one point interior to R it also has a frontier point interior to R,
which we call Py. Because F, is interior to R, a sphere can be constructed
centered about Py that lies entirely within R. By the definition of a
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Fig. 2.3. Region R includes a set of points ¥ at which U attains a maximum.
Point Py is a frontier point of ¥.. Any sphere centered on Py must contain at
least one point of ¥ and one point of R not in X.

frontier point (Section 1.1.2), such a sphere must pass outside of ¥ where
U < M. Gauss’s theorem of the arithmetic mean and the continuity of
U therefore imply that U(Fy) < M. But Py is also a member of 3, and
this requires that U(Py) = M. A contradiction arises, and our original
suppositions, that Py and at least one point of ¥ lie interior to R, must
be in error. Hence, no maxima of U can exist interior to R. An analogous
proof can be constructed to show that the same is true of all minima
of U.

2.2 Helmholtz Theorem

We said in Chapter 1 that a vector field F is conservative if the work
required to move a particle through the field is independent of the path
of the particle, in which case F can be represented as the gradient of a
scalar ¢,

F=Vog,

called the potential of F. Conversely, if F has a scalar potential, then F is
conservative. These concepts are a subset of the Helmholtz theorem (Duff
and Naylor [81]) which states that any vector field F that is continuous
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and zero at infinity can be expressed as the gradient of a scalar and the
curl of a vector, that is,

F=Vé+VxA, (2.12)

where V¢ and V x A are orthogonal in the integral norm. The quantity
¢ is the scalar potential of F, and A is the vector potential.

2.2.1 Proof of the Helmholtz Theorem

Given that F is continuous and vanishes at infinity, we can construct

the integral
1 F(@)

where ¢} is the point of integration, r is the distance between P and
@, and the integral is taken over all space. Each of the three cartesian
components of W has a form like

1 F
=— | ZZdv. 2.14
T ) Y (2.14)

At this point, we borrow a result from Chapter 3: Equation 2.14 is a
solution to a very important differential equation, Poisson’s equation:

VW, = —F,. (2.15)

The relationship between equations 2.14 and 2.15 follows from Green’s
third identity because the integration in equation 2.14 is over all space,
and we have stipulated that F and, therefore, the three components of
F vanish at infinity.

Exercise 2.4 Show that equations 2.14 and 2.15 are consistent with Green’s
third identity.

With W defined as in equation 2.13, the relationship between equa-
tions 2.14 and 2.15 suggests that

VW = —F, (2.16)

where each component of F leads to an example of Poisson’s equation.
A vector identity (Appendix A) shows that V2W can be represented by
a gradient plus a curl, that is,

— VW = -V(V- W)+ V x (V x W), (2.17)

and hence F is represented as the gradient of a scalar (V - W) plus the
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curl of a vector (V x W). We define ¢ = -~V - W and A =V x W and
substitute these definitions along with equation 2.16 into equation 2.17
to get the Helmholtz theorem,

F=Vo+VxA.

Exercise 2.5 Prove the vector identity V(V-W) —V x V x W = V2W.

Hence, the Helmholtz theorem is proven: If F is continuous and vanishes
at infinity, it can be represented as the gradient of a scalar potential plus
the curl of a vector potential.

The Helmholtz theorem is useful, however, only if the scalar and vec-
tor potentials can be derived directly from F. This should be possible
because of the way ¢ and A were defined, and the relationships can be
seen by taking the divergence and curl of both sides of equation 2.12.
The divergence yields

V?¢=V-F,
which, comparing with equations 2.14 and 2.15, has the solution
1 V-F
=—— dv. 2.1
¢ A7 T v (2.18)

The curl of equation 2.12 provides
VZA=V(V-A)-VxF.

For convenience, we define A so that it has no divergence, and conse-
quently

VZA =-V xF.

Comparing this result with equations 2.13 and 2.16 leads to

1 V xF
A= . 2.1
47r/ T dv (2.19)

Exercise 2.6 Show that equation 2.19 implies that ¥V - A = 0.

Consequently, the scalar potential ¢ and vector potential A can be de-
rived from integral equations taken over all space and involving the di-
vergence and curl, respectively, of F itself.

Exercise 2.7 Prove the last statement of the Helmholtz theorem; that is,
show that V¢ and V x A, both vanishing at infinity, are orthogonal
under integration over three-dimensional space.
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2.2.2 Consequences of the Helmholtz Theorem

The Helmholtz theorem shows that a vector field vanishing at infinity
is completely specified by its divergence and its curl if they are known
throughout space. If both the divergence and curl vanish at all points,
then the field itself must vanish or be constant everywhere.

In addition to this statement, the following important observations
follow directly from the Helmholtz theorem and from the integral repre-
sentation for scalar and vector potentials.

Irrotational Fields

A vector field is irrotational in a region if its curl vanishes at each point of
the region; that is, F is irrotational in a region if V x F' = 0 throughout
the region. Such fields have no vorticity or “eddies.” For example, if
the flow of a fluid can be represented as an irrotational field, then a
small paddlewheel placed within the fluid will not rotate. Examples of
irrotational fields are common and include gravitational attraction, of
considerable importance to future chapters.

Consider any surface S entirely within a region where V x F = 0.
Integration of the curl over the surface provides

/(VxF)-ﬁdS=0,
S

and applying Stokes’s theorem (Appendix A) provides

%F-ds:O,

where the closed line integral is taken around the perimeter of S. Because
the integral holds for any closed surface within the region, no net work
is done in moving around any closed loop that lies within an irrotational
field, that is, work is independent of path, and F is conservative, a
sufficient condition for the existence of a scalar potential such that F =
V. Hence, the condition that V x F = 0 at each point of a region is
sufficient to say that F = V¢. Furthermore, a field that has a scalar
potential has no curl because V x F = V x V¢ vanishes identically
(Appendix A). Hence, the property that V x F = 0 at every point of a
region is a necessary and sufficient condition for the existence of a scalar
potential such that F = V.
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Solenoidal Fields

A vector field F is said to be solenoidal in a region if its divergence
vanishes at each point of the region. A physical meaning for solenoidal
fields can be had by integrating the divergence of F over any volume V

within the region,
/V -Fdv=0,

v

and applying the divergence theorem (Appendix A) to get

/F-ﬁdS=0, (2.20)
S

where S is the closed boundary of V. Hence, if the divergence of F
vanishes in a region, the normal component of the field vanishes when
integrated over any closed surface within the region. Or put another way,
the “number” of field lines entering a region equals the number that exit
the region, and sources or sinks of F do not exist in the region. For
example, gravitational attraction is solenoidal in regions not occupied
by mass.

It was stated in Section 2.1.1 that if a function ¢ can be found such
that F = V¢, then the condition expressed by equation 2.20 is necessary
and sufficient to say that ¢ is harmonic throughout the region. From the
Helmholtz theorem, V- F = V2¢ + V - V x A. The last term of this
equation vanishes identically (Appendix A), and V- F = V2¢. Hence, if
the divergence of a conservative field vanishes in a region, the potential
of the field is harmonic in the region.

Note that if F = V x A, then V - F = 0; that is, the divergence of a
vector field vanishes if the vector can be expressed purely as the curl of
another vector. Furthermore, the converse can be shown to be true by
taking the curl of both sides of equation 2.19. Hence, the property that
V -F =0 is a necessary and sufficient condition for F =V x A,

2.2.3 Example

Equation 2.18 is important to the geophysical interpretation of gravity
and magnetic anomalies caused by crustal masses and magnetic sources,
respectively. To see this, we use the magnetic field as an example and
anticipate the results of future chapters.



2.2 Helmholtz Theorem 33

A set of differential equations, called Maxwell’s equations, describes
the spatial and temporal relationships of electromagnetic fields and their
sources. One of Maxwell’s equations relates magnetic induction B and
magnetization M in the absence of macroscopic currents:

VXxB=puVxM,

where g is the permeability of free space. Magnetic field intensity H is
related to magnetic induction and magnetization by the equation

B =puo(H+M). (2.21)
Hence, in the absence of macroscopic currents,
VxH=0,

and it follows from the Helmholtz theorem that magnetic field intensity
is irrotational and can be expressed in terms of a scalar potential, that is,
H = —VV, where the minus sign is a matter of convention as discussed
in Chapter 1. Moreover, equation 2.18 provides an expression for that
scalar potential:

1 [V'H
T drx r

1% dv, (2.22)

where it is understood that the integration is over all space. Another of
Maxwell’s equations states that magnetic induction has no divergence,
that is, V- B = 0. This fact plus equation 2.21 yields

V-H=-V-M, (2.23)

and substituting into equation 2.22 provides

1 V-M

V=
47 T

dv. (2.24)

Again integration is over all space. Equation 2.24 provides a way to cal-
culate magnetic potential and magnetic field from a known (or assumed)
spatial distribution of magnetic sources. This is called the forward prob-
lem when applied to the geophysical interpretation of measured magnetic
fields. Equation 2.24 also is a suitable starting point for discussions of
the inverse problem: the direct calculation of the distribution of magne-
tization from observations of the magnetic field. We will return to this
equation in Chapter 5 and subsequent chapters.
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2.3 Green’s Functions

We now turn to Green’s functions, important tools for solving certain
classes of problems in potential theory. A heuristic approach will be used,
first considering a mechanical system and then extending this result to
Laplace’s equation.

2.3.1 Analogy with Linear Systems

We begin with the differential equation describing motion of a particle
subject to both a resistance R and an external force f(t),

d
m Ev(t) =—Ru(t)+ f(t), (2.25)

where v(t) is the velocity and m is the mass of the particle, respectively.
One conceptual way to solve equation 2.25 is to abruptly strike the
particle and observe its response; that is, we let the force be zero except
over a short time interval AT,

ft) =

L ifr<t<t+ AT
{AT (2.26)

0, otherwise .

As soon as the force returns to zero, the velocity of the particle behaves
like a decaying exponential, and the solution has the form

v(t) = Aexp [ il (t—(t+ AT))] , t>T+AT. (2.27)

m
The coefficient A can be found if the velocity of the particle is known
at the moment that the force returns to zero; that is, v(7 + A7) = A.
To find this velocity, we integrate both sides of equation 2.25 over the
duration of the force

T+AT 7 T+AT
mlv(t + A1) —v(1)] = —R / v(t)dt + Ar / dt .

The first integral can be ignored if A7 is small and the particle has some
mass. Also v(r) = 0. Hence,

mv(t+ A7) =1,
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Velocity ——>

T T+AT

Time ——>

Fig. 2.4. Velocity of a particle of mass m resulting from an impulsive force of
magnitude I.

and A = I/m for small Ar. Combining this result with equation 2.27
provides

(2.28)

I —E@—7) if ¢ 5
e~ m . it > Ts

o(t) =4 "
0, it LT

Equation 2.28 represents the response of the particle to a single abrupt
blow (Figure 2.4). Now suppose that the particle suffers a series of blows
I at time 7, k = 1,2,..., N. The response of the particle to each blow
should be independent of all other blows, and the velocity becomes

"I, _=r
v(t) =Y EenCm ¢y, (2.29)

m
k=1

If the blows become sufficiently rapid, the particle is subjected to a
continuous force. Then I}, — f(7)dr and

t
1
o) = o [ S RCdr, 1w,
m
To
which can be rewritten as

() = / D, ST, (2.30)
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0, ift <
w(t7 T) = 1 R

Lo B0-T) ifg >

where

Equation 2.30 is the solution to the differential equation 2.25. It pre-
sumes that the response of the particle at each instant of impact is
independent of all other times. Given this property, the response of the
particle to f(t) is simply the sum of all the instantaneous forces, and
the particle is said to be a linear system. Many mechanical and electrical
systems {and, as it turns out, many potential-field problems) have this
property.

The function ¥ (t, 7) is the response of the particle at time ¢ due to an
impulse at time 7; it is called the impulse response or Green’s function
of the linear system. The Green’s function, therefore, satisfies the initial
conditions and is the solution to the differential equation 2.25 subject
to the initial conditions when the forcing function is an impulse.

Equation 2.26 is a heuristic description of an impulse. In the limit as
AT approaches zero, the impulse of equation 2.26 becomes arbitrarily
large in amplitude and short in duration while its integral over time
remains the same. The limiting case is called a Dirac delta function §(¢),
which has the properties

/ s(t)dt=1;
6(t)=0,t#0;
/ F(B)5(t) dt = £(0);
/ FO)5(r —t)dt = f(r). (2.31)

These definitions and properties are meaningless if §(f) is viewed as
an ordinary function. It should be considered rather as a “generalized
function” characterized by the foregoing properties.

Green’s functions are very useful tools; equation 2.30 shows that if
the Green’s function v is known for a particular linear system, then the
state of the linear system due to any forcing function can be derived for
any time.
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2.3.2 Green’s Functions and Laplace’s Equation

The previous mechanical example provides an analogy for potential the-
ory. In Chapter 3, we will derive Poisson’s equation

VAU = —4nmyp. (2.32)

This second-order differential equation describes the Newtonian poten-
tial U throughout space due to a mass distribution with density p.
Clearly V2U = 0 and U is harmonic in regions where p = 0. We seek a
solution for U that satisfies the differential equation and the boundary
condition that U is zero at infinity.

The density distribution in Poisson’s equation is obviously the source
of U and in this sense is analogous to the forcing function f(¢) of the
previous section. We know from the previous section that the response
to an impulsive forcing function f(¢) = 6(¢) is the Green’s function, so
we could try representing the density distribution in R as an “impulse”
and see what happens to U. An impulsive source in three dimensions
can be written as §(P, @), where

/6(P,Q>dv=1,
5(P,Q)=0 if P#Q,

and where @ is the point of integration as in Section 2.2.1.
Hence, we let the density be §(P, Q) and the potential be 1 in equa-
tion 2.32,

Vi, = —4my8(P,Q) -
Then from the Helmholtz theorem and equations 2.14 and 2.15,

n(r.Q =y [ La,

=7, (2.33)

where r is the distance between P and (). This is a very interesting
result. We see that +/r is the solution to Poisson’s equation when p is
an “impulsive” density distribution located at @. Indeed, we will show
in Chapter 3 that v/r is the Newtonian potential at P due to a point
mass at . Hence, v/r is the “impulse response” for Poisson’s relation;
with it, the potential due to any density distribution can be determined
with an integral equation analogous to equation 2.30:

U(P) = [ 0i(P. Q@ dv (2.34)
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:’y/ @ dv, (2.35)

where it is understood that integration is over all space. This fundamen-
tal equation relating gravitational potential to causative density distri-
butions will be derived in a different way in Chapter 3. The important
point to be made here is that the function ¥ = /7 is analogous to the
Green’s function of the mechanical example in the previous section: It
satisfies the required boundary condition, that v is zero at infinity, and
is the solution to Poisson’s differential equation when the density is an
“impulse.”

Half-Space Regions
The representation formula, which followed from Green’s third identity,
shows that the value of a function harmonic in R can be found at any
point within R strictly from the behavior of U and its normal derivative
on the boundary of R, that is,

U(P) = (2.36)

C4m onr rom

1 [U 01 10U ] ds.
where @) is the point of integration and r is the distance from P to
(2. In practical situations, we are unlikely to have both the potential
and its normal derivative at our disposal, and elimination of g—g would
make this equation much more useful. We should expect that such a
simplification is possible because earlier results have shown that the
potential is uniquely determined by its boundary conditions.

To eliminate g—g from the third identity, we begin with Green’s second
identity. Let both U and V be harmonic in equation 2.5 so that

1 [ oV oUu

0=—-—— U——V—] ds.
A7
s

on on

Adding this equation to equation 2.36 provides
1 g1 10U oV U
= —_—— —_—— e —— _ _— d
u) 4r [ onr ron * on v 6n] 5
s

1 19} 1 1\ oU
_—4—1_71—' [U%(V-F;)_(V—i_;)_a?i] ds.
S
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[
~~
o

/
[N )

— z=0

P'(x,y,Az)

Fig. 2.5. Function U is harmonic throughout the half-space z < 0 and assumes
known values on the surface z = 0. Parameter r is the distance between points
P and Q; 7’ is the distance between P’ and Q. Point P’ is the image of point
P such that » = r’ when Q is on the surface z = 0.

If we select a harmonic V such that V + % =0 at each point of S, then
1 0 1
UP)=—— — -1 dSs. 2.37
(7) 4W/U8n<v+r> ( )
s

Hence, if for a particular geometry we can find a function V such that
(1) V is harmonic throughout R and (2) V + 1 = 0 at each point of
S, then U can be found throughout the region, and only values of U on
the boundary will be required. The function V + % is called the Green’s
function for Laplace’s equation in restricted regions. It satisfies Laplace’s
equation throughout the region (except when P = @) and is zero on the
boundary.

In principle, equation 2.37 provides a simple way to solve Laplace’s
equation from specified boundary conditions. Unfortunately, the func-
tion V is very difficult to derive analytically except for the simplest sorts
of geometrical situations, such as half-spaces and spheres. As an exam-
ple, consider the half-space problem, where U is harmonic for all z < 0
and is known on the planar surface z = 0 (Figure 2.5). Boundary S then
consists of the z = 0 plane plus the z < 0 hemisphere, as shown in Fig-
ure 2.5. We construct a point P’ below the z = 0 plane that is the image
of point P. The necessary properties are satisfied if we let V = —2,

r
where 7’ is the distance from P’ to @: namely, V is always harmonic
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since @ is always above or on the z = 0 plane, V + % = 0 when () is on
the z = 0 plane, and V + % = 0 when @ is on the infinite hemisphere.
Hence, V defined in this way satisfies the necessary requirements to be
used in equation 2.37; that is,

U(P) = —i Uaan (1 - %) ds, (2.38)
& oo 00 a /3 0)
Ulx,y, — . / / TSRy YT dodp, (2.39)

where Az > 0. Equation 2.39 provides a way to calculate the potential
at any point above a planar surface on which the potential is known.
Such calculations are called upward continuation, a subject that will be
revisited at some length in Chapter 12.

Terminology

The Green’s function for Poisson’s equation throughout space is usually
derived from a general form of Poisson’s equation, V2¢ = — f, and thus
is given by G = 1= (e.g., Duff and Naylor {81], Strauss [274]). Here, we
started with the gravitational case of Poisson’s equation, VU = —47nvyp,
and derived a slightly different form for the Green’s function, 1; = 1.
The present approach led to equation 2.34, that is,

- / h(P,Q) p(Q)dv,

where integration is over all space. This simple integral expression for
the potential in terms of density and the Green’s function will prove
useful in following chapters.

We also showed that if a function V' can be found satisfying just two
properties (V is harmonic throughout a region, and V + % is zero on the
boundary of the region), then the representation formula reduces to a
very simple form,

U(P) = — 1 U%(V+ )dS
S

The function V + % is the Green’s function for Laplace’s equation in
restricted regions. In future chapters, however, we will use a somewhat
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looser terminology. If we let ¥ (P, Q) = ——% %(V + %) in this equation,
then

U(P) = / U(Q)vn(P,Q)dS |

S

which has a form similar to equation 2.34. For this reason, we also will
refer to ¢2(P,S) = — 2 (V + 1) as a kind of Green’s function, one
which provides U at points away from boundaries on which U is known.

2.4 Problem Set

1. In the following, T is temperature in region R bounded by surface
S, and A is the unit vector normal to S. If V2T = — f(P) in region
R and 3—3: = ¢(S) on surface S, show that

/fdv+/gdS=0,
R

S

and interpret the meaning of this equation.

2. Show, starting with Green’s first identity, that if U is harmonic
throughout all space, it must be zero everywhere.

3. Show that if two harmonic functions U; and U, satisfy U; < U, at
each point of the boundary of a region, then U; < U, throughout the
region.

4. A radial field is described by ¥ = ar™f.

(a) In regions where r # 0, find the values of n for which F is
solenoidal.
{b) For what values of n (r # 0) is the field irrotational?

5. Maxwell’s equations state that magnetic induction B in the absence
of moving charge is both solenoidal and irrotational, that is,

V-B=0,
VxB=0.

Show that the three cartesian components of B are each harmonic
in such situations.

6. Function U satisfies the two-dimensional Laplace’s equation at every
point of a circle. Find a Green’s function that will provide the value of
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U at any point inside the circle from the values of U on the boundary
of the circle.

Function U is harmonic everywhere inside a sphere of radius a. Find
a Green’s function that will provide the value of U at any point inside
the sphere from values of U on the surface of the sphere.
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And the Newtonian scheme was based on a set of assumptions, so few
and so simple, developed through so clear and so enticing a line of
mathematics that conservatives could scarcely find the heart and
courage to fight it.

(Isaac Asimov)

The airplane stays up because it doesn’t have the time to fall.
(Orville Wright)

The previous chapters reviewed Laplace’s differential equation and its
implications for conservative fields and scalar potentials in general. In
this chapter, we become more specific and focus on the most impor-
tant application of Laplace’s equation, the force of gravity. As before,
much of the discussion herein relies heavily on developments presented
by Kellogg [146], Ramsey [235], and MacMillan [172].

3.1 Gravitational Attraction and Potential

In 1687, Newton published Philosophiae Naturalis Principia Mathemat-
ica, which, among other profundities, stated Newton’s law of gravita-
tional attraction: The magnitude of the gravitational force between two
masses s proportional to each mass and inversely proportional to the
square of their separation. In cartesian coordinates (Figure 3.1), the mu-
tual force between a particle of mass m centered at point Q = (z',v/, 2/)
and a particle of mass m, at P = (z,y, 2) is given by

mm,

F=xv 2

1

where

[N

r=[z-2+@y-y)+(-2)z,

43
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m
* Q(x\y.z)

>

m,

* P(x.yz)

Fig. 3.1. Masses m and m, experience a mutual gravitational force which is
proportional to m, mo, and 7~ 2. By convention, unit vector ¥ is directed from
the gravitational source to the observation point, which in this case is located
at test mass mo.

and where 7 is Newton’s gravitational constant discussed subsequently.
If we let mass m, be a test particle with unit magnitude, then dividing
the force of gravity by m, provides the gravitational attraction produced
by mass m at the location of the test particle:

g(P) = -7 5, (3.1)

where © is a unit vector directed from the mass m to the observation
point P, that is, in cartesian coordinates,

p= @it -9+ (- 2]

The minus sign in equation 3.1 is necessary because of the convention,
followed throughout this text, that ¥ is directed from the source to the
observation point, opposite in sense to the gravitational attraction. Be-
cause g is force divided by mass, it has units of acceleration and is some-
times called gravitational acceleration. We will use the terms attraction
and acceleration interchangeably in reference to g.

Gravitational attraction, as described by equation 3.1, is an irrota-
tional field because

Vxg=0. (3.2)

Exercise 3.1 Prove equation 3.2. Hint: Use equation 3.1 in the spherical
coordinate system.



8.1 Gravitational Attraction and Potential 45

Hence, from the Helmholtz theorem and equation 2.12 (Chapter 2), grav-
itational acceleration is a conservative field and can be represented as
the gradient of a scalar potential

g(P)=VU(P), (3.3)
where
U(P) = yg . (3.4)

The function U is called the gravitational potential or Newtonian poten-
tial, and gravitational acceleration g is a potential field.

Exercise 3.2 Prove that the gradient of equation 3.4 yields equation 3.1.

Some textbooks (e.g., Grant and West [99]) consider gravitational
potential to be the work done by the test particle, so that equation 3.3
is written g = —VU. Equation 3.3, however, follows the convention of
Kellogg [146]: The gravitational potential is the work done by the field
on a test particle and is the negative of the particle’s potential energy.
Because gravity is a conservative field, no net work is required to move
a mass around a closed loop. Cross-country skiers and bicycle riders will
appreciate that this statement pertains only to an ideal (frictionless,
windless, etc.) world.

Units and the Gravitational Constant

In the Systéme Internationale (International System, abbreviated SI)
and mksa system of units, m and m, have units of kilograms, distance is
in meters, and gravitational attraction is reported in m-sec™2. In the cgs
system of units, mass has units of grams, distance is in centimeters, and
gravitational attraction is reported in units of cm-sec™2. The cgs unit of
acceleration is often referred to as the Gal (short for “Galileo”), where
1 Gal = 1 cm-sec™?, and the geophysical literature commonly reports
gravitational attraction in units of mGal (1 mGal = 10=3 Gal). The
conversion from cgs to SI units is 1 mGal = 107> m-sec 2.

Newton’s gravitational constant 7 is 6.67 x 10711 m3.kg=!-sec™? in
SI units and 6.67 x 10~8 cm3-g~1.sec™2 in cgs units. Some texts, espe-
cially those dealing primarily with Newtonian attraction, use astronom-
ical units for force, arranged so that v = 1.

Refinements to Newton’s gravitational constant have progressed ever
since Newton proposed his law of gravitational attraction three cen-
turies ago. Some concern still remains, however, as to just how constant
Newton’s gravitational constant really is. Recent work has reported very
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small deviations in the inverse-square relationship between gravitational
force and distance (e.g., Stacey et al. [271]), but questions remain as to
whether these deviations reflect a nonconstant gravitational constant or
are caused by other physical processes in effect during the experiments
(Zumberge et al. [297]). The question has not been resolved as of the
writing of this book. Although of considerable interest for scientific and
philosophical reasons, the issue of the constancy of Newton’s gravita-
tional constant has little impact on the applications for which this book
is intended, and the problem will be ignored henceforth.

3.2 The Potential of Distributions of Mass

Gravitational potential obeys the principle of superposition: The gravi-
tational potential of a collection of masses is the sum of the gravitational
attractions of the individual masses. Hence, the net force on a test par-
ticle is simply the vector sum of the forces due to all masses in space.
The superposition principle can be applied to find the gravitational at-
traction in the limit of a continuous distribution of matter. A continuous
distribution of mass m is simply a collection of a great many, very small
masses dm = p(x,y,2) dv, where p(z,y,z) is the density distribution.
Applying the principle of superposition yields

vp)= [

1%
p(Q)

=y | —=dv, (3.5)
/%

where integration is over V, the volume actually occupied by mass. As
usual, P is the point of observation, @ is the point of integration, and r
is distance between P and Q. Density p has units of kilogram -meter 3
in SI units and gram-centimeter 2 in the cgs system. The conversion
between the two systems is 1 kgm™3=10"2 g-cm—3.

First consider observation points located outside of a mass distribution
(Figure 3.2). If density is well behaved, integral 3.5 converges for all P
outside of the mass (Kellogg [146]), and differentiation with respect to
z, ¥, and 2z can be moved inside the integral. For example, the partial
derivative of U with respect to z is

oU(P) (x —z')
o e
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- P(x,y,2)

Fig. 3.2. Gravitational attraction at point P due to a density distribution p.

Repeating the differentiation of equation 3.5, once with respect to y and
once with respect to z, and adding the three components will provide
the attraction outside of any distribution of mass:

g(P)=VU(P)
= [ 0@ do. (3.6)
[ nay

Second-order derivatives can be derived in similar fashion; for example,
the x component is

a2 N2
M:,y/[_rﬁgﬁp(w—x)} v

0x2 75

Repeating for the y and z components and adding the three results yields
02U i 0%U i 0*U
ox2  Oy? 022

=0, (3.7)

VU (P) =

and the gravitational potential is harmonic at all points outside of the
mass.

What about the potential inside distributions of mass? If P is inside
the mass, the integrand in equation 3.5 is singular, and the integral is
improper. Nevertheless, the integral can be shown to converge. In fact,
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Kellogg [146] shows that the integral

I(P) = Tﬁn dv
1%

is convergent for P inside V and is continuous throughout V if n < 3,
V' is bounded, and p is piecewise continuous. Hence, U(P) and g(P)
exist and are continuous everywhere, both inside and outside the mass;
so long as the density is well behaved. Kellogg [146] also shows that
g(P) = VU(P) for P inside the mass. This last point is not obvious
because derivatives cannot be moved inside improper integrals.

The Helmholtz theorem (Section 2.2.2) tells us that if g satisfies g =
VU and vanishes strongly at infinity, then

_1 (Vs
T dn r

dv. (3.8)

Comparing the integrand of equation 3.8 with the integrand of equa-
tion 3.5 suggests that

V2U(P) = —4nvyp(P). (3.9)

Equation 3.9 is Poisson’s equation, which describes the potential at all
points, even inside the mass distribution. Laplace’s equation is simply a
special case of Poisson’s equation, valid for mass-free regions of space.
Although the foregoing is not a rigorous proof of the relationship between
equations 3.5 and 3.9, the example in Section 3.2.2 will demonstrate the
validity of Poisson’s equation.

The following theorems can be stated in summary:

1. The Newtonian potential U and the acceleration of gravity g exist and
are continuous throughout space if caused by a bounded distribution
of piecewise-continuous density.

2. The potential U is everywhere differentiable so equation g = VU is
true throughout space.

3. Poisson’s equation V2U = —4nvyp describes the relationship between
mass and potential throughout space. Laplace’s equation V2U = 0
is a special case of Poisson’s equation valid in regions of space not
occupied by mass.

Surface and Line Distributions

It is sometimes useful, as will be seen in the next sections, to consider
the gravitational attraction and potential of mass distributions that are
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spread over vanishingly thin surfaces and along vanishingly narrow lines.
The potential of a mass distribution spread over surface S and viewed
at a point P not on the surface is given by

S
U(P) = 7/ #ds, (3.10)
5
where o is the surface density with units of mass per unit area. The
potential of a mass concentrated along a line [ is given by

U(P) :7/¥dz, (3.11)

l

where A is the line density with units of mass per unit length. The
gravitational attractions of these hypothetical distributions are easily
derived from g = VU.

3.2.1 Example: A Spherical Shell

To investigate some of the points of the previous sections, consider the
gravitational effects of a thin-walled, spherical shell of radius a and uni-
form surface density o. We simplify the task (Figure 3.3) by arranging
the coordinate system in order to take advantage of the symmetry of the
problem: The origin is placed at the center of the sphere, and one axis
is oriented so that it passes through P.

For P outside the shell, the potential is given by equation 3.10,

U(P):q/ﬂtq—)ds

S
2 7w . 0
=’yaa2//812 d9ds.

0 0

The distance from P to any point on the sphere is

r = [R? + a® — 2aRcosf]?

80

d_r __aRsin®
e T
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Fig. 3.3. Thin-walled, spherical shell with radius a observed at point P.

Substituting yields

=7 (3.12)

= ’YE ’
where M is the total mass of the shell. Therefore, the gravitational po-
tential at any point outside a uniform shell is equivalent to the potential
of a point source located at the center of the shell with mass equal to
the total mass of the shell. Tt follows, therefore, that the gravitational

attraction at points outside the shell is equivalent to the attraction of a
point mass,

g(P)=VU(P)

and that
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Now consider P inside the shell. The previous derivation can be re-
peated but with slightly different limits of integration; that is,

a+R

U(P):27r;aa /dr

a—R
=nodma (3.13)
_M
a
All quantities in equation 3.13 are constant, so the gravitational potential

is constant everywhere inside a uniform shell. Consequently, no gravita-
tional forces exist inside the hollow shell because

M
g=V(’y—)
a
=0.

Obviously, V2U = 0 within the shell because U is uniform throughout
its interior.

Exercise 3.3 Equation 3.13 is easy to understand when P is located at the
center of the shell. Observed at the center, the attraction due to any
patch of the shell is exactly canceled by the attraction of an identical
patch on the opposite side, so it seems reasonable that g = 0 at the
center. Less obvious is the fact that g = 0 at points away from the
center. Explain in terms of geometry and solid angles why all forces
cancel at any point inside the shell.

3.2.2 Example: Solid Sphere

Equations 3.12 and 3.13 provide an easy way to investigate the gravi-
tational effects of a solid sphere. For P outside the sphere, the problem
is simple. A solid sphere of radius a is just a collection of concentric,
thin-walled shells with radii ranging from 0 to a. The superposition
principle states that the gravitational potential of the entire set of con-
centric shells is the sum of their individual potentials, which, according
to the previous section, are each equivalent to a point mass at their cen-
ters. Consequently, the potential of a solid sphere appears at all external
points as a single point of mass located at the center of the sphere with
magnitude equal to the total mass of the sphere; that is,
4

nalp

U(P)=~2 7 (3.14)
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Fig. 3.4. Observation point P inside a sphere. Point P lies within a narrow

spherical cavity between radius r — § and r + 5.
4 3
zma’p
3 -

g(P) == R2 r,

and V2U(P) = 0 everywhere outside the sphere. Computer subrou-
tine B.1 in Appendix B provides a Fortran subroutine that calculates
the gravitational attraction at external points due to a sphere with ho-
mogeneous density.

To investigate the potential at points inside the sphere, we place P in
a narrow, spherical cavity of radius r and thickness e concentric about
the center of the sphere (Figure 3.4). The potential at P is due to two
sources: (1) That part of the sphere with radius less than r — § and (2)
the concentric shell with radius greater than r + 5. Equation 3.14 gives
the potential of the inner sphere:

We know from equation 3.13 that the potential of the outer shell must be
constant because each concentric, thin-walled shell is a constant. Equa-
tion 3.13 can be integrated to provide the potential of the entire outer
shell:

Uo(P) = 4myp / a' da

1‘+§—

:27r’yp[a2 — (r -+ —)2] =
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Adding Ur(P) and Uo(P) and letting ¢ — 0 provide the potential inside
a spherical mass:

A(r — £)3 €\2
U(P) = A YA 2[ 2 _ £ ]
(P) mp[ 5 T2 - (r+3)
=Zmyp [3a2 - 7"2] . (3.15)
The gravitational attraction is given by

g(P)=VU(P)

_02 2 .27
—argﬂ'yp[&z r?)¢

—_ 4 &
=—zmyprt,

and the attraction at internal points of a uniform sphere is proportional
to the distance from the center. The Laplacian (in spherical coordinates)
of equation 3.15 yields

o L0 a0
VU(P)_TQ('?T r arU(P)
=_47T7p7

which is Poisson’s equation.

Exercise 3.4 Show that U(P) and g(P) are continuous across the surface
of the sphere.

The last result shows that Poisson’s differential equation describes the
potential inside a uniformly dense sphere, and this result can be used
to show that Poisson’s equation holds inside all continuous distributions
of mass. Within any well-behaved mass, we simply surround P with a
small sphere and consider the potential as the sum of two parts, that is,

U(P) = Us(P) + Uo(P),

where Ug(P) is the potential at P due to the sphere and Ug(P) is the
potential caused by everything outside of the sphere. But V2Ug(P) =0
because no mass exists inside the spherical cavity. Furthermore, if the
density is continuous around P, the sphere can be reduced in radius until
its density is essentially uniform. Hence, V2Ug(P) = —4myp(P), and

V2U(P) = —4myp(P)

for P inside a continuous density distribution.
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Exercise 3.5 Graphically describe the potential and attraction of a uniform,
thick-walled shell (inner radius a1 and outer radius az) along a line
extending from the center of the shell to infinity.

3.2.3 Example: Straight Wire of Finite Length

Consider the gravitational acceleration due to a straight wire extended
along the z axis from z = —a to z = +a and observed at P on the z axis
(Figure 3.5). The component of gravity in the y direction must be zero
at P. The component of attraction in the direction parallel to the wire
is also zero because the mass between 0 < 2 < a is equal to the mass
between —a < z < 0. Hence, starting with equation 3.6,

£
g(P)= —v/p;g dv
R

a
. 1
= —1’y)\a:/ ;Edz’,

where A is mass per unit length of the wire. Now make the following
substitutions

LOPQ =20,
r=xsech,
2z =ztané,
dz' =z sec® 046,
/[OPa=20,
Yy
//‘
-a .//
P(X,0,0) X
dz *
+a E o
’.
z Q(0,0,z)

Fig. 3.5. Gravity at point P due to wire along z axis.
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to derive

=127\ (3.16)

a
zVz2 +a?’
Hence, the gravitational attraction of a finite length of wire viewed along
a line perpendicular to the midpoint of the wire is directed toward the
center of the wire.

3.3 Potential of Two-Dimensional Distributions

Masses that are infinitely extended in one dimension are said to be two-
dimensional, for reasons that soon will become obvious. We begin by
investigating the potential and attraction of infinite wires and apply
these results to bodies of arbitrary cross-sectional shape.

3.3.1 Potential of an Infinite Wire

First consider the attraction of an infinitely long wire. As a — o0 in
equation 3.16, the attraction becomes
27)&
g(P) = - :
z

Hence, the attraction of an infinitely long wire is inversely proportional
to and in the direction of the perpendicular distance to the wire. A general
relationship is seen if P is moved to an arbitrary point of the x,y plane:

29\ .
g(P)=-"¢

, (3.17)
where ¥ is directed from the wire to P and is understood to lie in the
z,y plane; that is, r2 = (x —2')2 + (y — ¢')%

Although the gravitational attraction of an infinite wire is straightfor-
ward, the potential of an infinite wire is something of a problem. First
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consider the potential of a finite wire of length 2a (Figure 3.5):

f1
U(P)z’yA/;dz'

0o
=\ / secfdf

—8,

—\log (1+sm00)

1—siné,

V2t a2 +a
V2t aZ—a’

As a — oo, the potential also approaches infinity and obviously violates
our requirements that the potential should vanish at infinity. This in-
convenience is handled by redefining the meaning of the potential for
infinitely extended bodies. The potential of an infinite wire is defined so
that it vanishes at a unit distance from the wire. This is accomplished
by adding a constant to the previous equation:

V2 +al+a l vVi+a2+a
—lo
vzl+a2—a g\/l—i-a?—a

=~Alog

U(P) =~X|log

Now, as a — 00,
1
U(P) =2y\log =

and moving P to an arbitrary point of the z, y plane provides the general
result

U(P) =2yA log% , (3.18)

where r is the perpendicular distance from P to the wire. Notice that
the potential does not vanish at infinity, but rather at r = 1.

Hence, the potential of an infinite wire decreases logarithmically as the
point of observation recedes from the wire, a property that will extend to
infinitely extended bodies of any cross-sectional shape. Such potentials
are called logarithmic potentials for obvious reasons. It can be verified
easily that equations 3.17 and 3.18 satisfy

g(P) =VU(P),
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and
V2UP)=0, r+#0.

The attraction of an infinite wire (equation 3.17) can be regarded in
two ways. First, of course, it represents the Newtonian attraction of a
wire of great length. It also can be regarded as a new kind of point
source located at the intersection of the wire and the x,y plane. The
attraction of the point source is proportional to the density of the wire
A and inversely proportional to the distance from the wire to the point
of observation.

It is easily shown by integration of equation 3.18 that the Newtonian
potential of an infinitely long, uniformly dense cylinder of radius a is
given by

1
U(P) = 2ma?yplog = (3.19)

where p is density and r is the perpendicular distance to the axis of
the cylinder. Hence, the potential of an infinitely long, uniform cylinder
is identical to the potential of an infinitely long wire located at the
axis of the cylinder. Likewise, it follows from equation 3.17 that the
gravitational attraction of an infinitely long cylinder is given by

_ _2matpt (3.20)
r
where # is directed from the axis of the cylinder to P. Computer sub-
routine B.2 in Appendix B provides a Fortran subroutine to calculate
the two components of gravitational attraction at external points of an
infinitely extended cylinder.

3.3.2 General Two-Dimensional Distributions

The density of a two-dimensional source, by definition, does not vary
in the direction parallel to its long axis, and p is a function only of
the two dimensions perpendicular to the long axis of the body, that
is, p(z,y, z) = p(x,y). Starting with equation 3.5 and referring to Fig-

ure 3.6, we write
U(P)= 7/ B@ dv

R

v [os)| [ 7 as.

S —a
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Fig. 3.6. Gravitational effects observed at point P due to infinitely extended
body.

where S in this case represents the cross-sectional area of the two-
dimensional source. As a — oo, the inner integral becomes the loga-
rithmic potential of a wire with YA = 1, and the potential of the two-
dimensional distribution is given by

UP) = 27/p(S)log%dS’. (3.21)
S

The gradient of equation 3.21 provides the gravitational attraction

g(P) = —27/ p(S) #dS, (3.22)
J r
which is perpendicular to the body. Because density is independent of
the long dimension of the body, it is sometimes expressed as mass per
cross-sectional area o (S), where o/p has dimensions of length.
Equations 3.21 and 3.22 represent the Newtonian potential and at-
traction, respectively, of an infinitely long body, uniform in the direc-
tion parallel to the long dimension of the body. The attraction also
can be considered as originating from a special kind of source: a two-
dimensional wafer corresponding to the intersection of the body with
the z,y plane (Figure 3.7). The attraction due to each element dS of the
walfer is proportional to p(S) and inversely proportional to distance.
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Y * P(x,y,0)

Fig. 3.7. Gravitational attraction of a two-dimensional body can be considered
to originate from a special kind of source located in the z,y plane. Each
element of the body has an attraction inversely proportional to distance.

Two-dimensional objects are generally easier to visualize than three-
dimensional ones. Happily, certain geologic features, such as fault con-
tacts and synclines, sometimes can be approximated by two-dimensional
shapes thereby simplifying the interpretive process. In Chapter 9, we will
describe the computation of the gravitational attraction of two-dimen-
sional models with known cross section.

3.4 Gauss’s Law for Gravity Fields

Consider a region R bounded by surface S. Gauss’s law states that the
total mass in a region is proportional to the normal component of gravi-
tational attraction integrated over the closed boundary of the region. This
can be seen by first applying the divergence theorem (Appendix A) to
the normal component of gravity,

/g-ﬁdS:/V-gdv
R

S
:/V2Udv,
R

and then substituting Poisson’s differential equation,

/g-ﬁdS:—47w/pdv

S R

= —47yMr, (3.23)
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Fig. 3.8. An application of Gauss’s law to find total excess mass. Gravity
measurements are made on a horizontal surface Sp above all masses.

where My is the total mass. This relationship provides an important
constraint in geophysical interpretations of gravity data, as we shall see
in future chapters.

A well-known geophysical application of Gauss’s law is the estimation
of total excess mass below a surface on which the normal component of
gravity is known (e.g., Hammer [109], LaFehr [152]). Suppose that the
vertical component of gravity g, is known over a horizontal surface Sp,
as shown in Figure 3.8. All mass causing g, is bounded in volume and
located below Sp. The mass is enclosed by surface S, which is composed
of Sp plus the z > 0 hemisphere Sy of radius a, as shown in Figure 3.8.
The left side of equation 3.23 becomes

2T
/g-ﬁdS:—/gzdS-i-//aa—grQsinﬁdeqﬁ. (3.24)
8 0z

Sp

The potential of a volume distribution as viewed at a great distance is not
dependent on the details of the distribution; that is, at large distances,

U(P) :7/ o

R

/pdv

R

My

= )
T

~
~

3[R
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where again Mt is the total mass. In other words, the potential of any
bounded mass distribution appears as a point source when viewed suffi-
ciently far away. Hence, as a — o0, 7’2% can be moved outside the last

integral of equation 3.24, and

T

/g-ﬁdS=—/gzdS—27rfyMT/sin0d0
Sp

ol

z—/gzdS—QWyMT.
Sp

Combining with equation 3.23 provides

/ 9. dS =2nyMr, (3.25)
Sp

where Sp now includes the entire horizontal plane.

Hence, the vertical component of gravity integrated over an infinite
plane is proportional to the total mass below the plane, so long as the
mass is bounded in volume. In principle, equation 3.25 provides a way to
estimate the total excess mass causing an anomaly in measured gravity if
we can successfully isolate the field of the anomalous mass from all other
gravitational sources. No assumptions are required about the shape of
the source or how the density is distributed, so long as it is small with
respect to the dimensions of the survey.

This may seem simple enough, but Gauss’s law has many limitations
in such applications. Gravity surveys are never available over infinite
planes. The best that we can hope for is that the survey extends well
beyond the localized sources of interest. Unfortunately, isolated sources
never exist in nature, and it is often difficult to separate the gravitational
anomaly caused by the masses of interest from anomalies caused by
all other local and regional sources. We’ll have more to say about this
problem of “regional-residual” separation in a later chapter.

3.5 Green’s Equivalent Layer

An argument was presented in Section 2.1.3 on the basis of Green’s third
identity that any given potential has an infinite variety of consistent
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boundary conditions. Here we carry that point a little further and show
that a gravitational potential caused by a three-dimensional density dis-
tribution is identical to the potential caused by a surface density spread
over any of its equipotential surfaces (Ramsey [235]).

Let Se be a closed equipotential surface resulting from a distribution
of mass with density p, and let R represent the region inside S.. The
gravitational potential is observed at point P outside of S.. Green’s
second identity (Section 2.1.2) is given by

/[UVZV —VV2Uldv = / v _yoU ds,
on on

Se

where U and V are any functions with partial derivatives of first and
second order. Now let U be the potential of the mass and let V = 1/r,
where r represents the distance away from P. Because P is located
outside the region, the second identity reduces to

2
—/VrUdv— dS /la—UdS

R

where Uy is the constant potential of the equipotential surface. The first
integral on the right-hand side vanishes according to equation 2.2, and
substituting Poisson’s equation into the integral on the left-hand side
provides

o, 1 ou
'y/ - dv = 47r o ds. (3.26)
R Se

The left-hand side of equation 3.26 is the potential of the density dis-
tribution observed at P. The right-hand side is the potential at P of a
surface distribution ¢ spread over S., where o = —ﬁg—g. Hence, from
the perspective of point P, the potential caused by a three-dimensional
density distribution is indistinguishable from a thin layer of mass spread
over any of its equipotential surfaces. This relationship is called Green’s
equivalent layer.

Furthermore, the total mass of the body is equivalent to the total

mass of the equivalent layer. This can be seen by integrating the surface
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density over the entire surface and applying the divergence theorem (Ap-

pendix A), that is,
1 oU
dS=—-——— | —d
/cr s dny | On s
S, s

- L /VQUdv
4y
R

=/pdv.

R

Green’s equivalent layer is of more than just academic interest. It
shows that a potential can be caused by an infinite variety of sources,
thus demonstrating the nonuniqueness of causative mass distributions.
In later chapters, we will discuss applications of equivalent layers to the
interpretation of gravity and magnetic data. The fact that the equivalent
layer may have no resemblance to the true source will be of no impor-
tance in those applications. These hypothetical sources simply prove to
be handy tools in manipulating the potential field.

3.6 Problem Set

1. Starting with the equation for gravitational attraction outside a uni-
form sphere, derive the “infinite slab formula”

g = 2myptk, (3.27)

where p and ¢ are the density and thickness of the slab, respectively,
and k is a unit vector directed vertically down. (Hint: Use superpo-
sition of two spheres and let their radii — c0.)

2. A nonzero density distribution that produces no external field for
a particular source geometry is called an annihilator (Parker [207]).
The annihilator quantitatively describes the nonuniqueness of poten-
tial field data because any amount of the annihilator can be added
to a possible solution without affecting the field of the source. Find
a simple annihilator p for a spherical mass of radius a as viewed
from outside the sphere. (Hint: Let p represent density contrast so
that p can reach negative values.)

3. Let the radius and density of the earth be represented by a and p,
respectively.
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(a) Show that the initial rate of decrease in g in descending a mine
shaft is equal to g/a if p is constant.

(b) Assume that the earth has a spherical core of radius b and den-
sity p. # p. Show that

ol (=) 2
pC_p 2+)\ b3 3

where Ag/a is the initial rate of decrease of g in descending the
shaft.

. Use subroutine B.1 (Appendix B) to write a program that calculates

the vertical attraction of gravity along a horizontal profile directly
over a buried sphere.

(a) Usethe program to verify that the shape (but not the amplitude)
of the profile is independent of the sphere’s radius.

(b) The horizontal profile has two points at which the horizontal
gradient is maximum. Derive an expression for the depth d to
the center of the sphere in terms of the horizontal separation of
these two maximum horizontal gradients.

(c) Use the program to verify the answer in part (b).

An alluvium-filled basin lies within an otherwise homogeneous plain.
Surrounding crustal rocks have a density everywhere of p.. The
thickness of the basin (i.e., the depth to basement) is D. At the
surface, the alluvium has a density of p,. The density of the basin,
however, varies with depth because of compaction of the alluvium.
The density of the alluvium at the surface is p,, but the density
contrast Ap between alluvium and surrounding rocks decreases ex-
ponentially with increasing depth according to the equation

Ap = APO e‘/\d )

where d is depth below the surface and Apy = pa—pc- The horizontal
dimensions of the basin are much larger than its depth, so the shape
of the basin can be approximated as an infinite slab.

(a) Consider the gravitational attraction g measured above the cen-
ter of the basin. Show that g reaches a limiting value as D in-
creases.

(b) What is this limit in terms of p,, p., and A?

(c) Based on these results, discuss the limitations in trying to de-
termine D from g for deep basins.
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There is about the Earth a magnetic field. Its cause and origin are veiled
in mystery as in the case of that other great natural phenomenon,
gravitation.

(J. A. Fleming)

It is well to observe the force and virtue and consequence of discoveries,
and these are to be seen nowhere more conspicuously than in printing,
gunpowder, and the magnet.

(Francis Bacon)

Under certain conditions, a magnetic field is uniquely determined by a
scalar potential, analogous to the relationship between a gravity field
and its corresponding gravitational potential. Happily for us, these spe-
cial conditions are approximately obtained in typical geophysical mea-
surements of the magnetic field. Consequently, much of what has been
developed in previous chapters concerning Newtonian potentials will ap-
ply directly to magnetic fields as well. This chapter is primarily a review
of the principles of electricity and magnetism, for which additional in-
formation is easily found (e.g., Panofsky and Phillips [201]).

4.1 Magnetic Induction

The discussion of Newtonian potentials in Chapter 3 began by investi-
gating the mutual attraction of two point masses. We begin Chapter 4
in the same spirit by considering the mutual magnetic attraction of two
small loops of electric current, the magnetic analog of two point masses.
Consider the two loops of current shown in Figure 4.1 with currents I,
and I, respectively. The force acting on a small element dl, of loop a
caused by electric current in element dl, of the second loop is given by
the Lorentz force

65
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df, = Cm[ajbw ‘

(4.1)
The factor Cy, is a proportionality constant, analogous to Newton’s grav-
itational constant in equation 3.1; it is used to adjust units and will be
discussed subsequently.

In discussing Newtonian potential, we considered one mass to be a
test particle with unit magnitude. Likewise, we now let loop a act as a
“test loop” and define a vector B such that

dB, = Cpuly WX (4.2)
r
and
df, = I, dl, x dB,. (4.3)

This is simply a derivative form of the Lorentz equation that describes

the force acting on a charge () moving with velocity v through a magnetic
field:

F=Q(v xB).

Integration of equation 4.2 around the loop of wire yields the Biot—-Savart
law:

B = Cul, f by <t (4.4)

r2

Fig. 4.1. Two loops of electric current I, and I, separated by a distance r.
Unit vector £ is directed from an element dl, of loop b to element dl, of loop a.
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Vector B in equation 4.4 is called the magnetic induction, magnetic flux
density, or simply the magnetic field of a loop of current. Magnetic in-
duction is defined as follows: Electric current induces a force on a moving
charge; the force is the vector product of the magnetic induction field
and the velocity of the charge. Note that, as in gravitational sources, T is
directed from the source (loop b in this case) to the point of observation.

Units

Two basic systems of units are commonly used in geophysical applica-
tions of magnetism. Most of the literature published prior to about 1980
employed the cgs system of units, also known as electromagnetic units
(emu). More recently, the Systéme Internationale (International System,
abbreviated SI) has become more common and, indeed, is required by
most geophysical journals today. In the gravitational case (Chapter 3),
the conversion between cgs and SI units was simply a matter of multi-
plying by an appropriate power of ten, but the magnetic case is more
problematic, as will become particularly evident in Chapter 5.

For example, the proportionality constant Cy, in equation 4.4 differs
both in magnitude and dimensions between the two systems: In emu,
Cm = 1 and is dimensionless, whereas in SI units, C, = 4 = 1077
henry-meter~!, where pq is called the magnetic permeability of free space.
The difference in the proportionality constants in emu and SI units is
a common source of frustration. We will attempt to avoid the problem
in this book by employing the parameter Cy, wherever possible without
reference to any particular system of units. In most equations, letting
Cm = 1 will make the equation compatible with emu, or letting Cr, = §2
will transform the equation to SI units. However, we will have to aban-
don Cy, in Chapter 5 because there even the mathematical derivation
will depend on the system of units! Appendix D describes conversion
factors for all magnetic units of importance to this text. For additional
information, the interested reader is referred to books by Butler [47,
pp. 15-18], Panofsky and Phillips [201, pp. 459-65], and the Society of
Exploration Geophysicists [266]. Articles by Shive [255], Lowes [169],
Payne [213], and Moskowitz [189] are also helpful.

In the emu system, magnetic induction B is reported in units of gauss
(G), and current has units of abamperes. In SI units, B has units of
weber-meter~2, which is given the name tesla (T), and current is in
units of amperes (1 ampere = 0.1 abampere). In geophysical studies, the
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gamma (emu) or the nanotesla (SI) is often used to express B, where

1 tesla = 10* gauss,
1 nanotesla = 107° tesla
= 1 gamma

107> gauss.

4.2 Gauss’s Law for Magnetic Fields

One of Maxwell’s equations states that magnetic inducticn has no di-
vergence, that is,

V-B=0, (4.5)

and B is solenoidal. This statement holds for all points, even within mag-
netic media. Integration of equation 4.5 over a region R and application
of the divergence theorem (Appendix A) provide a useful relationship:

/V-de:/B-ﬁdS
R

S
=0 (4.6)

for any R. Equation 4.6 shows that the normal component of all flux
entering any region equals the normal component of flux leaving the
region (Figure 4.2). This implies that no net sources (or sinks) exist
anywhere in space; or put another way, magnetic monopoles do not
exist, at least macroscopically.

Equation 4.6 is sometimes referred to as Gauss’s low for magnetic
fields and provides a useful constraint for many problems. For example,
suppose that the field of a localized magnetic source is measured over a
horizontal surface S; as in Figure 4.3. The net flux entering the region
defined by S; and the hemisphere S must be zero according to Gauss’s
law, that is,

/B-f{dSl-i—/B'ﬁngzo.
S] SQ

As the limits of the survey are extended in the horizontal directions, sur-
face Se moves arbitrarily far from the localized source, and it is easily
shown that the integral over S vanishes. Hence, a horizontal survey of
the vertical component of B should average to zero if the lateral extent
of the survey is large compared to the size of the magnetic sources. Put
into geophysical terms, if regional-scale anomalies have been subtracted
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Fig. 4.2. The normal component of B integrates to zero over any closed sur-
face. Hence, the net normal magnetic flux through any region is zero.

Fig. 4.3. A region R is bounded by planar surface S; and the hemispheric
surface S>. Magnetic sources are localized and lie beneath S;.
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properly from a large aeromagnetic survey, then the survey should con-
tain about as many positive anomalies as negative anomalies. If it does
not, then anomalies of regional extent remain in the data.

4.3 The Vector and Scalar Potentials

According to equation 4.5 and the Helmholtz theorem (Chapter 2), a
vector potential A exists such that

B=VxA. (4.7)

The vector potential for B always exists, but a scalar potential also exists
under certain circumstances. The scalar potential is of particular interest
here because it has obvious parallels with the gravitational potential. We
now investigate the conditions under which the magnetic scalar potential
is valid.

A second of Maxwell’s equations states that the curl of B is equal to
the vector sum of the various forms of charge moving in the region:

VxB= 47TCmIt

=4rCp <Im +VxM+ %—It)) , (4.8)
where I; is the sum of all currents in the region, including macroscopic
currents I,,, currents related to magnetization M (to be defined shortly),
and total displacement currents %D. The quantities I,,, and I; are cur-
rent densities measured in units of current per unit area (e.g., A-m~2 in
SI units). Now consider the relationship between B and I; when averaged
over a surface S. Integrating equation 4.8 over the surface gives

/VxB-ﬁdS=47rC’m/It-ﬁdS,
5 5

and applying Stokes’s theorem (Appendix A) provides
%B-dl:47rC’m/It-ﬁdS, (4.9)
s

where I, is the total of all electric currents, expressed as a current density,
passing through surface S. Hence, the magnetic induction integrated
around any closed loop is proportional to the normal component of all
currents passing through the loop (Figure 4.4).
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Fig. 4.4. The normal component of all currents I; passing through a surface
S is proportional to B - dl integrated around the loop that bounds S.

If no currents exist in the region of investigation, then
VxB=0,

and B is irrotational. According to the Helmholtz theorem, B then has
a scalar potential V such that

B=-VV, (4.10)

and B is a potential field in the absence of currents. The negative sign
in equation 4.10 follows the convention of Kellogg [146], as discussed in
Chapters 1 and 3.

In many geophysical situations, electrical currents are negligible in re-
gions where the magnetic field is actually measured. Hence, equation 4.10
is often a suitable approximation outside of magnetic materials. This
is a fortunate happenstance. For example, derivations of the magnetic
fields caused by bodies of specified shape are generally more easily done
by first deriving V' and then applying equation 4.10. Moreover, under
conditions where equation 4.10 holds, the potential of magnetic induc-
tion has obvious similarities to gravitational potential, and many of the
statements made in earlier chapters apply immediately to magnetostatic
theory. However, it should always be remembered that equation 4.10 is
valid only outside of magnetic media and where line integrals encircle
no currents.
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4.4 Dipole Moment and Potential
The following pair of derivations result in some important expressions,
namely the magnetic induction and scalar potential of a dipole. In Chap-
ter 5, the dipole will be considered to be the elemental building block of
magnetic sources, just as the point mass was considered in Chapter 3 to
be the fundamental element of continuous density distributions.

4.4.1 First Derivation: Two Current Loops
It was shown in Chapter 1 that the change in potential caused by moving
a test particle from P along a line element dl’ is
dV(P)=-B-dl'.
Now consider B to be the magnetic induction generated by a loop of
current and substitute equation 4.4 into the previous equation:

dl x §
dV(P) = —CmI?{ :; Toar. (4.11)

The vector dl’ is a constant, so placing it inside the integral is a legit-
imate maneuver. A vector identity (Appendix A) allows rearrangement
of equation 4.11:

dl x (—dl') - ¢

dV(P) = —Cinl ?( : . (4.12)

r

Figure 4.5 provides a geometric interpretation for the integrand of equa-
tion 4.12. Moving P along dl’ has precisely the same effect on the poten-
tial at P as holding P stationary and moving the loop along —dl’. Choos-
ing the latter interpretation, we see that dl x (—dl') in equation 4.12 is
a vector perpendicular to the shaded parallelogram in Figure 4.5 with
magnitude equal to the area of the parallelogram. Therefore, the inte-
grand of equation 4.12 is the solid angle of the shaded parallelogram
as viewed from point P, and the integral is the elemental solid angle
subtended at P by the entire ribbon:

dV(P) = +CrI dSY.

Clearly, d(2 is the increase in the solid angle caused by moving the loop
along —dl’, or moving P along dl’. Because the solid angle of the loop
is zero at infinity, the potential is given by

V(P):CmI%{Q—”As,
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dr A

Fig. 4.5. Point P in the vicinity of a current loop. Moving P along dl’ is
equivalent to moving the loop along —dl’.

where As is the area of the loop and # is a unit normal vector (Fig-
ure 4.6).

Now let the current loop become small in diameter with respect to r
and define

m=I]nAs

as the dipole moment. Then

m -t

V(P) = Crn—TT

1

Fig. 4.6. Current loop observed at point P. Vector m has direction fi and
magnitude equal to the current I times the area of the loop.
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Equation 4.13 describes the potential of an elemental dipole. The dipole
momentt has units of gauss-cm® in emu and ampere-m? in SI units,

where 1 A-m? = 10% gauss-cm?.

4.4.2 Second Derivation: Two Monopoles

Now that we’ve been through the previous tedious derivation, let’s try
an easier way to find the potential of a dipole. A second physical model
for a dipole (as implied by its name) is two point masses (monopoles)
of opposite sign in close proximity to each other (Figure 4.7). For now,
let monopole 1 be at the origin and monopole 2 be at a distance —Az
away on the z axis. The potential at P due to both monopoles is simply
the sum of the potentials caused by each monopole, so

V(P) = Vi(P) + Va(P).

The potential at P due to monopole 2 is simply the negative of the po-
tential due to monopole 1 viewed a short distance away from P, namely,
at P+ Az. Accordingly,

V(P) = —[Vi(P+ Az) - i(P)] .

As Az becomes small, this equation becomes the definition of the first

derivative of V;(P):
dvi (P
vP) = —a, M)
dz
Because the gravitational potential of a point mass is given by U =
ym/r, it stands to reason that the magnetic potential at P due to a

single monopole is simply
Vi(P) = Cnd,

where g is pole strength, dimensionally equivalent to dipole moment per
unit length. Rearranging the last two equations provides

d1
V(P)=-CnglAz —-.
(P) mg A% dar
In the general case, the monopoles are not aligned along any particular

axis, and we should rewrite the previous equation as
1
V(P) = —Chgds - Vp;,

t Note that both mass and the magnitude of magnetic moment, m = |m]|, are
represented traditionally and in this text by the letter m. In most cases, the
meaning of m will be clear from context.
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Fig. 4.7. Two monopoles of opposite sign, one at the origin and the other at
z = —Az observed at point P.

where ds points from monopole 1 to monopole 2. Finally, we define the
dipole moment as m = ¢ds, so that

1
V(P):_ nlm.vP;7

which is identical to equation 4.13.

4.5 Dipole Field

Substitution of equation 4.13 into equation 4.10 provides the magnetic
induction of a dipole at points other than the dipole itself:

B:Cmg[:s(m-f)f—m], r0. (4.14)

Exercise 4.1 Derive equation 4.14 from equations 4.13 and 4.10. Hint: A
vector identity for V(A - B) is helpful; see Appendix A.

Equation 4.14 describes the familiar vector field of a small bar magnet
(Figure 4.8). The magnitude of B is proportional to the dipole moment
and inversely proportional to the cube of the distance to the dipole.
The direction of B depends on the directions of both # and m. All flux
lines of B emanate from the positive end of m and ultimately return to
the negative end. Computer subroutine B.3 in Appendix B implements
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Fig. 4.8. Magnetic field of a dipole. Dipole m is oriented toward top of page.
Vectors indicate the direction of B that would be observed at the center of each
vector. Dashed contours indicate constant values of |B|, the value decreasing
by a factor of 10 at each succeeding contour from the dipole; that is, if the
closest contour to the dipole has the value |B| = 1, succeeding contours have
the values 0.1, 0.01, and 0.001, respectively.

equation 4.14; it calculates the z, y, and z components of magnetic
induction at any point (other than r = 0) due to a single dipole.

Exercise 4.2 Use equation 4.14 to prove that the field of a dipole satisfies
V -B =0, even at » = 0. Hint: Use polar coordinates.

Figure 4.9 shows four limiting examples of the magnetic induction
that would be measured on a horizontal surface above single dipoles:
the vertical component of B due to a vertical dipole, vertical compo-
nent of B due to a horizontal dipole, horizontal component of B due
to a vertical dipole, and horizontal component of B due to a horizon-
tal dipole. Figure 4.10 shows the same examples in profile form. Note
how the “broadness” of the contours and profiles in Figures 4.9 and
4.10 depends on the depth z of the dipole. In particular, the horizontal
distance between zero-crossings is zv/2 for the horizontal component of
B over a horizontal dipole, and 2z+/2 for the vertical component of a
vertical dipole. We will exploit this general property of magnetic (and
gravity) fields in a later chapter in order to estimate depth of sources
from the broadness of magnetic and gravity anomalies. Also notice that
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(a) (b)

(¢) (d)

©
9o

Fig. 4.9. The horizontal and vertical components of magnetic induction mea-
sured on a horizontal surface above horizontal and vertical dipoles. Contour
interval is arbitrary. Gray regions indicate positive values of magnetic induc-
tion. (a) Vertical component of B due to vertical dipole; (b) horizontal com-
ponent of B due to horizontal dipole; (c) horizontal component of B due to
vertical dipole; and (d) vertical component of B due to horizontal dipole.

the horizontal componcent of B due to a vertical dipole equals the vertical
component of B due to a horizontal dipole.

The symmetry of dipolar magnetic fields is apparent in Figures 4.9 and
4.10, and it is worthwhile to note the various components and magnitude
of B in cylindrical coordinates. Equation 4.14 can be written as

B = Cun 5 [3cos 07 — 1],
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I

Fig. 4.10. The horizontal and vertical components of magnetic induction due
to horizontal and vertical dipoles. Profiles are directly over dipole and par-
allel to the horizontal dipole. Labels a through d have the same meaning as
described in the caption to Figure 4.9.

where 6 is the angle between th and #, as shown in Figure 4.6. Then

B=-VpV,
d
r _EV’
=2Cmmcgse,
r
B 10
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msin 6

= Cm 3

|B|=Cm%[300829+1]% . (4.15)

These equations show that the magnitude |B| of the dipole field along
any ray extending from the dipole decreases at a rate inversely propor-
tional to the cube of the distance to the dipole. The magnitude also
depends on 8; for example, |B| is twice as great at a point along the axis
of the dipole (6 = 0 or § = 7) as at an equivalent distance perpendicular
to the dipole (6 = 7/2).

Although the derivations for the dipole moment are rather conceptual,
many magnetic bodies exist in nature that are dipolar to first approxi-
mation. It’s simply a matter of scale. To the nuclear physicist, the Bohr
magneton, the fundamental magnetic moment caused by spinning and
orbiting charged particles, is dipolar in nature. To an exploration geo-
physicist, a ground-based magnetic survey over a buried pluton may
show a complex array of magnetic anomalies, but at the altitude of an
aeromagnetic survey, the inhomogeneities of the pluton may average out
so that the pluton appears similar to a dipole source. Indeed, the en-
tire field of the earth appears nearly dipolar from the perspective of the
other planets.

4.6 Problem Set

1. Magnetic induction is measured along a horizontal profile in the z
direction directly above a single dipole located at a depth d below
the profile. Derive expressions for the following horizontal distances
in terms of d.

(a) For a vertical dipole:

i. Distance between zero-crossings of B,.
ii. Distance between maximum horizontal gradients of B..
iii. Distance between maximum and minimum values of B,.

(b) For a horizontal dipole:

i. Distance between zero-crossings of B, for a horizontal dipole
pointing in the x direction.
ii. Distance between maximum horizontal gradients of B, for a
horizontal dipole pointing in the z direction.
ili. Distance between maximum and minimum values of B, for a
horizontal dipole pointing in the z direction.
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iv. Consider B, measured along the x axis directly over a hori-
zontal dipole oriented in the y direction. Show that B, is of
one sign along the entire profile.

. Write a program that calculates the magnetic field of a dipole on a
horizontal surface (Subroutine B.3 in Appendix B may be helpful).
Use it to graphically demonstrate the foregoing relationships.

. Let U be the Newtonian potential at a point P due to a point mass
located at @, and let V be the magnetic potential at P due to a
dipole also located at @. The dipole has a moment m. Show that
V =Cr- VU, where C is a constant. What is the value of C?7

. Let z, ¥, and z be orthogonal axes with z directed downward. A single
magnetic dipole with moment m is located at (0,0, d) and directed at
an angle I below the horizontal plane. Orient the coordinate system
so that m lies in the z, 2 plane and consider the magnetic induction
B as viewed along the x axis.

(a) Show that

B, 202 -1 =3« cos I
B,| =8| o0 0 [ 08 } ,
B. 30 2_q2| S

where a = x/d (dimensionless) and where

Cmm
p=—2l
dB(a? +1)2

(b) Sketch the horizontal and vertical components of B along the z
axis for I = 60°.
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Magnetization

Magnetes Geheimnis, erklédre mir das!

Kein grésser Geheimnis als Lieb und Hass.

[The mystery of magnetism, explain that to me!

no greater mystery, except love and hate.]
(Johann Wolfgang von Goethe)

We know that the magnet loves the lodestone,
but we do not know whether the lodestone
also loves the magnet or is attracted to it
against its will,

(Arab physicist of twelfth century)

5.1 Distributions of Magnetization

The magnetic induction B of an elemental dipole was derived in Chap-
ter 4 by examining the magnetic induction of a vanishingly small loop of
electrical current. Accordingly, the bulk magnetic properties of a volume
of material can be considered either in terms of the net magnetic effect
of all the dipoles within the volume, or in terms of the net effect of all
the elemental electrical currents. Using the former concept, we define a
vector quantity called magnetization M as follows: The magnetization
of a volume V is defined as the vector sum of all the individual dipole
moments m; divided by the volume, that is,

1

81
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Magnetization is reported in units of ampere-meter—! in the Systéme
Internationale (SI) and in units of gausst in the electromagnetic system
(emu), where 1 gauss = 10> A-m~!.

In Chapter 3, we considered a volume of mass with density p(z,y, 2)
to be composed of a great many small masses dm = p(x,y, z) dv, each
small mass acting like a point source. This led to an integral equation
for the potential of a volume density distribution,

U(P) = ’y/ @dv. (5.1)

R

We do likewise here for magnetic sources. A small element of magnetic
material with magnetization M can be considered to act like a single
dipole M dv = m. The potential as observed at point P is given by

1
V(P)=~CuM-Vp—dv,

where r is distance from P to the dipole. As discussed in Chapter 4,
the constant Cy, is used to balance units and has a value that depends
on the system in use. In the emu system Cy,, = 1 and is dimensionless,
whereas in SI units Cr, = 42 = 1077 henry-meter™!, where pg is the
permeability of free space. In general, magnetization M is a function of
position, where both direction and magnitude can vary from point to
point, that is, M = M(Q), where Q is the position of dv. Integrating
this equation over all of the elemental volumes provides the potential of
a distribution of magnetization

V(P)=Cu [ M(@)-Vor dv, (5.2)
R

analogous to equation 5.1. Magnetic induction at P is given by

B(P)=—-VpV(P)

= _cmvp/M(Q) -VQ% dv. (5.3)
R

In these last equations, we have changed the subscript of the gradient
operator from P to ¢ when the operator is inside the volume integral.
This is to indicate that the gradient is to be taken with respect to the
source coordinates rather than with respect to the observation point.

t Magnetization is often reported in the geophysical literature in units of emu-cm—3,
where 1 emu-cm™3 = 1 gauss.
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Exercise 5.1 Show that Vpl = —Vgl.

5.1.1 Alternative Models
Distributions of Currents

Magnetization is the net effect of all elemental currents within the mag-
netic media. It should seem reasonable that the circulating current of
one dipole will just cancel the current of its neighboring dipole if the
dipoles are parallel to each other and have identical magnitude. If all
dipole moments within a volume of matter are aligned parallel to one
another and are uniformly distributed throughout the volume, then the
net effect of all elemental currents will vanish except at the surface of
the material (Figure 5.1). At the surface, all elemental currents coalesce
into a surface current density I given by

I,=Mxn,

where 11 is the unit vector normal to the magnetic material. If the mag-
netization is not uniform within the volume, then a volume current will
exist at points where the circulating elemental currents fail to cancel.
The volume current density I, is given by the curl of the magnetization,

M= m, I, =Mxn
i I, = VXM

Fig. 5.1. Magnetization M of a volume is the vector sum of all dipole moments
m; divided by the volume. Magnetization can also be regarded in terms of the
sum of all the elemental currents associated with the dipoles. The elemental
currents coalesce into two components: a volume current I, and a surface
current Is.
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M-n
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Fig. 5.2. A distribution of magnetization can be characterized as surface and
volume distributions of magnetic charge.

as in Maxwell’s equation 4.8; that is,
I, =V xM.

In other words, a distribution of dipole moments is equivalent to a dis-
tribution of electrical currents, some on the surface of the volume and
some within the volume. Both the dipole and current models provide
the same magnetic induction outside or inside the material (Panofsky
and Phillips [201]).

Distributions of Magnetic Charge
A vector identity from Appendix A,

V- (pA)=V¢ A+ ¢V A,

allows equation 5.2 to be divided into a volume and surface integral.
Applying this identity and then the divergence theorem to equation 5.2

yields
V(P) = Cnm / M@-2 45 ¢, / YMO oy 5

Note the similarities between this expression for magnetic potential and
the expressions for gravitational potential of surface and volume den-
sities (equations 3.5 and 3.10, respectively). Apparently the quantities
V - M(Q) and M(Q) - i are analogous to volume density and surface
density, respectively. In fact, these quantities can be treated as volume
and surface distributions of magnetostatic charge (Figure 5.2) given by
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Qv=-V-M
Qs=M-ii,

respectively, and substituting into equation 5.4 provides

V(P):Cms/%dS—ermR/%'dv.

Although magnetic charge does not physically exist, the conceptual
model is a useful one as we will see in Chapter 9.

Hence, we have seen three ways to characterize the magnetization
of a material: as a distribution of magnetic dipoles, as distributions of
electrical current on the surface and within the material, and as surface
and volume distributions of magnetostatic charge. All three concepts are
used in geophysical applications and will reappear in future chapters.

5.2 Magnetic Field Intensity

Equation 4.8 in Chapter 4 shows that magnetic induction B originates
from all currents, both microscopic and macroscopic. Now we consider
a second kind of magnetic field which proves useful in the presence of
magnetic materials. This new field is just that part of B arising from all
currents other than atomic-level currents associated with magnetization.
Assuming that dielectric properties of the region of interest are negligible
(a good assumption in most geophysical applications), equation 4.8 can
be written

V x B =41Cp (Im + V x M). (5.5)

From here on, the derivation differs between the emu system and SI
units. In each case, we begin with equation 5.5.
In the emu system,

V x (B —47rCyM) =47Cp 1,
V x H=47Cpl,,
H=B - 47M, (5.6)
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whereas in SI units,

B
-M =Ima
v x <47TCm )

VxH=1,,
a-2_wm. (5.7)
Ho

Note that C\, has been replaced in equations 5.6 and 5.7 by its appro-
priate value for the particular system of units.

Vector H is a new quantity called the magnetic field intensity, and, as
can be seen from the defining equations, is simply magnetic induction
(except for a factor po in SI units) minus the effects of magnetization.
Field intensity has units of oersteds (Oe) in the emu system and units
of ampere-meter~! in SI units. The conversion between the two systems
is1 Oe = % A-m~!. Note that gauss and oersted units have equivalent
magnitude and dimensions in the emu system; the first quantity is used
for magnetic induction, the latter for magnetic field intensity. Moreover,
H and B in the emu system are identical outside of magnetic materi-
als. In SI units, however, H and B have the same direction outside of
magnetic materials but differ in both magnitude and dimensions.

Equations 5.6 and 5.7 show that the magnetic field intensity is a hy-
brid vector function composed of two components with quite different
physical meanings. Whereas magnetic induction B originates from all
currents, both atomic and macroscopic, magnetic field intensity H arises
only from true currents (again ignoring displacement currents). Mag-
netic field intensity has a remarkable property that can be seen from
equations 4.9 and 5.7, namely, that

fH-dl:/Im-ﬁds (SI),

S

that is, the line integral of field intensity around any closed loop is equal
to the total macroscopic current crossing the surface bounded by the
loop. In the absence of such currents,

VxH=0,
and a scalar potential exists such that

H=-VV'.
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There is little to be gained from the distinction between B and H in
most geophysical measurements of the magnetic field of the earth. Mea-
surements of the earth’s magnetic field, whether from aircraft, ship, or
satellite, are made in environments very nearly free of magnetic material
(e.g., Lowes [169]). Electrical currents can pose problems in some situ-
ations, such as problems associated with ionospheric currents at satel-
lite altitudes, but this issue is not relevant to our choice of B versus
H. Indeed, the geophysical literature dealing with the interpretation of
magnetic anomalies uses both B and H interchangeably. Here we will
attempt to use B whenever possible.

5.3 Magnetic Permeability and Susceptibility

Materials can acquire a component of magnetization in the presence of
an external magnetic field. For low-amplitude magnetic fields, say on
the order of the earth’s magnetic field, this induced magnetization is
proportional in magnitude and is parallel (or antiparallel) in direction
to the external field, that is,

M=xH. (5.8)

The proportionality constant X is called the magnetic susceptibility.
Equation 5.8 is the same in both the SI and emu systems. Suscepti-
bility is dimensionless in both systems but differs in magnitude by 4sm:
Susceptibility in emu equals 47 times susceptibility in SI units.

A related quantity, the magnetic permeability u, differs slightly be-
tween the two systems, and separate derivations are necessary. Starting
with equations 5.6 and 5.7, respectively, the derivations are as follows.

In the emu system,

B=H+4mM
=H+4rxH
=(1+4mx)H
= uH,

p=14+4mryx, (5.9)
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whereas in SI units,

B = po(H + M)
= po(H + xH)
=po(1+x)H
=pH,
= po(l+Xx). (5.10)

Kinds of Magnetization

Although y and p are derived in a simplistic mathematical way, they
are in fact complex products of the atomic and macroscopic proper-
ties of the magnetic material. The relationship between M and H is not
necessarily linear as implied by equation 5.8; x may vary with field inten-
sity, may be negative, and may be represented more accurately in some
materials as a tensor. This section provides a very cursory description
of the magnetization of solid materials. Indeed, this subject is worthy
of its own textbook, and the interested reader is referred to books by
Chikazumi [57] and Morrish [187] for information on magnetic materials
in general, and to the book by Butler [47] for applications related to
paleomagnetic and geomagnetic problems specifically. The implications
of rock magnetism for magnetic-anomaly studies have been reviewed
concisely and comprehensively by Reynolds et al. [243].

There are many kinds of magnetization. Diamagnetism, for example,
is an inherent property of all matter. In diamagnetism, an applied mag-
netic field disturbs the orbital motion of electrons in such a way as to
induce a small magnetization in the opposite sense to the applied field.
Consequently, diamagnetic susceptibility is negative. Paramagnetism is
a property of those solids that have atomic magnetic moments. Appli-
cation of a magnetic field causes the atomic moments to partially align
parallel to the applied field thereby producing a net magnetization in
the direction of the applied field. Thermal effects tend to oppose this
alignment, and paramagnetism vanishes in the absence of applied fields
because thermal effects act to randomly orient the atomic moments. All
minerals are diamagnetic and some are paramagnetic, but in either case
these magnetizations are insignificant contributors to the geomagnetic
field.

There is, however, a class of magnetism of great importance to geo-
magnetic studies. Certain materials not only have atomic moments, but
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neighboring moments interact strongly with each other. This interaction
is a result of a quantum mechanical effect called exchange energy, which
is beyond the scope of this book. Suffice it to say that the exchange
energy causes a spontaneous magnetization that is many times greater
than paramagnetic or diamagnetic effects. Such materials are said to be
ferromagnetic. There are various kinds of ferromagnetic materials too,
depending on the way that the atomic moments align. These include
ferromagnetism proper, in which atomic moments are aligned parallel to
one another; antiferromagnetism, where atomic moments are aligned an-
tiparallel and cancel one another; and ferrimagnetism, in which atomic
moments are antiparallel but do not cancel.

At the scale of individual mineral grains, spontaneous magnetization
of a ferromagnetic material can be very large. At the outcrop scale, how-
ever, the magnetic moments of individual ferromagnetic grains may be
randomly oriented, and the net magnetization may be negligible. The
magnetization of individual grains is affected, however, by the applica-
tion of a magnetic field, similar to but far greater in magnitude than
for paramagnetism. Hence, rocks containing ferromagnetic minerals will
acquire a net magnetization, called induced magnetization and denoted
by M;, in the direction of an applied field H, where

Mi :XH.

Of course the earth’s magnetic field produces the same response in such
materials, and the material is magnetic in its natural state. In small
fields, with magnitudes comparable to the earth’s magnetic field, the re-
lationship between induced magnetization and applied field is essentially
linear, and the susceptibility x is constant.

Induced magnetization falls to zero if the rock is placed in a field-free
environment. However, ferromagnetic materials also have the ability to
retain a magnetization even in the absence of external magnetic fields.
This permanent magnetization is called remanent magnetization, which
we denote here by M. In crustal materials, remanent magnetization is a
function not only of the atomic, crystallographic, and chemical make-up
of the rocks, but also of their geologic, tectonic, and thermal history. In
geophysical studies, it is customary to consider the total magnetization
M of a rock as the vector sum of its induced and remanent magnetiza-
tions, that is,

M=M; +M,
=xyH+ M,;.
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The relative importance of remanent magnetization to induced magne-
tization is expressed by the Koenigsberger ratio

o M

M|
—_— Mr
=
In subsequent discussions regarding magnetic fields of crustal materials,
we will consider just two kinds of magnetization: induced and remanent.
It is well to keep in mind, however, that both of these magnetizations
arise from spontaneous magnetization, a complex property of the ferro-
magnetic minerals in the earth’s crust.

The spontaneous magnetization is dependent on temperature. As a
material is heated, the spacing between neighboring atomic moments
increases until a point is reached where the spontaneous magnetiza-
tion falls to zero. This temperature is called the Curie temperature.
Hence, both induced and remanent magnetizations vanish at temper-
atures greater than the Curie temperature. Paramagnetic and diamag-
netic effects persist at these temperatures, but from the perspective of
magnetic-anomaly studies we may consider rocks above the Curie tem-
perature to be nonmagnetic.

Magnetite (FesO4) and its solid solutions with ulvospinel (FeaTiOy)
are the most important magnetic minerals to geophysical studies of
crustal rocks. Other minerals, such as hematite, pyrrhotite, and alloys
of iron and nickel, are important in certain geologic situations, but the
volume percentage, size, shape, and history of magnetite grains are of
greatest importance in most magnetic surveys. Magnetite is a ferrimag-
netic material with a Curie temperature of about 580°C.

Typical values of |M,| and x for representative rock types are pro-
vided by Lindsley, Andreasen, and Balsley [165] and Carmichael [54].
Generally speaking, mafic rocks are more magnetic than silicic rocks.
Hence, basalts are usually more magnetic than rhyolites, and gabbros
are more magnetic than granites. Also, extrusive rocks generally have
a higher remanent magnetization and lower susceptibility than intru-
sive rocks with the same chemical composition. Sedimentary and meta-
morphic rocks often have low remanent magnetizations and susceptibil-
ities. These statements and the compilations referenced are only statis-
tical guidelines with many exceptions. Values of M, and x often vary
by several orders of magnitude within the same outcrop, for example.
Whenever feasible, interpretation of a magnetic survey should include
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investigation of the magnetic properties of representative rock samples
from the area of study.

5.4 Poisson’s Relation

Equations 3.1 and 4.13 show that the magnetic scalar potential of an
element of magnetic material and the gravitational attraction of an el-
ement of mass have some obvious similarities; for example, they both
have magnitudes that are inversely proportional to the squared distance
to their respective point sources. We can use this similarity to derive a
surprising relationship between gravity and magnetic fields.

Consider a body with uniform magnetization M and uniform density
p (Figure 5.3). The magnetic scalar potential is given by equation 5.2,

V(P)=Cu /M : VQ% dv

1
:—CmM-Vp/;dv. (5.11)
R

V(P) o< M gP)

A
R

Fig. 5.3. Poisson’s relation for a body with uniform magnetization and uniform
density. The magnetic potential at any point is proportional to the component
of gravity in the direction of magnetization.
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The gravitational potential is written

so that

Substituting this last integral into equation 5.11 provides

V(P)=—g—';M-VpU

- _M, (5.12)
v

where ¢gn, is the component of gravity in the direction of magnetiza-
tion. Equation 5.12 is called Poisson’s relation. It states that, if (a) the
boundaries of a gravitational and magnetic source are the same and (b)
the magnetization and density are uniform, then the magnetic poten-
tial is proportional to the component of gravitational attraction in the
direction of magnetization (Figure 5.3).

What if the density and magnetization are not uniform? We can view
both the gravity and magnetic sources as composed of elemental vol-
umes. If the magnetization and density distributions are sufficiently well
behaved, the density and magnetization within each elemental volume
will approach a constant as the volume becomes arbitrarily small. Pois-
son’s relation holds for each elemental volume, and by superposition
must hold for the entire body. Hence, Poisson’s relation is appropriate
for any gravity and magnetic source where the intensity of magnetiza-
tion is everywhere proportional to density and where the direction of
magnetization is uniform.

Poisson’s relation is an intriguing observation. With assumptions as
stated, the magnetic field can be calculated directly from the gravity field
without knowledge about the shape of the body or how magnetization
and density are distributed within the body. Carried to its extreme, one
might argue that magnetic surveys are unnecessary in geophysical inves-
tigations because they can be calculated directly from gravity surveys,
or vice versa. In real geologic situations, of course, sources of gravity
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anomalies never have magnetization distributions in exact proportion to
their density distributions. Nevertheless, Poisson’s relation can be useful.
First, it can be used to transform a magnetic anomaly into pseudograv-
ity, the gravity anomaly that would be observed if the magnetization
were replaced by a density distribution of exact proportions (Baranov
[9]). We might wish to do this, not because we believe that such a mass
actually exists, but because gravity anomalies have certain properties
that simplify the determination of the shape and location of causative
bodies. Thus, the pseudogravity transformation can be used to aid in-
terpretation of magnetic data, a topic that will be discussed at some
length in Chapter 12.

Second, Poisson’s relation can be used to derive expressions for the
magnetic induction of simple bodies when the expression for gravita-
tional attraction is known. For example, the following sections use Pois-
son’s relation to derive the magnetic induction of some simple bodies,
such as spheres, cylinders, and slabs. We could do these derivations the
hard way, by integrating equation 5.3. But we already know the grav-
itational attraction of these simple bodies because we derived them in
Chapter 3. The magnetic expressions are more easily derived by simply
applying Poisson’s relation to the analogous gravitational expressions.

5.4.1 Example: A Sphere
From Chapter 3, the gravitational attraction of a solid sphere of uniform
density is

——fl—wa?’ if'
g = —gmamp gt

Substituting this into Poisson’s relation yields the magnetic potential of
a uniformly magnetized sphere (Figure 5.4), that is,

4 -
V= Cm—m?’Mi M-
3 r2

where

m=—7wa’M.

3
This is just the magnetic potential of a single dipole. Therefore, the
magnetic potential due to a uniformly magnetized sphere is identical to
the magnetic potential of a dipole located at the center of the sphere with
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* P(x.y.z)

4

Fig. 5.4. Magnetic potential at point P due to a uniformly magnetized sphere.

dipole moment equal to the magnetization times the volume of the sphere.
It follows that the magnetic field of a uniformly magnetized sphere is
proportional to both its volume and its magnetization. Although the
location of the center of the sphere can be determined directly from
its magnetic field, the size of the sphere cannot be found without first
knowing its magnetization. Subroutine B.3 in Appendix B calculates the
three components of magnetic induction due to a uniformly magnetized
sphere.

5.4.2 Example: Infinite Slab

As shown by equation 3.27, the gravitational attraction of an infinitely
extended, uniformly dense layer is in the direction normal to the layer, is
proportional to the thickness of the layer, and is independent of distance
from the layer. For a horizontal layer,

g = 2myptk,

where t is the thickness of the layer and k is the unit vector directed
toward and normal to the layer. If the magnetization is vertical, then
Poisson’s relation provides

M

V= ‘Cm_' g
e

=-2nmCnMt,
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= P(x,y.z)

BN IRNRES

Fig. 5.5. Magnetic potential at point P of a vertically magnetized, infinitely
extended slab.

=0 =®

Fig. 5.6. The magnetic field of a spherical cavity in a uniformly magnetized
layer is equal to the field of a sphere with opposite magnetization.

and the magnetic potential of a uniformly magnetized slab is constant
(Figure 5.5). Consequently, the magnetic field of a uniformly magnetized
slab is zero, and the slab cannot be detected through magnetic measure-
ments alone.

This remarkable fact can be used with the superposition principle
to simplify certain problems. For example, the magnetic field caused
by a spherical cavity within an infinitely extended layer with uniform
magnetization M is identical to the field of an isolated sphere magnetized
in the opposite direction, that is, with magnetization —M (Figure 5.6).

5.4.3 Example: Horizontal Cylinder

Equation 3.19 shows that the gravitational potential of an infinitely long
cylinder with uniform density is given by

1
U(P) = 2ma?pylog =

where a is the radius of the cylinder and r is the perpendicular distance
to the axis of the cylinder (Figure 5.7). Applying Poisson’s relation to
this expression provides the magnetic potential of a uniformly magne-
tized cylinder:

V =20y ma?® MT. L (5.13)
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Fig. 5.7. Field at point P caused by a uniformly magnetized cylinder.

Note that, because t is perpendicular to the cylinder, only the perpen-
dicular components of M are significant to the cylinder’s potential. In
fact, the quantity 7a2M has units of dipole moment per unit length, and
equation 5.13 is equivalent to the potential of a line of dipoles located
along the axis of the cylinder. Hence, the potential and the magnetic
field of a uniformly magnetized cylinder are identical to those of a line
of dipoles; that is, the potential of a line of dipoles is given by

m’ -t

V =2Ch

(5.14)

where m’ is dipole moment per unit length, and applying B = —VV in
cylindrical coordinates to equation 5.14 provides the magnetic field of a
line of dipoles,

[2(m - #)F — @] (5.15)

Exercise 5.2 What is the magnetic potential of an infinitely long cylinder
magnetized in the direction parallel to its axis?

Note that the magnitude of the magnetic field of a line of dipoles is pro-
portional to its dipole moment and inversely proportional to the square
of its perpendicular distance from the observation point.

5.5 Two-Dimensional Distributions of Magnetization

The potential of a two-dimensional source can be derived from equa-
tion 5.2. The derivation is analogous to the derivation for gravitational
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potential of two-dimensional masses in Chapter 3. The body is first con-
sidered to be of finite length 2a, as in Figure 3.6, and the volume integral
in equation 5.2 is replaced with a surface integral over the cross-sectional
area of the body and a line integral along its length:

V(P)=Cu / M(Q) - VQ% dv

R
:CmS/M(Q)- (/:VQ%dz ds

where S is the cross-sectional area of the body. As a — o0, the inner
integral approaches the potential of an infinite line of dipoles of unit
magnitude. Hence,

V(P) = 2Ca / wczs (5.16)
S

is the potential of a two-dimensional distribution of magnetic material,
and applying B = —VV provides

B(P) = 2Cm/ M(QQ) [2(1(/1-1”*)1“*—1\7[] ds. (5.17)
S

T

As before, T is understood to be normal to the long axis of the cylin-
der and r is the perpendicular distance. Notice that the component of
magnetic induction parallel to the long axis of the body is zero, and
the component of magnetization parallel to the long axis of the body
contributes nothing to the magnetic field.

As discussed in Chapter 3 for the gravitational case, the magnetic
field of an infinitely long body, uniform in the direction parallel to the
long dimension of the body, can be thought of as originating from a two-
dimensional source. The source is essentially a thin wafer corresponding
to the intersection of the body and a normal plane containing the ob-
servation point (see Figure 3.7).

5.6 Annihilators

A nonzero distribution of magnetization (or density) that produces no
external field for a particular source geometry is called an annihilator
(Parker [207]). The annihilator can be added to its respective source
geometry without affecting the magnetic (or gravity) field. We see that
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the magnetic annihilator for infinite slabs is just M = constant. A hor-
izontal layer with variable magnetization M(z, y, 2), therefore, is indis-
tinguishable from a horizontal layer with the same magnetization plus
any constant, that is, M(z,y, 2) + My. Hence, an infinite variety of mag-
netizations can be conceived for the infinite slab, all producing precisely
the same magnetic field. We will have more to say about annihilators in
later chapters.

5.7 Problem Set

1. Use Poisson’s relation to find the magnetic field of a uniformly mag-
netized spherical shell.

2. What nonzero distribution of magnetization within a sphere pro-
duces no magnetic field (i.e., what is the magnetic annihilator for a
spherical source)?

3. Use Poisson’s relation to prove the general statement that a uni-
formly magnetized slab has no magnetic attraction, regardless of the
direction of magnetization.

4. Consider a line of dipoles aligned parallel to the y axis, with dipole
moment per unit length m = (m,, m,, m.), and intersecting the z, 2
plane at coordinates (', 2’).

(a) Let f = 2Cw/(z?+2"?)?, g = /2 - 2'?, and h = 22'2'. Show that
the three components of magnetic induction observed at (0,0,0)
are given by

B, g 0 h My
B,|=f|0 0 0 My | . (5.18)
B, h 0 —g] [m.

(b) Use this expression to show that the horizontal component of B
due to a line of dipoles magnetized vertically equals the vertical
component of B due to a line of dipoles magnetized horizontally.

(c) Show that the vertical component of B due to a line of dipoles
magnetized vertically equals the negative of the horizontal com-
ponent of a line of dipoles magnetized horizontally.

5. A spherical cavity of radius a is buried with its center at depth a
in a vertically and homogeneously magnetized layer. The layer has
thickness ¢ (¢ > 2a) and magnetization M = Mk.

(a) Find an expression for B in terms of M at the point directly over
the cavity.
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(b) What is the dependence of B on a?

. The crust of Planet X is permanently magnetized proportional to the
field of an ancient centered dipole. The ancient field no longer exists.
Consider the crust to be a shell with radii a; and a2 and show that the
field of the crust is zero at all external points. (Note: This problem
is a demonstration of a more comprehensive theorem discussed in
detail by Runcorn [248]: A shell magnetized proportional to the field
of any internal source produces no external field. The magnetization
is therefore an annihilator for the shell.)
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Spherical Harmonic Analysis

But that to say in difficult problems the use of spherical harmonics is
laborious is not to slight the method, because any other accurate
treatment would be still more difficult.

(Sydney Chapman and Julius Bartels)

Gravity is the ballast of the soul, which keeps the mind steady.
(Thomas Fuller)

Physical quantities measured on or above the earth’s surface are natu-
rally suited to mathematical descriptions in spherical coordinates. The
most common such framework is spherical harmonic analysis. Spherical
harmonic analysis can be useful for any reasonably well-behaved, global
phenomenon and has been applied to a diverse range of data, from free
oscillations of the earth to global climate change. At the very least,
spherical harmonic analysis provides a way to synthesize from a scatter
of discrete measurements on a sphere an equation applicable to the entire
sphere. Such an equation then can be used to interpolate the behavior
of the phenomenon to regions of the sphere that have no measurements.

As the name implies, however, spherical harmonic analysis takes on
special meaning when applied to potential fields, because the build-
ing blocks of spherical harmonic analysis are a natural consequence of
Laplace’s equation in spherical coordinates. In particular, the various
terms of a spherical harmonic expansion are sometimes related (with
caution) to specific physical phenomena. The most well-known example
is the separation of the dipole and nondipole components of the geomag-
netic field: A spherical harmonic expansion based on discrete measure-
ments of the geomagnetic field directly provides separate descriptions of
the dipole and nondipole fields, and these two fields often are attributed
to separate but linked processes in the earth’s core.

100
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This chapter outlines the basic principles of spherical harmonic analy-
sis, relying heavily on the classic developments of Chapman and Bartels
[56], Kellogg [146], Ramsey [235], and MacMillan [172]. Subsequent chap-
ters will apply these principles to the gravity and magnetic fields of the
earth.

6.1 Introduction

Before launching into spherical harmonic analysis, it will prove useful to
start with a more familiar subject, Fourier analysis of periodic functions.
A function f(t), periodic over an interval T, can be synthesized by an
infinite sum of weighted sinusoids, that is,

- 2mmt . 2mmt
ft) = n;() (am cos —— + b sin T ) , (6.1)

where a,, and b,, are weighting coeflicients which, as we shall see shortly,
are determined directly from f(¢). Equation 6.1 is the well-known Fourier
series. But why should sinusoids be used as the building blocks instead
of some other function, say exponentials or logarithms? One reason is
that f(t) is periodic and so are sines and cosines. Another reason is
that sines and cosines have a property called orthogonality, and this
property simplifies the determination of the best coefficients a,, and b,,
in equation 6.1. The property of orthogonality for sines and cosines is
demonstrated by the following three integrals:

L, ifm=n#0;
T 2mrmt 2mnt 2 . 7
cos cos ——dt=4¢0, ifm#n;
0 T T
T, ifm=n=0;
/T . 2mmt . 2mnt %, if m=mn;
sin sin —— dt =
0 T T 0, ifm#mn

T
. 2mmt 2mnt
/sm 71;71 cosLTn—dtzo.
0

If equation 6.1 is multiplied by either sin 2’,}’” or cos @ and integrated
over the period T, all terms of the infinite sum are zero except one! The
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infinite series then reduces to integral expressions for a,, and b,,

r
2 2mnt
an:T/f(t)COS—z;ﬁ-dt, n:1’2""’
0

T
2mnt

bn:k/f(t)siant, = 15250555

e
aoz%/f(t)dt.
0

Hence, the fact that sinusoids are orthogonal over the period of f(t)
provides an easy way to calculate a,, and b,, directly from f(¢).

Now let’s wrap f(t) around the circumference of a circle and let ¢ be
the angle from some fixed radius (Figure 6.1). The fundamental period
T becomes 27 and equation 6.1 becomes

oo
ft) = Z (am cosmt + by, sinmt) .
m=0
Thus the function f(¢) defined by position on the circle is now repre-
sented by a sum of sinusoids about that circle.

Spherical harmonic analysis serves the same purpose for represent-

ing a function defined by position on a sphere. Let f(6,¢) be such a

Fig. 6.1. Function f(t) defined by position on a circle. The function has a
fundamental period of 27.
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function, where 8 is colatitude and ¢ is longitude (see Appendix A for a
review of the spherical coordinate system), and consider just one circle
of colatitude 5. Along this colatitude, f(6p, ) is a function of ¢ alone,
has a fundamental period of 27, and can be represented as before,

o0

f(6g, ) = Z (@ cosme + by, sinme) .
m=0
A similar equation could be written for any colatitude on the sphere,
each colatitude having its own set of coefficients. In other words, the
coeflicients are themselves functions of colatitude, and

o0

f(6,9) = Z (am(6) cosme + by, (0) sinme) . (6.2)
m=0
The question remains as to how best to formulate the coefficients a,(6)
and b,,(0), and that is the subject of the next two sections.

6.2 Zonal Harmonics

The dependence of f(6,¢) on 0 is completely specified by the coeffi-
cients a,,(6) and b,,(0), but what form is most appropriate for these
coefficients? We might expect that they could be approximated by a
sum of weighted functions, just as the dependence on ¢ was approxi-
mated by a sum of weighted sinusoids. We also expect that the weighted
functions should be orthogonal and periodic around any meridian.

The technique of least-squares analysis is a logical way to proceed.
We can approximate the dependence of f(6,¢) on 6 by a finite sum of
weighted functions, requiring that the squared difference between (8, ¢)
and the finite summation be a minimum when averaged over the surface
of the sphere. (Fourier-series aficionados will recognize that a similar
least-squares investigation of f(t) over period T will discover the “best”
weights for sines and cosines too.)

First let f(0, ) be independent of ¢ so that equation 6.2 becomes

f(8,¢)=f(0)
= 0,0(0) 3

and approximate f(f) by a weighted, finite sum of k + 1 orthogonal
functions P, (6),

Fo(68) = CoPo(8) + CLP1(6) + - - + Ck Ps(6) . (6.3)
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Fig. 6.2. Element of a spherical surface. The ribbon encircling the sphere has
an area 2712 sin 6 d.

We wish to minimize the squared difference between f(6) and fi(6) as
averaged over the entire spherical surface (Figure 6.2). If the radius of
the sphere is r, then the total area of the sphere is 4772, an element
of area is 27r?sinfdf, and the total squared error averaged over the
spherical surface is given by

B=—L_ ][f(e) - fk(G)]227rr2 sin 0 df

47r?
0

uy

=%/[f(6) —fk(H)rsianG.

0

To simplify matters somewhat, we can make the substitutions p = cos@
and du = —sin 6 df, and the integral becomes

E =

B —

1
/ [F () — Fil)] dis
il
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| =

/ [72(0) = 2 £ (1) fuls) + 2] . (6.4)

Next we substitute the summation 6.3 into equation 6.4 and apply the
orthogonality condition

1

/ P (1) P () dp = {

-1

A,, ifn=m;
0, if n#£m,

where A, is a constant. Then solving the least-squares condition

oF
ac, ~ Y
for each C; leads to
1 1
Ci= / ) Pu(ys) dp. (65)

-1

Exercise 6.1 Follow the previous instructions to derive equation 6.5 from
equation 6.4.

Hence, by approximating f(#) as a weighted sum of orthogonal func-
tions, we find that the best weights, in a least-squares sense, are given by
equation 6.5, an integral expression involving f(#) itself. A remarkable
property of orthogonal series is implicit in this result: The calculation
of C} is independent of &; that is, each C is the best possible coefficient
regardless of how long the series is or how many terms are missing from
the series.

At this point, any set of functions orthogonal over the interval —1 <
¢ < 1 would do. One well-known set of functions is particularly appro-
priate: the Legendre polynomials, also known as Legendre functions or
zonal functions. Legendre polynomials are given by Rodrigues’s formula

1 an .
Po(p) = Wd,u_"('uz -, (6.6)

where n is the degree of the polynomial. The first five Legendre poly-
nomials are given in Table 6.1, and Figure 6.3 shows several of these
graphically. One can prove (Ramsey [235]) that

{0, ifn#n/;

ifn=n/,

(6.7)

2
2n+1°

/ Po (1) Por (1) dpt =
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Table 6.1. Legendre polynomials of degree 0 through 5.

n  Pa.(6) Pn(p)

0 1 1

1 cosé I

2 1(3cos20+1) 13u*—1)

3  1(5c0s360 + 3cosb) 1(5u° — 3u)

4 25 (35c0846 + 20 cos 26 + 9) 1(35u* — 30u% + 3)

5 135(63cos50 +35cos36 +30cosf)  £(63u° — T0u® + 154)

which is a demonstration of the orthogonality of Legendre functions
over the appropriate interval. The reasons for selecting these particular
orthogonal functions will become clear later in this chapter.

Hence, the function f(u) (or f(6)) can be represented as an infinite
sum of weighted Legendre functions,

n=0

called a zonal ezpansion. It should be clear from the previous discussion
how to determine the coefficients in this summation. The orthogonality
of P, (i) makes this quite simple, at least conceptually; if C; is needed,
for example, we simply multiply both sides of the preceding equation by
P;(p) and integrate both sides of the equation over the interval —1 <
1 < 1. The jth term of the expansion is the only nonzero term, and this
single term provides

¢;= 3= [ HwPwdu. (6.9)

Hence, the orthogonality property of Legendre functions allows the de-
termination of each coefficient directly from the function being rep-
resented, just as sines and cosines were successful in this regard for
one-dimensional functions.
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|

(@)

Fig. 6.3. A few low-degree Legendre functions. (a) Functions Po(u) through
Ps(u) are shown on the interval —1 < p < 1. (b) Function Ps(u) is shown
along the circumference of a circle; gray and white zones indicate areas where
the function would be positive or negative, respectively, if wrapped around a
sphere.

6.2.1 Example

An example is appropriate at this point to put all of the previous math-
ematics into perspective. Suppose f(6, @) is a function of position on a
sphere given by

+1, HO0ZL6<5;
-1, BF<BP=<m,

f(9,¢)={

as depicted in Figure 6.4. We can expect that such a discontinuous func-
tion would be difficult to represent with nicely behaved functions such
as those in Figure 6.3, but let’s give it a try.
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Fig. 6.4. Example of discontinuous f(6, ) over surface of sphere.

First, we represent f(6,¢) as an infinite sum of Legendre functions.

= fw)
=CoPo(p) + C1P1(p) + CoPo(p) + -+ -

The solution of equation 6.9 is simplified greatly by noting that f(u)
is an odd function over the interval —1 < p < 1, and the Legendre
functions are even when n is even and odd when n is odd. Consequently,
equation 6.9 becomes

0, if n is even;

n

1
(2n+1) [ Po(p)dp, if nis odd.
0

In particular,
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7
Cs Y
Cy=0,
66
CS %7
and
3 7 66
f(0,¢)= §P1(,U) - §P3(N) + %Ps(ﬂ) +--
3 11

66 1
= 2= L5 3u) + 2 (635 — 70 + 1
5 82( I ,u)+968( pu’ — T0u” + 15u) +

Figure 6.5 shows how well the discontinuous function of Figure 6.4 can
be represented by these few low-degree Legendre polynomials. Of course,
more terms in the summation would improve the approximation of fx(6)
to f(8).

Finally we should note some important properties of Legendre func-
tions from Table 6.1 and Figure 6.3:

1. If n is odd, the last term of P,(6) is a multiple of cosé; if n is even,
the last term is a constant.

2. Each P,(6) has n zeroes between § = 0° and 6 = 180°.

3. If n is even, P,(6) is symmetrical about 8 = 90°; if n is odd, P,(9) is
antisymmetrical about 6 = 90°.

6.3 Surface Harmonics

Legendre polynomials work well in synthesizing a function that depends
only on colatitude, but other orthogonal polynomials are more appropri-
ate if the function varies with longitude as well. It was stated earlier that
any series of functions that are orthogonal over the interval 0 < § < 7
(or =1 < u < 1) could represent the dependence of f(6,¢) on 8. The
Legendre functions are actually a subset of another set of orthogonal
functions that also represent the coefficients a.,,(6) and b,,(0) over the
interval 0 < 6 < & (or —1 < g < 1) in equation 6.2. These are called
the associated Legendre polynomials, also known as associated Legendre
functions or spherical functions. They are denoted by P, .,,(9), where n
is the degree and m is the order of the polynomial, and are given by

9 — Py (cosb), (6.10)

Pn,m(e) =sin"" 0 m
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1(6)

+1 e
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O=nm

f\/ 1,(0)=3/2F -7/8F, +66/96 F,

\ /-\. O=mw
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0
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-

- 4 A, L
0=0
Fig. 6.5. Approximation of the discontinuous function shown in Figure 6.4
with the sum of three Legendre polynomials. (a) Unweighted Legendre func-

tions of degree 1, 2, and 3; (b) the weighted sum of the three Legendre func-
tions.

Pn,m(/"):(l_ﬂz)% %Pn(ﬂ)- (6.11)

Notice that associated Legendre polynomials reduce to Legendre poly-
nomials when m = 0. A few examples of the associated Legendre poly-
nomials are as follows:

Py =sinf, Py =3sin20, P3, = 35inf (5cos20 + 3),
Pyp =3sin®f, P3 = 55infsin 20, (6.12)
P;3 =15 sin® 6.

As promised, the associated Legendre polynomials are orthogonal over
the interval —1 <y < 1 and with respect to degree n, that is,

; 0, if n #n';
/Pn,m(ﬂ)Pn’,m(u) dﬂ' = 2(n+m)!

e} (2n+1)(n—m)! »

P (6.13)
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Exercise 6.2 Try equation 6.13 forn =4and m=1. Try n =4 and m = 4.

The results of Exercise 6.2 illustrate the large differences in the mean
values (i.e., when integrated over the interval —1 < p < 1) of the squares
of associated Legendre polynomials for any particular degree n. Later, we
will normalize these functions in order to make their relative importance
more alike in any given series.

In the last section, Legendre polynomials were shown to be a suitable
building block for functions that are independent of longitude, that is,

f(8,0)=f(6)
=ao(9)
=CoPy(0) + C1Py(0) + CoPa(8) +- - -.
The associated Legendre polynomials are more powerful in general be-

cause they also depend on order m, and this allows f(6,¢) to remain a
function of ¢ in equation 6.2,

f(0,¢) = (am(0) cosme + b, (6) sinmg) .

m=0

In a later section of this chapter, we will see another important reason
for switching to the associated Legendre functions.

Now we are in a position to rewrite equation 6.2, the original expansion
of f(#,¢), using the associated Legendre polynomials. Similar to the
derivation for the zonal harmonic expansion, we let

ao(0) = CoPoo(8) + C1Pro(0) + CoPap(0) +---,

a1(0) = A1 Pr1a(0) + A2n P21 (0) + A3 1 P3a(0) + - - -,
b1(8) = B1,1P1,1(0) + B2,1 P21 (8) + B3, 1 P51 (0) + - - -,
az(0) = A2 2P22(0) + A3 2P32(0) + Ay 2Py 2(0) + - -,

ba(0) = B2 2 P2 2(0) + B32P32(8) + By 2Py 2(6) + - -,
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and substitute these equations into equation 6.2 to get

f(8,8) =CoPop(0) + C1P1o(0) + CoPao(8) + - -~
+ [A11P11(0) + Ax 1 Po1(6) + As1P51(0) + - -] cos ¢
+ [B1,1P1,1(0) + B2, 1 P21 (6) + B3, 1 P51 () + - - -] sing
+ [A22P22(0) + As2Ps2(0) + Ay oPy2(0) + - -] cos2¢
+ [B2,2P2,2(8) + B3 o P32(6) + By2Py2(6) + -+ -] sin2¢

4+

Rearranging terms provides

f(6,0)=CoPyo(6)
+ [C1P1o(8) + A1,1P11(0) cos ¢ + By 1 P11 () sin ¢]
+ [CoPo0(8) + A2, 1P21(8) cos ¢+ Ba,1 P2 1(8) sin g

+ AQ‘QPQ‘Q (9) cos 2¢ + BQ’QPQ,Q (9) sin 2¢] + ey

which can be written

F6,0)=> [CnPn,o(9) + ) (AnmcoSme + By sinme) Ppm(6)] -

n=>0 m=1

(6.14)

Hence, f(6, ¢) is represented by an infinite sum of functions, each func-
tion composed of associated Legendre polynomials, sines, and cosines.
For reasons that will become clear in Section 6.4, equation 6.14 is
called a spherical surface harmonic expansion, and the functions
P, m(0) cosme and P, ,,,(0) sinme are called spherical surface harmon-
ics. Notice that when m = 0, the spherical harmonic expansion reduces
to a zonal harmonic expansion, as in equation 6.8. As we should expect,
surface harmonics are orthogonal over the sphere; unless any two surface
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harmonics are identical, their product will average to zero over the sur-
face of any sphere. For example,

2r 7w

1 / / P (8) cos mo Py i () cosm’¢ 72 sin 6 db do
4Amr2 ’ ’
00

0, if n#n' or m# m/;
= % if n=n"and m =m’ # 0; (6.15)
57;1+—1, ifn=n"and m =m' =0,

and similarly if cosm¢ is replaced with sinm¢ amd cosm’¢ is replaced
with sinm’¢ in equation 6.15.

6.3.1 Normalized Functions

As illustrated in Exercise 6.3, the magnitude of an associated Legendre
polynomial depends on its degree and order, so the magnitude of each
coefficient must compensate accordingly. A spherical harmonic analysis
would be more instructive if the magnitude of each coefficient reflected
the relative significance of its respective term in the expansion.

This can be accomplished by normalizing the associated Legendre
functions. Two normalizing schemes are in common usage. The fully
normalized functions, commonly used in geodetic studies, are related to
the unnormalized Legendre polynomials by

2020 + 1)]F Pom(8), if m = 0;
P (6) =

1
[(2n+ ) EZZE]® Po(0), it m > 0.

In geomagnetic studies, the Schmidt functions are more typical, and

these are given by
P (6) =
2 Em;i] FPum®), im0,

Rewriting equation 6.14 but using, for example, the Schmidt functions
yields

1(6.6) = Z:O[Agpg(a) n z_:l (A™ cosmé + B™ sinma) P™(6)

(6.16)
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Table 6.2. Surface harmonics of degree and order 0 through 3 expressed
in terms of Schmidt functions.

n m Normalized Surface Harmonic

0 0 1
1 0 cos @
1 1 sin @ { oos } ¢

0 1(3cos20 +1) = cos® 6 — 1
1 ?sinZG{CF’S}(ﬁ:\/gsin9005¢{°°s}¢

sin sin

Lsin?g {22} 2

2(5cos30 +3cosf) = 3 cos®0 — 3 cosd
1 L sinf(5cos20 +3) {2} o= ¥ (5cos0 — 1) sinf { ==} ¢

2 @sinOsinZG{ws}Z(ﬁ:gsin29c059{°05}2¢

sin sin

3 W sing { =] 3¢

sin

LW W W W NN
[T S

The magnitude of Schmidt surface harmonics, when squared and aver-
aged over the sphere, are independent of their order, that is,

27
1 m cos me m’ cosm/¢p) o .
4mr? //P" ©) { sinmg } P (6) {sinm’qS} rsin6do do
0 0

{0, if n#n' or m #m;

1 e — !
i fn=n and m=m

(6.17)

Hence, the magnitudes of the coefficients A7' and B quickly indicate
the relative “energy” of their respective terms in the series. Schmidt
functions are commonly used in global representations of the geomag-
netic field.

A few low-degree Schmidt functions are shown in Figure 6.6, and Ta-
ble 6.2 shows several low-degree surface harmonics based on the Schmidt
normalization. Subroutine B.4 in Appendix B provides a Fortran algo-
rithm, modified from Press et al. [233], to calculate normalized associated
Legendre functions.
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+1 1

0=n 0=-1
p=-I p=1

Fig. 6.6. Normalized (Schmidt) surface harmonics of degree 6 and order 0
through 6.

Just as for zonal harmonic functions, the coeflicients A7* and B} can
be found from measurements of f(6, ¢) using the orthogonality property:

2 T
A™)  2n+1
{an}= n; //f(0,¢)P,,:7‘(e){Cosm¢}sinod9d¢. (6.18)
0 0

sinmae

In practice, this calculation can be done in two steps, by first numerically
integrating the data over ¢ to find the coefficients a,,(0) and b,,(6),
and then integrating over 6. The first step amounts to a Fourier series
expansion. Equipped with A7" and B[, f(6, ¢) can be represented as the
infinite sum of weighted surface harmonic functions by equation 6.16.

6.3.2 Tesseral and Sectoral Surface Harmonics
The normalized surface harmonic
cos meo
P (0
w (6) { sinme }

vanishes along (n—m) circles of latitude that correspond to the zeroes of
P (6). It also vanishes along 2m meridian lines from 0 to 27 due to the
sinmg or cosme¢ term. The lines of latitude and meridian along which
the normalized surface harmonics vanish divide the spherical surface into
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Tesseral

Fig. 6.7. Specific examples of zonal, sectoral, and tesseral surface harmonics.

patches of alternating sign. If m = 0, the surface harmonic only depends
on latitude and is called a zonal harmonic. If n—m = 0, it depends only
on longitude and is called a sectoral harmonic (like the “sectors” of an
orange). If m > 0 and n — m > 0, the harmonic is termed a tesseral
harmonic. Specific examples of each of these three types of normalized
surface harmonics are shown in Figure 6.7.

As indicated by equations 6.14 and 6.16, any reasonably well-behaved
function can be represented by an infinite sum of zonal, sectoral, and
tesseral patterns, each weighted by an appropriate coefficient A" or
B, as shown by equation 6.16. This sum is just a three-dimensional
analog of Fourier series, in which f(t) also is represented by an infinite
sum of patterns (sinusoids in the Fourier case) multiplied by appropriate
coefficients.

6.4 Application to Laplace’s Equation

The previous sections of this chapter showed how to synthesize a func-
tion f(, ¢) from measurements of the function on a sphere. The building
blocks of this synthesis were Legendre polynomials and associated Leg-
endre polynomials, selected for no particular reason except that they
have the property of being orthogonal on a sphere. In this section, we
investigate the special case where f(6,¢) is a potential field satisfy-
ing Laplace’s equation. We will see that the same building blocks, Leg-
endre polynomials and associated Legendre polynomials, are a natural
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consequence of and provide additional insights into the representation
of harmonic functions on a sphere.

6.4.1 Homogeneous Functions and Euler’s Equation

As we are well aware by now, potential fields outside of source regions
satisfy Laplace’s equation, which in cartesian coordinates is given by

v 4 v + v
r2  9y? 022
=0.

ViV =

Every solution to Laplace’s equation is a harmonic function if the first
derivatives of the function are continuous and the second derivatives
exist. Now let D or D’ represent any spatial differential operation in
cartesian coordinates, such as %, %, or V2. Any two such operations
are commutative, that is,

DDIf(;Ij, y’z) = DIDf(:I},y,Z) )
and in particular
DV?U(z,y,2) = V2DU(2,y,2).

Hence, if U(x, y, 2) is a harmonic function, then so is any spatial deriva-
tive of U(z,y, 2).

This theorem provides a means of generating a host of harmonic func-
tions from known solutions to Laplace’s equation. For example, because
vl

r

we know immediately that 21, V1, and m- V2 (the magnetic poten-

tial of a dipole) are also harmonic. This is an important result for future
chapters. If it can be shown, for example, that the scalar magnetic po-
tential of the earth is harmonic, then any component of the magnetic
field of the earth also must be harmonic.
A function V is said to be homogeneous of degree n if it satisfies Fuler’s
equation,
ov oV oV

Homogeneous functions that also satisfy Laplace’s equation are called
spherical solid harmonic functions for reasons that will become apparent
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shortly. Specific examples are zyz (degree 3), zy (degree 2), x (degree
1), log Zt2 (degree 0), 1 (degree —1), and 5 (order —2).

T—=z

Exercise 6.3 Give an example of a spherical harmonic function of degree 4.

It is easy to show that if V' is homogeneous, then so is any derivative of
V. Hence, all derivatives of % are homogeneous, and in particular so is
the potential of a magnetic dipole.

6.4.2 Point Source away from Origin

Consider a particle of mass located on the positive z axis at 2z = a and
observed at point P(r,0,¢) (Figure 6.8). The potential at point P is

1
U(r.0.0)=—

R
= {(I: +r? — 2arp| 2
4
. P(r.6.¢0)
R I
I
d !
9 I
6 r |
a !
I
I -\'
N :
|
I
I

Fig. 6.8. Point mass on z axis observed at point P.
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where i = cos 6.t First we consider the case where r < a. We factor out
the parameter a,

1
1 1 r2 r ]2
—=—|14—=-2- 2
7 [ + au] , (6.20)

15 (6 o rt 2 3 3
T ($_6$”+12¥” “8§N > +~~']7
and rearrange terms into powers of r/a to get
1_11+(r) +(r)2 1_’_32
R a a K a 2 2”
_|_(£)3 _§ _|_§ 3Y 4
a gh T ok ‘

A quick comparison of this series with Table 6.1 shows that the factors
containing p are each a Legendre function, namely,

LS s

Hence, the potential of a point mass displaced from the origin can be
represented by an infinite sum of weighted Legendre functions.

t Note that Newton’s gravitational constant has been dropped in the following dis-
cussion for convenience.
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This series converges only if r < a. If on the other hand r > a, we

simply factor out r rather than a in step 6.20. Then

o) =
I
<[ =
N
[y
+
ﬁ|@
[\~ [\
|
[\
3| e
=
N—
|
(ST

o0
. %nz:jo(g)"Pn(u), if r < a;
R - 1 &, n+1 . (621)
L5 (9)" Pu(p), ifr>a.
Note that if a = 0 (i.e., if the point mass is located at the origin),
then only the n = 0 term is nonzero, and the expansion reduces to the
equation U = 1.

In the previous sections, we found that any function of latitude spec-
ified on a sphere could be approximated by a series of Legendre poly-
nomials, and that the best coefficients in the series are provided by the
orthogonality property of Legendre polynomials. More specifically, equa-
tion 6.21 is a special case of equation 6.8 and is an example of a zonal
harmonic expansion. Now we see that the potential due to a point mass
on the vertical axis is naturally approximated by a series of Legendre
polynomials. It should be clear why Legendre polynomials were chosen
in the previous sections to represent arbitrary functions on a sphere.

The first term of the expansion for r > a is %, the potential of a
monopole at the origin. Hence, this term of the expansion is called the
monopole term. Similarly, the n = 1 term is a—CTOSre, which is the potential
of a dipole located at the origin and pointing in the § = 0 direction;
consequently, the second term of the expansion is referred to as the
dipole term.

Exercise 6.4 What is the quadrupole term, and what is its physical mean-
ing?

Therefore, equation 6.21 represents the potential of an off-centered mono-
pole as a weighted sum of potentials caused by a series of masses (a
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monopole, dipole, and an infinite set of more complex sources) located
at the origin. Each element of the expansion is harmonic and homoge-
neous and, therefore, a spherical solid harmonic.

6.4.3 General Spherical Surface Harmonic Functions

Now consider any function V' (z, y, z) that is homogeneous with degree n.
Such functions have a fortunate property: When transformed to spher-
ical coordinates, they can be factored into three functions where each
function depends on only one of the variables r, 8, and ¢. Consider, for
example, the function

V(z,y,2) = a'y 2",
which is homogeneous with degree i + j + k. To transform to spherical
coordinates, we make the substitutions
x = rcosfcos o,

y = rcosfsin ¢, (6.22)

z=rsinf,
and this provides
V(r,0,¢) = r'"+(costt7 6 sin® §)(cos® ¢ sin’ ¢),

which consists of three factors depending on r, 8, and ¢, respectively. In
general, a homogeneous function can be written in spherical coordinates
as

V(r,0,¢) =r"S5.(0,9),

where S,,(6, ¢) is independent of r.

Now suppose V(r,0,¢) = r*S,(6,$) is harmonic as well as homo-
geneous, that is, V(r,0,¢) is a spherical solid harmonic. Substituting
™S, (0, ¢) into Laplace’s equation in spherical coordinates (Appendix A)
yields

10 (05,
’ n(n+1)sn(0’¢)+sin080 sin o0

sin’9  0¢? o
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2l DSl ) + 5 [(1 - ,ﬁ)%ﬁ@]

1 8%S.(p,9) _0
1—p?2  9¢? o

and dropping the coefficient and rearranging terms provides

928 085, 1 828
- 2 ro_ =z ——n =
(=) g =gy +nlnt DSt y—5 55 =0.  (623)

Equation 6.23 is called Legendre’s equation; it is simply Laplace’s equa-
tion in spherical coordinates applied to homogeneous, harmonic func-
tions. Notice that this equation includes no dependence on r. Any func-
tion S,, that satisfies equation 6.23 is called a spherical surface harmonic
of degree n because it indicates the 8 and ¢ dependence of the spherical
solid harmonic "5, (8, ¢) over any sphere with constant radius 7.

The degree n of the harmonic affects equation 6.23 only in the
n(n+1)S, factor. Because "5, (8, ¢) is harmonic and because n(n + 1)
remains unchanged if we replace n by —(n + 1), it follows that

1

is also a harmonic function. This is the general result of the specific
example (V = +) discussed in the previous section.

We need to prove now that the spherical surface harmonic Sy, (8, ¢) is
really just a linear combination of associated Legendre functions, that
is,

n
Sn(6,4) = > (A7 cosme + B sinme) Py(6) . (6.24)

m=0
Since V = r"S,(0, ¢) is homogeneous in z, ¥, and z, it is clear from
equations 6.22 that S, (8, ¢) must involve sin § and cos 8 jointly to degree
n (at most), and likewise for sin¢ and cos¢. It can be shown with
arduous but straightforward trigonometry that

n

Sn(0,0) =Y Sn.m(6) cos(me + €7, (6.25)

m=0

where coefficients S, ., are functions of # alone. Rather than prov-
ing 6.25, we’ll demonstrate its validity with an example. Let V = zy/r>,
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3

or in spherical coordinates, V = =3 cos? 8 cos ¢ sin ¢. The spherical sur-

face harmonic in this example is

S2(8, ¢) = cos? f cos ¢ sin ¢

= (% + %cos20> cos (2¢ - g) )

which has the general form of equation 6.25 where

52,0(0) =07
52,1(0) =07
1 1
52’2 (0) = Z Z COS 20
2_ T
€y = 2,

which was to be shown.
Substituting expression 6.25 into Legendre’s equation 6.23 yields

- d . dSnm
2:[1— S —ou®Enm o 1)
dp

m=0

m2

_1——N25n’m] cos(m¢ +¢€') =0.

This expression is true for all ¢, so

d%S, m 9 dSnm m?2

The solution to equation 6.26 is P2*(6) or some multiple of P7*(6), such
as C7* Py*(8). To prove this statement, start with the identity

(12— 1)L (42 = 1) = 2nps(u® - 1", (6.27)

dp
and perform the following steps for any desired integers n and m:
1. Differentiate both sides n + 1 times with respect to pu.

2. Note that this differentiation results in equation 6.26 with m = 0 if
Sn,m is replaced with Rodrigues’s formula, equation 6.6,

1 d°
n!2m dy»

PO(i) = —om o (4% = )" (6.28)
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3. Differentiate m times.

4. Note that the result is again equation 6.26, but S, has been re-
placed by
m jacd am
Pl =(1—-u*)?% g ) (6.29)

which, from equation 6.11, is the associated Legendre polynomial of
degree n and order m.

Hence,
Sn,m(e) = CrTP’rT(e) )

and rewriting equation 6.25 accordingly,
n
=" CrPr(9) cos(me + €) .

This is the most general expression for a surface harmonic of degree n.

Exercise 6.5 Use the previous steps to prove that S1,0(8) = C{P?(8). Prove
that 51,1(9) = C’11P11(9)

Recall that

V(r,0,¢) = Zr"S 9,9), (6.30)
or
V(r,0,¢) = Zr_(“H)S 0, 9). (6.31)
n=0

Therefore, a harmonic function can be represented by an infinite sum
of spherical solid harmonics (equation 6.25) where the dependence on
# and ¢ is contained within spherical surface harmonics, which in turn
are represented by sums of weighted associated Legendre polynomials.
It should be clear why, when we had to represent the 6 dependence
of f(#,¢) by an orthogonal series, we chose the associated Legendre
polynomials.

Notice that if S,.(8,¢) can be found, perhaps from measurements of
V(r,0, ®) on the surface of a sphere, equation 6.31 immediately provides
V(r,0,¢) at any point outside the sphere. Hence, the potential field
due to sources lying entirely within a sphere can be found at any point
outside the sphere strictly from the behavior of the potential field on the
sphere. Indeed, equations 6.30 and 6.31 together permit a determination
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Fig. 6.9. Potential on a sphere due to a mass distribution within the sphere.

of the relative importance of sources inside and outside the sphere, a
subject that is reserved for Chapter 8.

We might legitimately ask what all the foregoing mathematics has to
do with potential fields caused by general distributions of density and
magnetization. To provide a partial answer, consider the expression for
gravitational potential observed at P and caused by a bounded density
distribution (equation 3.5)

v(P) = [ 22 a,

R

where @ is the location of the element of integration and R is the distance
between P and @ (Figure 6.9). We can consider each volume element
of such a mass to behave like a point source. Observed on the surface
of a sphere surrounding the entire density distribution, each volumet-
ric element of the mass would submit to a spherical harmonic analysis,
similar to the example in Section 6.2.1 (but generally not so simple as a
zonal expansion). Each term in the harmonic expansion represents the
potential of an idealized mass (i.e., monopole, dipole, quadrupole, and so
forth) located at the origin, and the coefficients in the expansion would
reflect the importance of each of these origin-centered masses in building
a model of the off-centered, volume element. The potential field caused
by the entire density distribution also could be measured and then ana-
lyzed as a harmonic expansion, and by the superposition principle, the
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resulting terms of the expansion will represent the integrated effects of
the entire mass. The coefficients will be related to the manner in which
mass is distributed about the origin.

Consider, as a trivial example, the potential of a uniform, spherical
mass measured at various points on a larger sphere symmetrically placed
around the spherical mass. A spherical harmonic analysis of these data
would find that all coefficients are zero except for the n = 0 term of
the expansion, immediately indicating that the mass is equivalent to a
centered monopole, as it should be. Similarly, a spherical harmonic anal-
ysis of the magnetic potential caused by a uniformly magnetized sphere
would reduce to just the n = 1 term of the expansion, immediately in-
dicating the nature of the magnetization distribution, namely, that the
spherical magnetic body is equivalent to a centered dipole. Chapters 7
and 8 will apply some of these principles to global gravity and magnetic
fields, respectively.

6.5 Problem Set

1. Let f(0,¢) = A sin 20 cos4¢ on a spherical surface. Find a represen-
tation for f(8, ¢) in terms of normalized (Schmidt) associated Legen-
dre polynomials.

2. Let f(6,¢) be defined on a sphere such that

1, f0<¢<m
0, ifm<¢<2m

1(0,9) ={

Use Subroutine B.4 in Appendix B to calculate a ten-term approxima-
tion to f(6, ¢) and plot the approximated values around the equator.

3. Are the following functions spherical solid harmonic functions? If so,
find their degree.

(a) V =a2+42
(b) V = 322 + zy.
(c) V =2%y + 2z
() V' = Gy
(e) V=;lz+y%+z%.

4. Showbthat if V is harmonic and homogeneous of degree n, then
g—;g—ygaa—;V is harmonic and homogeneous of degree n —a — b — c.

5. Let V = 22 — 42. Find S,,(6). Show that it satisfies equation 6.23 and
that it can be represented as summation 6.25.
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6. Consider the potential outside a uniformly magnetized sphere. Ar-
range the coordinate system so that the magnetization is in the di-
rection 6 = 0.

(a) Let the center of the sphere be at the origin and expand the
potential in a zonal harmonic expansion.

(b) Let the center of the sphere be displaced a distance a in the
# = 0 direction and expand the potential in a zonal harmonic
expansion.

(c¢) Discuss what happens to the expansion if the dipole points in a
direction other than 8 = 0.



7
Regional Gravity Fields

The reduction of gravity data is an excellent example of the enhancement
of “signal” by the removal of predictable “noise.”
(Robert W. Simpson and Robert C. Jachens)

La gravité est un mystere du corps inventé pour cacher les défauts de
Pesprit. [Gravity is a mystery of the body invented to conceal the
defects of the mind.]

(La Rochefoucauld)

7.1 Introduction

Later chapters will focus on techniques to characterize crustal and upper-
mantle sources on the basis of their associated gravity and magnetic
fields. A key initial step in such analyses is the proper separation of the
field caused by the target source (the residual or anomalous field) from
the field of the remainder of the universe (the regional field). This and
the following chapter will attempt to characterize these two components
for gravity and magnetic studies, respectively.

Our objective in this chapter is to reduce a gravity measurement made
on or near the earth’s surface to an anomaly value that reflects density
variations in the crust and upper mantle. This involves a long series of
operations with a well-established tradition. These operations account
for the mass, shape, and spin of a “normal” earth, elevation of the mea-
surements above sea level, tidal effects of the sun and moon, motion
of the instrument, gravitational effects of terrain in the vicinity of the
measurement, and effects of isostasy. Each of these operations will be
addressed in this chapter. Readers wishing additional information are
referred to texts by Heiskanen and Moritz [123] and Stacey [270] and to
papers by Simpson and Jachens [259], Chovitz [58], and LaFehr [154].

128
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o Observed field

—

Assumed rcgioha[ field

Fig. 7.1. The definition of regional field depends on the scale of the problem.

Application of these various operations, if they are successful, will
leave us with a gravity anomaly that reflects density variations in the
crust and upper mantle. But even this product may not be quite what is
needed. Our eventual objective may be the analysis of just one geologic
element of the crust, such as a sedimentary basin or some plutonic com-
plex, and the anomaly due to this one element ideally should be isolated
from those of the surrounding geologic environment. This final aspect of
regional-residual separation is often a subjective process and ultimately
a matter of scale. A geophysicist attempting to estimate chromite po-
tential within a buried ophiolite will probably consider the anomalies
due to surrounding sources to be a nuisance, whereas another geophysi-
cist studying the relationships between accreted terrains might regard
as noise the anomaly due to the chromite (Figure 7.1).

7.2 The “Normal” Earth

Because the force of gravity varies from place to place about the earth,
equipotential surfaces surrounding the earth are smooth but irregular.
An equipotential surface of particular interest is the geoid, the equipoten-
tial surface described by sea level without the effects of ocean currents,
weather, and tides. The geoid at any point on land can be thought of
as the level of water in an imaginary canal connected at each end with
an ocean. The shape of the geoid is influenced by underlying masses; it
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bulges above mass excesses (e.g., mountain ranges or buried high-density
bodies) and is depressed over mass deficiencies (e.g., valleys or buried
low-density bodies). Because the geoid is an equipotential surface, the
force of gravity at any point on the geoidal surface must be perpen-
dicular to the surface, thereby defining “vertical” and “level” at each
point.

Because of the complexity of internal density variations, it is cus-
tomary to reference the geoid to a simpler, smoother surface. By inter-
national agreement, that equipotential surface is the spheroidal surface
that would bound a rotating, uniformly dense earth. Differences in height
between this spheroid and the geoid are generally less than 50 m and re-
flect lateral variations from the uniform-density model. The shape of the
reference spheroid was first investigated by measuring the arc lengths of
degrees at various latitudes. It was recognized by the late 1600s that the
spheroid is oblate (see Introduction). In fact, because of the competing
forces of gravity and rotation, the spheroid very nearly has the shape of
an ellipse of revolution and, consequently, is called the reference ellip-
soid. It should be intuitive in any case that the spheroid is symmetric
through its center and symmetric about the axis of rotation. Its shape
is described by just two parameters, the equatorial radius ¢ and polar
radius ¢ (Figure 7.2), and often is expressed in terms of the flattening
parameter

a—c¢

f=

a

The earth is nearly spherical, of course, with flattening of only 1/298.257,
and this fact will permit several simplifying approximations in the fol-
lowing derivations.

The force of gravity on the earth is due both to the mass of the earth
and to the centrifugal force caused by the earth’s rotation. The total
potential of the spheroid, therefore, is the sum of its self-gravitational
potential U and its rotational potential Uy,

U=U;+U,, (7.1)

where

Zcos? )\,

U, = su?r
w is angular velocity, and A is latitude (Heiskanen and Moritz [123]).

Exercise 7.1 Show that U, is the potential of a centrifugal force f;, in the
sense that it satisfies f, = VU;. Is U; harmonic?
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Fig. 7.2. Parameters involved in describing reference ellipsoid.

The gravitational potential U, is harmonic outside the spheroid, and
according to Section 2.1.1, is uniquely determined everywhere outside
by its values on the surface. As we shall see shortly, U, on the surface is
determined completely by f, a, and the total mass of the earth. Hence,
just these three parameters plus w are sufficient to find the total potential
U of the spheroid anywhere on or above its surface.

The self-gravitational potential is given by equation 6.31,

— 1
Ug = Z i+l Sn(ga ¢)
n=0

n
”’M Z ( ) 3 (a7 cosme + B sinm) P (0),  (7.2)
n=0 m=0

where M is total mass, a is equatorial radius, ¢ is longitude, and 6
is colatitude. Equation 6.31 was derived in Chapter 6 from Laplace’s
equation, V2V = 0, in spherical coordinates with no particular physical
meaning attached to V. In equation 7.2, however, the various terms in
the expansion describe the gravitational potential in terms of an infinite
set of idealized masses (monopole, dipole, and so forth) centered at the
origin, the coefficients o] and 3] describing the relative importance of
each mass.
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Symmetry of the spheroid greatly simplifies this equation. First, Uy
has no dependence on ¢, so all terms with m # 0 are zero. Therefore,
with the help of Table 6.2, gravitational potential reduces to

_M

a a\2
=120 |agro o) + g2 P00 +of ()" 300) -

vM a a\21

The first term of this equation is the monopole term, whicu must equal
~vM /r. Hence, @ = 1. The second term, the dipole term, must be zero
because the origin is at the center of mass. Hence, af = 0, and all
other coefficients of odd degree must be zero for the same reason. Con-
sequently, the third term is the lowest term in the series that describes
the departure of the spheroid from a sphere. The coefficient o is gener-
ally expressed in terms of the ellipticity coefficient J2, where a = —Js.
Its relationship to the flattening f of the spheroid is given approximately

by
2f —m

3
=1.082626 x 1073

Jo =

(Stacey [270, p. 90]), where m is the ratio of the centrifugal force to the
gravitational force at the equator, given by

wza

" M/a?
w2a3

=3.46775 x 1073.

Dropping all higher terms in equation 7.3, changing from colatitude to
latitude, and substituting U, into equation 7.1 yields the total gravita-
tional potential

M yMa?J,

U
r 2r3

1
(3sin? X — 1) + §w27"2 cos? \. (7.4)

If the spheroid is approximately spherical, any normal to the spheroid
will be very nearly parallel to r. Then total gravity, normal to the
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spheroid and directed inward, is given approximately by

__ v
9o = or

_M 3 yMa?J,

T3 A (3sin® A — 1) — w?rcos? X, (7.5)

where gg is used here to denote the total gravity of the spheroid. Note
that in previous chapters, the radial component of gravity was defined
as g, = %—g, so the force of gravity was negative in the direction of
increasing distance from the spheroid. Equation 7.5 differs from this
sign convention, and gq is always positive.

Equation 7.5 describes the total gravity of the ellipsoid anywhere on
or outside the ellipsoid in a reference frame that moves with the spin of
the earth. If we can express r in this equation in terms of a and A, we
can obtain a simplified view of how total gravity varies on the surface
of the ellipsoid. The radius of an ellipsoid is given approximately by the
relation

=a(l — fsin?\). (7.6)

Exercise 7.2 Prove the previous statement. Hint: The defining equation for
an ellipse, z2/a” +y?/b® = 1, is a good place to start, and the binomial
expansion provides a useful approximation.

Because f is small, we can use this expression to expand 1/r? in a
binomial series,

1
r2 2

- (1+2fsin?)),
and substitute into the first term of equation 7.5. The last two terms

of equation 7.5 are sufficiently small relative to the first term that the
approximation r = a will suffice. Making these substitutions leads to

_")/M . 2 3’7M .2 2 .92
go_?(1+2fsm )\)_‘Q"?JQ(E;S]H A —1) —w?a(l —sin® A)
M 3 9
7a2 [(1 +-Ja— ) + (Qf— —2-J2 +m> sin? )\] . (7.7)

At the equator, equation 7.7 becomes

M 3
Ge = '7a (1+ J2_ ) 3
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and substituting this expression into equation 7.7 and rearranging terms
provides a simple relation describing the total gravitational attraction
of the spheroid,

g0 = g1 + f' sin® A, (7.8)
where
f/ _ 2f — %Jz +m
- 1+ %Jz -m

Equation 7.8 has the same form as equation 7.6, namely, that of an
ellipse. Hence, to first order, the total gravity of the spheroid varies with
latitude as the radius of a prolate ellipsoid. At the pole,

9p=ge(1+f/)»

80
fr=9p"9%
Je
and the parameter f’ in equation 7.8 is the gravitational analog of geo-
metrical flattening.

The parameters ge, gp, and f’' have values of 9.780327 m-sec™?,
9.832186 m-sec~2, and 0.00530, respectively, and as we should have ex-
pected, the total gravity of the reference ellipsoid varies by only a small
amount over its surface, about 0.5 percent from equator to pole. As we
shall see, however, this small variation is nevertheless significant when
compared to gravitational attraction of geologic sources.

)

Theoretical Gravity
Carrying through the previous derivations to higher order, equation 7.8
can be cast more accurately as

go = ge(1 + asin® X + Bsin? 2)), (7.9)

where, as before, g, is the equatorial attraction of the spheroid, and
a and § depend only on M, f, w, and a. Equation 7.9 is a truncated
infinite series, but a closed-form expression for go can be derived as well
(Heiskanen and Moritz [123, p. 70]),

1+ ksin? )
go=9e | F——=| > (7.10)
1 —e2sin” A\

where k and e also depend only on M, f, w, and a. This equation is
called the Somigliana equation.
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Table 7.1. Parameters of various geodetic reference systems, from
Chovitz [58].

System a, km f Jo yM, m3sec™? g, m-sec™?
1924-30 6378.388 1/297.0 0.0010920 3.98633x10%* 9.780490
1967 6378.160 1/298.247  0.0010827 3.98603x10"* 9.780318
1980 6378.137 1/298.257 0.00108263  3.986005x10* 9.780327

Hence, the gravitational attraction of the reference ellipsoid at any
point (r, A), whether expressed by equation 7.9 or 7.10, depends on only
four observable quantities: yM, a, J2 (or f), and w. The quantity vM
is considered one parameter here because the product of vM can be de-
termined much more precisely than either v or M separately. The equa-
torial radius @ is found from arcs of triangulation, and rotation velocity
w is found from astronomical measurements. Prior to the first artificial
satellites, yM and Jo were based on surface gravity measurements. Now
vM and J, are found from satellite observations and planetary probes
(Chovitz [58]). Note that detailed knowledge of the earth’s density is not
required in order to specify the ellipsoid.

As knowledge of the defining parameters have evolved over recent
years, so too has the reference ellipsoid. The ellipsoid is defined and
refined by international agreement through the International Association
of Geodesy (IAG) and its umbrella organization, the International Union
of Geodesy and Geophysics (IUGG). Three international systems have
been sanctioned in this way, and Table 7.1 shows the defining parameters
for each of these systems. The first internationally accepted reference
ellipsoid was established in 1930, and its associated parameters provided
the 1930 International Gravity Formula,

go = 9.78049(1 4 0.0052884 sin* X — 0.0000059sin? 2))

where go is in m-sec™2. The advent of satellites provided a breakthrough
in the accuracy of various geodetic parameters, and a new ellipsoid was
adopted in 1967 called Geodetic Reference System 1967, thereby provid-
ing the 1967 International Gravity Formula,

go = 9.78031846(1 + 0.0053024 sin® X — 0.0000058 sin® 2)\) .

Most recently the IAG has adopted Geodetic Reference System 1980,
which eventually led to the current reference field, World Geodetic
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System 1984; in closed form it is given by

1 4+ 0.00193185138639 sin® A
V1 — 0.00669437999013 sinZ A

The quantity g, expressed by equation 7.11 or its predecessors, is com-
monly referred to as theoretical gravity or normal gravity.

go = 9.7803267714 (7.11)

The Geoid

As discussed previously, the reference ellipsoid is the equipotential sur-
face of a uniform earth, whereas the geoid is the actual equipotential sur-
face at mean sea level. Differences in height between these two surfaces
rarely exceed 100 m and generally fall below 50 m (Lerch et al. [163]).
The shape of the geoid is dominated by broad undulations, with lateral
dimension of continental scale but with no obvious correlation with the
continents; they apparently are caused by widespread mantle convection
(Hager [108]). Compared with these broad undulations, the response of
the geoid to topography and density variations within the lithosphere
are second-order effects, both low in amplitude and short in wavelength
(Marsh et al. [175]; Milbert and Dewhurst [184]).

Gravity anomalies, to be discussed in the next sections, are referenced
to the reference ellipsoid but involve various corrections relative to sea
level (the geoid). This inconsistency is ignored in most crustal studies,
and in the following discussion, we too will assume that go represents
theoretical gravity on the geoid. While this implicit assumption is ac-
ceptable for most geologic studies, the discrepancy between the reference
ellipsoid and the geoid should be accounted for if the size of the study
is on the order of the broad-scale undulations of the geoid.

7.3 Gravity Anomalies

The isolation of anomalies caused by local density variations from all
other fields involves a series of corrections to observed gravity. They
can be confusing to students because of the way they sometimes are
described. For example, the free-air correction, to be discussed subse-
quently, is sometimes inaccurately described as “moving the observation
point downward to sea level.” It would be incorrect, however, to consider
the observation point at sea level in subsequent calculations or graphical
displays.

A better way to describe the series of corrections is to consider them
each as contributors to observed gravity. The following sum shows the
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various components to observed gravity with the name of the corrections
shown in parentheses:

observed gravity = attraction of the reference ellipsoid

+ effect of elevation above sea level (free-air)

+ effect of “normal” mass above sea level
(Bouguer and terrain)

+ time-dependent variations (tidal)

+ effect of moving platform (Edtvds)

+ effect of masses that support topographic loads
(isostatic)

+ effect of crust and upper mantle density
variations (“geology”).

(7.12)

Our goal is to isolate the last quantity in this summation, the effect
of crustal and upper mantle density variations, from all other terms.
Unfortunately, this last quantity is a relatively minor part of observed
gravity. The acceleration of gravity at the surface of the earth due to the
whole earth is approximately 9.8 m-sec™2 (980 Gal), whereas anomalies
caused by crustal density variations are typically less than 10~3 m-sec™2
(100 mGal), less than 0.01 percent of observed gravity. Portable gravity
meters are quite capable of measuring gravity to within 10~7 m-sec™2
(0.01 mGal), or about one part in 108, but the various corrections to
observed gravity involve assumptions that limit our ability to resolve
the geologic component of observed gravity. Depending on a variety of
factors, particularly the severity of the surrounding terrain, the actual
resolution of the geologic component in field situations may range from
0.1 to 5 mGal.

We will use the simple crustal model shown in Figure 7.3 to help
illustrate the various contributions to observed gravity. This cross section
includes various examples of lateral variations in density: a topographic
edifice, a low-density root that supports the topography in accordance
with the principles of isostasy, and a dense body in the upper crust
that extends both above and below sea level. Gravity is observed at the
topographic surface along a west—east profile, and our goal is to isolate
the anomaly caused by just the high-density body in the upper crust.

Exercise 7.3 How can we tell from Figure 7.3 that the profile is directed
west—east and not north—south?
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Fig. 7.3. Crustal cross section to describe various corrections to observed grav-
ity. The crust and mantle are assumed to have densities of 2670 and 3070
kg-m ™3, respectively. The mountain range is isostatically compensated by a
crustal root. A mass of rectangular cross section and density 2970 kg-m™>
represents a density variation due to upper-crustal geology. Vertical exagger-
ation 2.

The first correction described by equation 7.12 is easily accomplished
with the results of the previous section. Equation 7.11 provides theoret-
ical gravity, the normal gravitational attraction of a hypothetical earth
containing no lateral density inhomogeneities. When this equation is
evaluated and subtracted from gravity measurements, the remainder re-
flects departures of the earth’s density from the homogeneous ellipsoid,
in particular lateral density variations in the crust and mantle. The



7.8 Gravity Anomalies 139

5 Observed Gravity —
j Theoretical Gravity
I ]
Q
E =
(] N
2 -500 -
" _
S _
= p =2970 kg/m?
1000 -
0 — — — — — e _ _ _
1 p=2670 kg/m 3 3
- Ap =300 kg/m
20 4
§ t---- e
=5 Ap =400 kg/m*
S
Q 40
(,() T T T T T T T T T T T T T 1

60 40 -20 0 20 40 60
Distance, km

Fig. 7.4. Crustal cross section of Figure 7.3 after subtraction of theoretical
gravity. The large negative anomaly is caused primarily by increasing distance
between the gravity meter and the reference ellipsoid as the profile rises over
the topographic edifice.

remainder also includes the effects of altitude, tides, and various other
factors, and these will be discussed subsequently.

Figure 7.4 shows how the crustal cross section of Figure 7.3 is effec-
tively changed by subtraction of theoretical gravity. The resulting grav-
ity profile is dominated by a large negative anomaly caused primarily by
the increasing altitude of the gravity meter as the profile goes over the
topographic edifice. This contribution obviously is not related directly to
crustal or mantle sources; it merely reflects changes in distance between
the gravity meter and the center of the earth.
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7.3.1 Free-Air Correction

Shipboard gravity measurements can be compared directly with the ref-
erence field go because the geoid corresponds to sea level. Gravity mea-
surements over land, however, must be adjusted for elevation above or
below sea level. Let g(r) represent the attraction of gravity on the geoid.
The value of gravity a small distance h above the geoid is given by a
Taylor’s series expansion,

o+ 1) = g(r) + h orglr) + -

Dropping high-order terms and rearranging the remaining terms gives

o) = g(r 4 B) —h 2 g(r).

If we assume that the earth is uniform and spherical, then g(r) =
—+yM /72, and the previous equation becomes
2g(r)
g(r)=g(r+h)— Th'

The last term of this equation accounts for the difference in elevation
between ¢(r) and g(r + h). It is known as the free-air correction g,
because it is the only elevation adjustment required if no masses were
to exist between the observation point and sea level. Using values of g
and r at sea level provides

gta = —0.3086 x 107° h, (7.13)

where h is height above sea level. Equation 7.13 is the same in both SI
units (gr, in m-sec™2, h in m) and cgs units (g, in Gal, h in cm) because
gta/h has units of sec™2. Application of the free-air correction provides
the free-air anomaly given by

Agfa = Gobs — 9ta — 90 » (714)

where gops is observed gravity. It should be clear that shipboard mea-
surements minus go are at once free-air anomalies.

Figure 7.5 shows the effect of the free-air correction on the hypo-
thetical cross section of Figure 7.3. The large negative anomaly of the
previous figure, which was caused by increasing elevation of the gravity
meter over the topographic high, has been eliminated by the free-air
correction. Over elevated areas of land, the free-air anomaly tends to
rise to large values, which causes an often undesirable correlation be-
tween topography and gravity. This is apparent in Figure 7.5, where
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Fig. 7.5. Crustal cross section of Figure 7.3 after the free-air correction. Note
that the observation points are not “moved to sea level” and that the free-air
anomaly is strongly influenced by terrain.

although the free-air correction has accounted for the variation in el-
evation of the measurements, it has not accounted for the additional
mass represented by the topographic edifice. Notice too that the crustal
root in Figure 7.5, which isostatically supports the topography, also pro-
duces a long-wavelength, relatively low-amplitude, negative component
in the free-air anomaly. Nevertheless, free-air anomalies are often used
in geodesy for studies of the spheroid and geoid because they are very
nearly equivalent to what would be observed if all the topographic masses
were condensed onto the geoid.

Exercise 7.4 Sketch in profile form the free-air anomaly that would be
observed across a vertical-sided iceberg.
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The free-air correction is sometimes referred to as moving the obser-
vation point to sea level, but this description is misleading. More ac-
curately, the free-air correction adjusts measured gravity for one factor
not accounted for by the reference ellipsoid: the elevation of the gravity
measurement above the reference ellipsoid. Although the free-air correc-
tion accounts for the elevation of the observation point, the observation
point still remains fixed in space with respect to all causative masses
(Figure 7.5).

7.8.2 Tidal Correction

Earth-tides caused by the sun and moon are of sufficient amplitude to
be detected by gravity meters as time-varying gravity. The effect is both
time- and latitude-dependent; it is greatest at low latitudes and has a
strong periodic component with period on the order of 12 hours. The
tidal effect never exceeds 3 x 10~% m-sec™2 (0.3 mGal), a small quantity
in comparison to other corrections to observed gravity. Nevertheless,
tidal effects should be accounted for in high-precision surveys. Formulas
exist to calculate the tidal effect at any time and at any place on the
earth’s surface (Longman [166]).

It may be appropriate in less precise surveys to assume that the tidal
effect is linear over periods of several hours and to remove the tidal
effect along with other temporal adjustments. For example, most grav-
ity meters used in gravity surveys produce readings that drift slightly
over the course of a day’s fieldwork. This problem usually is treated by
reoccupying certain observation points at various times during the day,
assuming that drift has been linear between the repeated measurements,
and subtracting the linear drift from all other readings. The tidal effect
can be considered part of the instrumental drift.

7.3.3 Eotvés Correction

As discussed in Section 7.2, the attraction of the earth at a point fixed
with respect to the earth is reduced by the centrifugal force related to
the earth’s rotation. It stands to reason that the angular velocity of an
observer moving east is greater than for an observer remaining station-
ary with respect to the earth’s surface, and consequently gravitational
attraction will be slightly reduced for the moving observer. Likewise,
gravitational attraction will be slightly increased for an observer mov-
ing in a westerly direction. This motion-related effect, called the Eétvos
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effect, must be accounted for in gravity measurements made on moving
platforms, such as ships or aircraft. The Eétvés correction is given by

g = 7.503 v cos \ sin o + 0.004154 v,

where v is in knots, « is heading with respect to true north, X is latitude,
and gg is in mGal.

Exercise 7.5 Derive the Eotvos correction starting with equation 7.1.

The E6tvos correction can reach significant magnitudes in applica-
tions involving moving platforms. For example, the E6tvés correction is
5.4x107% m-sec™? (5.4 mGal) for gravity measurements made on a ship
at latitude 45°N heading easterly at 1 knot. Errors in heading or veloc-
ity, therefore, can produce errors in reduced gravity measurements that
are similar in magnitude to anomalies caused by typical crustal sources.
Indeed, the E&tvos correction is often the limiting factor in the precision
of shipborne and airborne surveys.

7.8.4 Bouguer Correction

The free-air correction and theoretical gravity ignore mass that may ex-
ist between the level of observation and sea level. The Bouguer correc-
tion accounts for this additional mass. The simple Bouguer correction
approximates all mass above sea level with a homogeneous, infinitely
extended slab of thickness equal to the height of the observation point
above sea level (Figure 7.6). The attraction of an infinite slab is described
by equation 3.27,

gsb = 2myph,

where h is the thickness of the slab. Using a typical crustal density of
2670 kg-m 3, the simple Bouguer correction becomes

gsb = 0.1119 x 1075 A, (7.15)

for both SI units (gsp in m-sec™2, h in m) and cgs units (gg, in Gal, h
in cm), where h is height above sea level. Therefore, ignoring tidal and
E6tvos corrections, the simple Bouguer anomaly is given by

Agsb = Gobs — Gfa — Gsb — Jo - (716)

For gravity measurements over water, the Bouguer correction amounts
to replacing the water (density = 1000 kg-m~2) with a slab of density
2670 kg-m~3 and thickness equal to bathymetric depth. Hence, the sign
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Fig. 7.6. Simple Bouguer, complete Bouguer, and terrain corrections to ob-
served gravity.

of equation 7.15 is opposite, and the numerical coefficient is reduced for
ocean measurements.

The Bouguer anomaly reflects “anomalous mass,” masses with density
above or below 2670 kg-m~3. The choice of 2670 kg-m ™3 as an average
crustal density is appropriate for most geologic situations. In certain
studies, such as over young volcanic terrain or sedimentary basins, an-
other density may be more “normal.” Figure 7.7 shows the effect of the
simple Bouguer correction on our crustal cross section of Figure 7.5.

Exercise 7.6 Sketch the Bouguer anomaly, in profile form, across a vertical-
sided iceberg.

Note that the anomaly now reflects the density contrast of the anomalous
masses with respect to normal density, rather than their total densities.
The simple Bouguer anomaly ignores the shape of the topography
(Figure 7.6). Mountains that rise above the observation level “pull up”
on the gravity meter but are not accounted for in the slab approxima-
tion. Valleys that lie below the observation level form cavities within the
slab approximation. In either case, a simple Bouguer correction tends to
overcompensate measurements made near topographic features. The ter-
rain correction g adjusts for this overcompensation and is an essential
step in reducing measurements made in places of moderate to extreme
topographic relief. The result is the complete Bouguer anomaly:

Agc‘b = Gobs — Gfa — gsb — Gt — 9o » (717)

where the sign of g; is always negative. The terrain correction, which
should include a term for the curvature of the earth (e.g., LaFehr [155]),
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Fig. 7.7. Simple Bouguer and complete Bouguer anomalies over the crustal
cross section of Figure 7.3. The light dashed line indicates the position of mea-
surements with respect to causative masses. Note that the Bouguer anomaly
includes a long-wavelength, negative component caused by the low-density
mass (root) that isostatically compensates the topography.

is traditionally done by approximating the topography with a digital
model and calculating the gravitational attraction of the model with
techniques such as those to be discussed in Chapters 9 and 11. Terrain
models, the bane of graduate students, are often developed by hand with
templates and topographic contour maps (Spielman and Ponce [269]),
but modern techniques of terrain correction, involving data bases of
digital terrain (e.g., Plouff [230], Godson and Plouff [97]), greatly speed
the procedure.
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Bouguer anomalies typically show a strong inverse correlation with
long-wavelength topography. The reason for this is apparent in Fig-
ure 7.7. Although the Bouguer correction has accounted for the direct
effects of the topographic edifice, it has not accounted for the low-density
root that isostatically supports the topography. Hence, the Bouguer
anomaly in this figure is strongly negative because the gravitational
effects of the compensating root remain in the anomaly. For similar rea-
sons, Bouguer anomalies are negative over continental areas and positive
over ocean basins because of the different crustal thicknesses between the
two regimes.

The Bouguer correction is sometimes referred to as a stripping away
of all material down to sea level. More accurately, it accounts for normal
crust (i.e., density = 2670 kg-m~3) above sea level, specifically that
part of the “normal” earth not accounted for by theoretical gravity. The
Bouguer correction, like the free-air correction, should not be thought
of as physically translating the observation point to sea level, nor does
it produce density discontinuities across the sea-level interface in masses
that extend above and below sea level.

7.3.5 Isostatic Residual

Continents and ocean basins represent mass concentrations and defi-
ciencies, respectively, with large lateral dimensions; it would seem that
such profound masses should be refiected in low-order harmonic terms
of the geoid. This is not the case, however, as can be seen from global-
scale maps of the geoid (e.g., Lerch et al. [163]). Apparently, large mass
concentrations and mass deficiencies are compensated at depth, so that
total mass in each vertical section is laterally uniform to first order.
It was recognized long ago (Pratt [231, 232], Airy [1]) that the extra
mass of large topographic features is generally compensated at depth by
mass deficiencies, whereas large topographic depressions are matched
at depth by mass excesses. This phenomenon of compensation of topo-
graphic loads by deeper compensating masses is referred to as isostatic
compensation.

Two models for isostatic compensation are shown in Figure 7.8. Pratt
proposed that density varies laterally in the crust in order that ev-
ery vertical crustal section have identical mass. Airy considered the
compensating masses to be in the form of undulations of the crust—
mantle interface; that is, below mountain ranges, low-density crustal
roots extend into higher-density mantle, whereas below deep ocean
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Fig. 7.8. Two early models for isostatic compensation of topographic loads.
(a) Airy [1]; (b) Pratt [231].

basins, high-density mantle warps upward into the lower-density crust.
The truth undoubtedly is more complicated than either of these models,
and the mechanism varies from place to place depending on the geo-
logical setting. In any case, the anomalies caused by the compensating
masses are generally long in wavelength and approximately negatively
correlated with long-wavelength attributes of topography (Figure 7.7).

It is sometimes desirable to remove from gravity measurements the
long-wavelength gravitational effects of compensating masses. For
example, studies of crustal geology in mountainous terrain (e.g., Jachens
and Griscom [136]) typically are concerned with lateral variations of
crustal density rather than deep-crustal and upper-mantle sources that
isostatically support the topography. Given a digital terrain model, it is
a relatively straightforward procedure to (1) calculate the shape of the
crust—mantle interface consistent with the Airy model for isostatic com-
pensation and (2) calculate at each observation point the gravitational
effect of the volume (Jachens and Roberts [138], Simpson, Jachens, and
Blakely [260]). According to the Airy model of isostatic compensation,
the total mass must be equal for all columns extending from the earth’s
surface to some depth of compensation. Consider the two columns in
Figure 7.9. The mass in column 1 is proportional to dsp. + (dm — ds) Pm,
where dg is the depth of compensation at shorelines, d,, is the depth
below sea level of the compensating root, p. is crustal density, and pp,
is mantle density. The mass in column 2 is proportional to hp; + dmpec,
where p; is the average density of rocks that make up the terrain, and
h is elevation of the observation point above sea level. Equating the two
mass columns provides

Pt
m — - ds s 7.18
d hAp + (7.18)
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Fig. 7.9. Two crustal columns of equal total mass in an Airy model of isostatic
compensation.

where Ap = pny, — pe. Note that the depth to the root depends on the
contrast across the crust—mantle interface, not on the absolute values of
pe and py.

Given a terrain model, equation 7.18 can be solved at each observation
point, and the gravitational effect g; of the root can be calculated using
techniques to be discussed in Chapters 9 and 11. Subtraction of the
isostatic regional anomaly g; provides the isostatic residual anomaly,

Agi = gobs — Gfa — Gsb — Gt — Gi — 9o - (7.19)

The isostatic regional g; is negative over continents and positive over
oceans.

Exercise 7.7 Sketch the isostatic residual anomaly, in profile form, across
a vertical-sided iceberg.

We see then, in comparing equation 7.19 with equation 7.12, that
Ag; is the gravitational effect of variations in crustal density, which was
our initial goal. Figure 7.10 shows the isostatic residual anomaly over
our simple crustal cross section. Now, within the limits imposed by our
simplifying assumptions, we have isolated the gravitational effects of the
small upper-crustal mass. Interested readers are referred to Simpson et
al. [261] for additional discussion on the geologic implications of the
isostatic residual anomaly.
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Fig. 7.10. Isostatic residual gravity profile over crustal cross section of Fig-
ure 7.3. The only remaining contribution to the profile originates from the
crustal mass that is unrelated to isostatic compensation of topographic loads.

Decompensative Anomaly

The foregoing discussion has dealt with a correction to measured gravity
for the gravitational effects of masses that isostatically support topo-
graphic loads. Of course, crustal masses unrelated to topography also
seek isostatic equilibrium, and the effects of this compensation will not
be accounted for in the isostatic correction. In particular, variations in
crustal density, the very signal that we are trying to isolate, will be in iso-
static equilibrium in most geologic situations, and the gravity anomaly
due to density variations in the crust will be matched by long-wavelength
anomalies of opposite sign caused by deeper compensating masses.

The decompensative anomaly (Zorin et al. [296]; Cordell, Zorin, and
Keller [75]) attempts to account for the gravitational effects of masses
that isostatically support variations in crustal density. In this view, the
isostatic residual Ag; (the anomaly adjusted, as in the previous section,
for masses that isostatically support topography) is the sum of two parts,

Agi = Age + Agq , (7.20)

where Ag. is the anomaly caused by variations in crustal density, and
Agq is the anomaly due to deeper masses that support those crustal
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variations. The desired quantity is Ag., referred to as the decompen-
sative anomaly. Zorin et al. [296] and Cordell et al. [75] assumed a very
simple model for the process of compensation in order to solve for Ag.
from Agi: Every mass excess or deficiency in the crust is underlain at
depth 2z by an identical mass of opposing sign. As the effects of the
compensating masses are long in wavelength, the unrealistic nature of
this model should not greatly affect the end result (Cordell et al. [75]).
Hence, Agg, observed at the level of the gravity survey, is identical, apart
from sign, to the anomaly due to crustal density variations observed at
a height z above the gravity survey. In other words, Agy is the negative
of Ag. continued upward to a height z and, as discussed in Section 2.3.2,
can be calculated from Ag. without detailed knowledge of the sources
of Ag. or Agy.

We will investigate upward continuation in more detail in Chapter 12,
but here anticipate one result: With the simple model for compensation
described previously, Ag. can be continued upward a distance z simply
by multiplying the Fourier transform of Ag, by the function e~ /¥, where
|k| is inversely proportional to wavelength. Denoting Fourier transfor-
mation of a function f(z,y) by the symbol F[f], equation 7.20 can be
written as

F[Agi] = F[Age] + F [Agd]
=F[Age] - F[Age]e” ",
and the desired quantity Ag. is given in the Fourier domain by
FlAg) = F[Bg] (1- )71

(Cordell et al. [75]). Consequently, given an assumed value for z, the
decompensative anomaly Ag. can be found directly from the isostatic
anomaly Ag; by Fourier transforming Ag;, multiplying by (1—e~I5l2)=1,
and inverse Fourier transforming the product.

7.4 An Example

Figure 7.11 compares the free-air, simple Bouguer, complete Bouguer,
and isostatic residual anomalies over parts of the Klamath Mountains
and Cascade Range in north-central California. The pre-Cenozoic sed-
imentary and volcanic rocks of the Klamath Mountains are generally
more dense than the Tertiary and Quaternary volcanic rocks related to
the Cascade arc. The Trinity ultramafic sheet, the largest ultramafic
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body in North America, lies in this part of the Klamath Mountains. Ad-
ditional information regarding the geophysical setting of this area was
provided by Griscom [105], LaFehr [153], and Blakely and Jachens [30].
Figure 7.11 illustrates the following:

. Free-air anomalies (Figure 7.11(c)) are strongly correlated with ter-
rain (Figure 7.11(b)). This correlation is particularly apparent over
Mount Shasta, Medicine Lake Volcano, and the Klamath Mountains.

. Simple and complete Bouguer anomalies (Figures 7.11(d) and 7.11{e))
over continental areas are strongly negative. This happens because
the Bouguer correction has removed the effects of normal crust above
sea level but has left the effects of deeper masses that isostatically
support that crust.

. Simple and complete Bouguer anomalies have regional-scale compo-
nents that are approximately inversely correlated with very long-
wavelength attributes of the terrain. In Figure 7.11(e), this regional
component appears as a broad trend decreasing from west to east.
The regional trend in Bouguer gravity is caused by an increase from
west to east in the amount of deep, low-density material that supports
the topography. In terms of the Airy model for isostatic compensa-
tion, the trend in Bouguer gravity is caused by a low-density root
that thickens from west to east in order to support the continental
edifice, although in actuality the support may be distributed in other
ways; for example, through variable densities in the upper mantle.

. The simple Bouguer map includes short-wavelength anomalies re-
lated to topography, whereas these effects are largely missing from
the complete Bouguer map, which included a terrain correction. The
large-amplitude negative anomaly directly over Mount Shasta on Fig-
ure 7.11(d) is the best example.

. The isostatic residual anomaly (Figure 7.11(f)) most closely repre-
sents lateral variations in density of the middle and upper crust. It
clearly shows, for example, the high-density Trinity ultramafic body
and where it lies below pre-Cenozoic rocks of the Klamath Moun-
tains (Griscom [105]). Low-density rocks of the Cascade Range are
also apparent in the central and eastern parts of the map. The neg-
ative anomaly over and extending northeast from Mount Shasta is
thought to be caused by low-density volcanic rocks (LaFehr [153];
Blakely and Jachens [30]).
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Fig. 7.11. Various corrections applied to gravity data from north-central Cal-
ifornia. (a) Simplified geology; (b) topography based on 5-minute averages,
contour interval 200 m; (c) free-air anomaly, contour interval 20 mGal; (d)
simple Bouguer anomaly, contour interval 10 mGal; (e) complete Bouguer
anomaly, contour interval 10 mGal; (f) isostatic residual anomaly, contour
interval 10 mGal. Gray shades indicate positive regions.
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7.5 Problem Set

1. Imagine that you are chief science officer on a mission to investigate
a newly discovered planet. Your spaceship is located in the plane of
the planet’s rotation at a distance r from the planet’s center and a
distance h from the planet’s surface. Your spaceship is stationary with
respect to the planet’s rotation and is experiencing a gravitational
attraction of G. Your sensors tell you that the planet is rotating with
an angular velocity of w, has the shape of an oblate spheroid with
flattening f, and has dynamical properties much like Earth. Two
landing parties are being sent to the planet: one to the equator and
one to the north pole. The captain wants to know how much the force
of gravity will differ between the two landing sites and is willing to
accept some simplifying assumptions. What can you advise? Express
your answer in terms of a, f, v, h, w, and G.

2. Suppose that the earth begins to rotate more and more rapidly until
the gravity experienced by an observer at the equator falls to zero.
How long is the length of a day?

3. Show that to first order f + f/ = %m. Note: This result is more
important than it may seem; it shows that the geometrical shape of
the ellipsoid can be determined from gravity measurements alone.

4. A sphere of density 3.17 g-cm ™2 and radius 5 km is partially buried
in a flat prairie so that the summit of the sphere is 2 km above
the surrounding prairie. The prairie is 2 km above sea level. Assume
crustal density is 2.67 g-cm~2 and use the Geodetic Reference System
1967 to sketch the following profiles (show appropriate shapes and
amplitudes) as observed along a traverse directly over the center of
the sphere:

{(a) observed gravity,

{(b) free-air anomaly,

{(¢) Bouguer anomaly,

(d) isostatic residual anomaly.

5. Explain why the following statement is wrong: “The isostatic residual
anomaly is always zero over perfectly compensated topography.”

6. The mass in Figure 7.10 is not isostatically compensated. What would
the profile look like if it were?
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The Geomagnetic Field

Magnus magnes ipse est globus terrestris.
[The whole earth is a magnet.]
(William Gilbert)

It has always been and still is [my] impression that
a magnetometer survey is just as much a means of
mapping geology as are the air photograph and the
surface geological traverse.

(Norman R. Paterson)

The previous chapter discussed the steps by which gravity measurements
are converted into gravity anomalies that reflect geological sources. The
present, chapter treats magnetic anomalies in a similar vein. Whereas the
gravity field of the earth is largely time invariant, except for relatively
minor or long-term changes due to redistribution of mass (tides, mov-
ing magma, glacial rebound, erosion, mountain building, and so forth),
the geomagnetic field varies in both direction and intensity over time
scales ranging from milliseconds to millennia. It would seem that this
added complexity would make the reduction of magnetic measurements
significantly more difficult than that for gravity data, but in practice the
calculation of magnetic anomalies is relatively straightforward.

Our intent in this chapter is to characterize the global magnetic field
in order to isolate the magnetic field caused by crustal sources. This
agenda glosses over a large body of information that ordinarily would
be included in a chapter of this title, such topics as the origins of the
geomagnetic field (magnetohydrodynamic theories); the behavior of the
field in the geologic past (paleomagnetic studies); reversals of geomag-
netic polarity; the magnetic properties of the sun, moon, meteorites,
and other planets; and the interaction of the earth’s magnetic field with
solar phenomena. Other textbooks are dedicated to just these topics,

154
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and readers are referred in particular to books by Merrill and McEl-
hinny [183], Jacobs [139], Butler [47], Parkinson [211], and Chapman
and Bartels [56] for more comprehensive discussions.

We begin this chapter with a general discussion of dividing potential
fields measured on a sphere into parts originating from inside and outside
the sphere. Later sections of this chapter will use spherical harmonic
analysis to describe the internal geomagnetic field.

8.1 Parts of Internal and External Origin

Spherical harmonic analysis provides the means with which to determine
from measurements of a potential field and its gradients on a sphere
whether the sources of the field lie within or outside the sphere. Carl
Friederich Gauss in 1838 was the first to describe the geomagnetic field
in this way, and he came to the conclusion that the field observed at the
earth’s surface originates entirely from within the earth. We know now,
with the benefit of satellites, space probes, and vastly more data, that he
was only approximately correct; that is, a small part of the geomagnetic
field originates from outside the earth. In this section, we investigate the
general problem of separating a potential field into parts of external and
internal origin, following the development of Chapman and Bartels [56].
We use magnetic induction in this derivation, but the discussion applies
to any potential field.

Consider the magnetic induction B and its potential V', where B =
—VV, and suppose that we have the ability to measure V' or any com-
ponent of B on a spherical surface with radius a. Assume further that
in source-free regions V' is harmonic and satisfies Laplace’s equation,

V2V =0.

Specifically, V' is harmonic on the surface of the sphere so long as sources
of V do not extend across the surface. If no sources exist outside the
sphere, then both V' and %—‘T/ must vanish as r — oo, and V can be
represented by a spherical harmonic expansion similar to equation 6.31,

Vi= aio (%)nﬂ i(AZ” cosmé + B™ sinm¢)P™(), r>a,

m=0
(8.1)
where € is colatitude, ¢ is longitude, and P7*(#) is an associated Le-
gendre polynomial of degree n and order m normalized according to the
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convention of Schmidt (Section 6.3.1). The superscript i identifies the
potential and each harmonic coefficient as being due to internal sources.
On the other hand, if all sources lie outside the sphere, then V' and

%—‘Ti must be finite within the sphere, and equation 6.30 is appropriate,

n

Ve=a ZO (2)" 3 (A7 cosmp+ B sinmg) P (9), r<a, (8.2)

m=0

where the superscript e denotes external sources. If sources exist both
inside and outside the sphere, then the potential in source-free regions

near the surface of the sphere is given by the sum of equations 8.1
and 8.2,

V=vi4tve

where
Am:Ami +Ame

B™ :Bmi + Bme7

Ame

C:l,rl = ﬁ?
Bre

7=

The coefficients CJ* and S} in equation 8.3 are fractions ranging be-
tween 0 and 1; for any given degree n and order m, C}"* and S indicate
the relative importance of external sources to the total potential ob-
served at the surface of the sphere.
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Our objective now is to determine C}* and S* from knowledge of the
behavior of V' just on the surface of the sphere. At r = a, equation 8.3
reduces to an expansion of spherical surface harmonics,

V=a Z Z (AT cosme¢ + B sinme) P (0)

n=0m=0

=a)_ Sa(6,9). (8.4)
n=0

Measurements of V' will permit determination of A7 and B}, as dis-
cussed in Chapter 6. Resolving C7* and S*, however, requires informa-
tion about how V changes in the direction normal to the surface of the
sphere, and this is provided by the radial gradient of V' (i.e., the radial
component of B). The radial gradient can be expressed as a spherical
harmonic expansion, given at the surface by

83_‘: = Z Z (o cosmep + 3, sinme) P (6) (8.5)

n=0m=0

and measurements of %—‘T/ would permit determination of o] and 3.
But % also can be derived from equation 8.3, so at r = a,

38_‘: - i f: P,T(G){ [ne — (1)1 - ey A7 cosme

n=0m=0

+ [nSi = (4 1)(1 = S7)| By sin m¢} . (8.6)

Equating the terms in equations 8.5 and 8.6 leads to
o =[nCT — (n+1)(1 - C)] AT, (8.7)
B =Sy —(n+1)(1 - S B. (8.8)

The coefficients A7 and B* can be obtained from a spherical harmonic
analysis based on measurements of V' using equation 8.4, and coeflicients
ot and 87 can be derived from measurements of 88—‘: using equation 8.5.
Having determined these coefficients, one can use equations 8.7 and 8.8
to provide C* and S}, the relative contribution from external sources to
the potential at each harmonic. Hence, knowledge of a potential and its
radial gradient on a sphere determines the relative importance of sources
internal and external to the sphere.
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North

Fig. 8.1. (a) The spherical coordinate system. Point P is defined by coor-
dinates r, 8, and ¢, and a vector at point P is described in terms of three
orthogonal unit vectors: £, ©, and ®. (b) The cartesian coordinate system at
point P. The three components of vector B are shown: B; is directed north
(Bz = —Bs), By is east (By = By), and B, is down (B, = —B,). Inclination I
is the angle of B below horizontal, positive down; declination D is the azimuth
of the horizontal projection of B, positive east.

The potential is not measured directly in geomagnetic studies, so we
must settle for some other way to determine the coefficients A7 and
B;" in equations 8.7 and 8.8. Magnetometers can measure the three
orthogonal components of magnetic induction. Assume for the moment
that the earth is spherical. At the surface of the earth, we orient the
cartesian coordinate system so that z is directed north, y is east, and z

is down, as shown in Figure 8.1, and the relation B = —VV leads to the
expressions
B,=-By
10V
= ; .6_9 (north), (89)
By =B,
1 oV
= 7m0 99 (east), (8.10)
B,=-B,
|4
= ov (down) . (8.11)
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Equation 8.5 expresses the radial gradient of V' as a surface harmonic
expansion with coefficients o and 8", so

B, = Z Z (ot cosme + 37 sinme) P (8) .

n=0m=0

To find expressions for B, and By in terms of the coefficients A’ and
B, we substitute equations 8.3 into equations 8.9 and 8.10, respectively,
and set r = a,

o0 n

BzZémzzo(Amcosmqﬁ—FB sin m¢) 8P80(0)7 (8.12)
By = sm07§mz_ (mA} sinm¢ — mB, cosme¢) P (6). (8.13)

Equation 8.13 is simply a surface harmonic expansion of the function
Bysin@, so measurements of B, provide all coefficients A}’ and B}’
needed in equations 8.7 and 8.8 at all degrees and orders except m = 0.
Measurements of B, can fill this remaining gap through application of
equation 8.12. Equation 8.12 is not an expansion in terms of surface
harmonics, but it can be shown that 8—135# can be expressed as such
(Chapman and Bartels [53]). Measurements of B, as discussed earlier,
provide the coefficients o] and ;). Hence, measurements of the south-
ward, eastward, and downward components of B on the sphere are suf-
ficient to assess the relative importance of external and internal sources

to the geomagnetic field.

8.2 Description of the Geomagnetic Field

Equation 8.3 is written commonly in geomagnetic studies as

v=aX ()T (8) m)] (5.14
n=0

where



160 The Geomagnetic Field

The new coefficients g™, g™°, h™, and h™® are called Gauss coefficients,
have the same dimensions as magnetic induction, and generally are ex-
pressed in units of nanotesla (or gamma). As before, the superscripts
e and i denote either external or internal terms. Gauss coefficients are

related to the old coefficients (equation 8.3) according to

ngi:(l_CrT)A:zna h:lni:(l_S:zn)B:ln>

me _ Im Am me _ gm pOQm
9n _CnAn? hn _San7
me me
m o g mo__ h
Cn - g,’{”igﬁe’ Sn - hzzilhzze-

Gauss made the first quantitative spherical harmonic analysis of the
geomagnetic field in 1838. He determined the harmonic coefficients from
measurements of B, By, and B, at a total of only 84 points (spaced 30°
apart in the ¢ direction along seven circles of latitude) and concluded
that the external coeficients g, and h]* are zero. Now we know that
external sources contribute several tens of nT (and often much more) to
the total magnetic field at the earth’s surface, and that this contribution
is highly variable in both time and space.

The magnetic field originating from inside the earth is approximately
dipolar, as we shall see shortly, and would appear very much like Fig-
ure 4.8 if the earth were isolated in space. The earth, however, is con-
tinuously bathed by the solar wind, a stream of charged plasma emitted
by the sun. The region of interaction between the solar wind and the
internal magnetic field is called the magnetosphere, a region of consid-
erably more magnetic complexity than depicted by Figure 4.8. It is this
complex interaction between the earth’s internal magnetic field and the
solar wind, coupled with the earth’s rotation, tidal forces, and thermal
effects, that produces the external magnetic field. The ionosphere, which
surrounds the earth at altitudes between roughly 50 and 1,500 km, is an
important part of this interaction; the earth’s rotation and tidal effects
generate electrical currents in the ionosphere, which in turn produce
magnetic fields that can reach magnitudes of up to 1,000 nT at the
earth’s surface.

The details of the origins of the external magnetic field are beyond
the scope of this chapter, and the interested reader is referred to the
text by Merrill and McElhinny [183] for a lucid and concise summary of
this subject. The following discussion focuses on just the internal parts
of the field. For convenience we will drop the superscripts i and e in
subsequent spherical harmonic expansions with the understanding that
g7 and AT pertain to internal sources.
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8.2.1 The Elements of the Geomagnetic Field

Vector quantities (e.g., B, H, and M) in geomagnetic studies must be
described in a frame of reference fixed with respect to observation points
on the earth’s surface. This typically is done in one of two ways. The
vector can be described in terms of three orthogonal components in a
cartesian coordinate system, usually oriented so that x increases to the
north, y is east, and z is down (Figure 8.1). For geomagnetic fields,
these three components are often written in the literature as X, Y,
and Z, respectively, and expressed in units of nT. Here we follow the
convention established throughout this text and write the components
as, for example, B, = X, By = Y, and B, = Z. The intensity of the
horizontal component then is

H=,/B2+B2.

Alternatively, the vector can be described by its total intensity,
T= B§+B§+B§, (8.15)

plus two angles, the inclination and declination. Inclination is the vertical
angle between the vector and the horizontal plane, that is,
B
I = arctan ——— .
BZ + BZ

By convention, inclination is positive when the vector is inclined below
the horizontal plane and negative when above the horizontal plane. The
vertical plane containing the vector is called the magnetic meridian, and
declination is defined as the azimuth of the magnetic meridian, positive
to the east and negative to the west, that is,

By

\/ B2+ B2

Contour maps describing these various elements of the geomagnetic
field are called isomagnetic maps. Isodynamic maps indicate contours of
equal field intensity, such as total intensity, vertical intensity, or hori-
zontal intensity. Isoclinal maps show contours of equal inclination, and
isogonic maps represent declination. Figure 8.2 shows various examples
of these maps; similar charts are available from a variety of sources at
more convenient scales (e.g., Peddie and Zunde [215]; Fabiano, Peddie,
and Zunde [87]).

D = arcsin
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Fig. 8.2. The magnetic field of the earth based on IGRF 1990. (a) Isody-
namic map showing total intensity, contour interval 2,500 n'T; (b) isoclinic map
showing constant inclination, contour interval 10°; (c) isogonic map showing
constant declination, contour interval 10°.
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The foregoing discussion has assumed that the earth is precisely spher-
ical. Actual measurements of B;, By, and B, in studies of the main
geomagnetic field, however, are generally oriented instead with respect
to a spheroidal model (Langel [157]), and mathematical representations
of the main field, such as those displayed on Figure 8.2, reflect this
spheroidal coordinate system. Changing from a spherical to a spheroidal
coordinate system has no effect on the B, component and only a small
effect on B, and By, and the discrepancies are often ignored in studies
of crustal magnetization.

8.2.2 The International Geomagnetic Reference Field

Like the reference ellipsoid and theoretical gravity (Section 7.2), the
mathematical representation of the low-degree parts of the geomag-
netic field is determined by international agreement. This mathemat-
ical description is called the International Geomagnetic Reference Field
and is the purview of the International Association of Geomagnetism
and Aeronomy (IAGA) and its umbrella organization, the International
Union of Geodesy and Geophysics (IUGG). The IGRF consists of Gauss
coefficients through degree and order 10 because, as we will discuss sub-
sequently, these low-order terms are believed to represent in large part
the field of the earth’s core. Subtracting these low-order terms from mea-
sured magnetic fields provides in principle the magnetic field of the crust.
As discussed in Section 8.3, however, a 10-degree harmonic expansion is
not sufficient to isolate the crustal field.

The geomagnetic field changes with time, however, and so must its
mathematical description. Because international agreement is not eas-
ily achieved on a day-to-day basis, IAGA adopts new IGRF models at
five-year intervals which are intended to represent the geomagnetic field
for the following five-year period, called an epoch. To provide this pre-
dictive ability, each Gauss coefficient for any particular IGRF model
has a derivative term that predicts the field into the immediate future
assuming each coefficient changes linearly with time.

Unfortunately the changes in the geomagnetic field are not entirely
predictable, and differences between the predictive IGRF and the true
geomagnetic field begin to grow over the course of each epoch. This
divergence is treated in the short term by establishing a new IGRF
model every five years. In the long term, it is possible to improve old
IGRF models with the benefit of accumulating data. Therefore, IAGA
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periodically adopts models for past epochs, called Definitive Geomag-
netic Reference Field (DGRF) models. DGRF models are not estab-
lished until it becomes unlikely that the data sets will be significantly
improved. DGRF models, therefore, become the official record of how
the geomagnetic field has behaved in past epochs. Nine DGRF models
are in effect at the present: DGRF 1945 through DGRF 1985, each rep-
resenting the subsequent five-year epoch. These nine models, along with
IGRF 1990 and its predictive terms, give a complete description of the
geomagnetic field from 1945 through 1995. Shortly after 1995, IAGA will
adopt a new DGRF 1990, to replace IGRF 1990, and establish a new
IGRF 1995 complete with new predictive terms.

Table 8.1 shows the IGRF 1990 model and its predictive terms. A
complete description of the IGRF has been published in various places
(TAGA [134], Langel [157, 160]); these descriptions provide coefficients
for all DGRF models from 1945 through 1985, list the coefficients and
predictive terms for IGRF 1990, and include a concise discussion of the
history of the IGRF. Figure 8.2 shows isodynamic, isoclinic, and isogonic
maps based on the IGRF 1990 model.

8.2.3 The Dipole Field

Table 8.2 shows how the first few harmonic terms of the geomagnetic
field have changed since the time of Gauss and illustrates some general
characteristics of the earth’s internal field. Notice that this table has
no g coefficient because, as discussed in Chapter 6, the zero-degree
harmonic term varies as 1/7 (for internal sources) and corresponds to
the potential of a monopole; gg must vanish, therefore, because magnetic
monopoles do not exist. Also notice the overwhelming dominance of
the first-degree coefficients (g9, g}, and hl). As discussed in Chapter 6
and in the following paragraphs, the first-degree harmonic describes the
potential of a dipole centered at the center of the sphere, and the large
amplitudes of these coeflicients reflect the generally geocentric dipolar
character of the main geomagnetic field. Finally, notice the systematic
change of all coefficients (especially those of higher order) over time since
1835. Part of this change is due to improvements in field definition, but
most of the change reflects real temporal variations of the geomagnetic
field. We will return to this subject in Section 8.2.5.

We now investigate the n = 1 harmonic term of the geomagnetic field.
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Table 8.1. International Geomagnetic Reference Field for epoch 1990.%

n m g dg/dt h dh/dt n m g dg/dt h dh/dt
1 0 —29775 18.0 8 0 22 0.2

1 1 —1851 10.6 5411 -—16.1 8 1 5 -0.7 10 0.5
2 0 —2136 —12.9 8 2 -1 -0.2 =20 —0.2
2 1 3058 24 —2278 —15.8 8 3 -1 0.1 7 0.3
2 2 1693 0.0 —380 -—13.8 8 4 —12 —-1.1 =22 0.3
3 0 1315 3.3 8 5 4 0.0 12 04
3 1 —2240 —6.7 —287 44 8 6 4 —-0.1 11 —-0.5
3 2 1246 0.1 293 1.6 8 7 3 —-0.5 16 —-0.3
3 3 807 —5.9 —348 —10.6 8 8 —6 —-0.6 -—11 0.6
4 0 939 0.5 9 0 4

4 1 782 0.6 248 2.6 9 1 10 — =21 —
4 2 324 —-7.0 —240 1.8 9 2 1 — 15 —
4 3 —423 0.5 87 3.1 9 3 12 — 10 —
4 4 142 —5.5 —299 —1.4 9 4 9 — —6

5 0 —211 0.6 9 5 -4 — —6

5 1 353 —0.1 47 —0.1 9 6 -1 — 9 —
5 2 244 —-1.6 153 0.5 9 7 7 — 9 —
5 3 —111 —3.1 —154 04 9 8 2 — -7

5 4 —166 -0.1 —69 1.7 9 9 —6 — 2 —
5 5 —37 2.3 98 04 10 0 —4

6 0 61 1.3 10 1 —4 — 1 —
6 1 64 —-0.2 -16 0.2 10 2 2 — 0 —
6 2 60 1.8 83 -1.3 10 3 -5 — 3 —
6 3 —178 1.3 68 00 10 4 —2 — 6 —
6 4 2 —0.2 —52 -0.9 10 5 4 — -4 —
6 5 17 0.1 2 05 10 6 3 — 0 —
6 6 —96 1.2 27 1.2 10 7 1 — -1 —
7 0 77 0.6 10 8 2 — 4 —
7 1 —64 -0.5 —81 06 10 9 3 — 0 —
7 2 4 -0.3 —27 02 10 10 0 — —6 —
7 3 28 0.6 1 0.8

7 4 1 1.6 20 —0.5

7 5 6 0.2 16 —-0.2

7 6 10 0.2 —23 0.0

7 7 0 0.3 -5 0.0

*Note: Gauss coefficients are in units of nT; rate-of-change coefficients are predic-
tions for the period 1990 to 1995 in nT per year.

Rewriting equation 8.14 for internal sources provides

V=qa il (%)"H Xn: (g™ cosme + K™ sinme) P™(8),  (8.16)

m=0



166 The Geomagnetic Field

Table 8.2. Comparison of various analyses of the geomagnetic field.
Cocfficients in units of nT.*

Source  Epoch g} g1 hi B % hy g B
Gauss 1835 —32350 —3110 6250 510 2920 120 —-20 1570
DF 1922 —-30920 —-2260 5920 —890 2990 1240 1440 840
DGRF 1945 -30594 —2285 5810 —1244 2990 —1702 1578 477
DGRF 1965 —30334 —2119 5776 —1662 2997 -2016 1594 114
DGRF 1985 —29873 —1905 5500 —2072 3044 —2197 1687 —306
IGRF 1990 —29775 —1851 5411 —2136 3058 —2278 1693 —380

%Note: DF refers to Dyson and Furner [82].

and expanding the summations just through n = 1 yields

3

a
VP =—
;

[91P(8) + (g1 cos ¢ + hising) PL ()],

where superscript D refers to the dipole contribution. As discussed in
Chapter 6, each coefficient of a harmonic expansion is the best possible
coefficient, in a least-squares sense, regardless of the number of terms in
the expansion. Thus, we know that the coefficients ¢, g1, and h} in the
previous equation still will do the best possible job in modeling the first-
degree part of the field, even though all other terms of the expansion
have been dropped. From Table 6.2, P)(8) = cos# and P}(#) = sin#,
and making these substitutions provides

3
VP = j—Q [97 cosf + g1 cos ¢ sin@ + k] sin gsind] . (8.17)

Polar coordinates can be converted to cartesian coordinates using the
usual relationships,

x =rsinf cos ¢,

y =rsinf sin ¢,

z=rcosf,

where in this case z, y, and 2 are oriented as in Figure 8.1(a), with the
origin at the center of the earth, the 2z axis aligned along the spin axis
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pointing north, and z positioned at Greenwich meridian. In cartesian
coordinates, equation 8.17 becomes
3
D_ % [ 0% 1 Y
VP =5 |0+ gl =+ nid]. (8.18)

From Chapter 4, the potential of a dipole centered at the origin is
given by

-t
V= Cm 2
C, y z
where C, = 1 and is dimensionless in emu or C, = ¥ = 1077

4n
in SI units. Comparing equation 8.18 and 8.19, we see

that the n = 1 term of a spherical harmonic expansion describes the
magnetic field of a dipole centered at the origin. In particular, the first
three nonzero Gauss coefficients are each proportional to one of the three
orthogonal components of the dipole moment, that is, at the surface of
the earth and in SI units,

henry-meter !

4r 4
My = —a 1
Ho
4
my = —Wa3h
Ho
4
m,= _a3g?
Ho

Using the coefficients from the 1990 International Geomagnetic Ref-
erence Field (IGRF) (Table 8.1) and letting a = 6.371 x 10% m yields

my = —0.479 x 10%2,
my =1.399 x 102,
m, = —7.700 x 10%2

each in units of A-m?. The magnitude of the centered dipole, therefore,

is
m=/mZ+m2 +m?2
47r 2
3\[91 91)” + (h})

=7.840 x 102 (A -m?),
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North Geomagnetic Pole
Latitude 79.1°N
Longitude 71.1°W

South Geomagnetic Pole
Latitude 79.1°S
Longitude 108.9°E

Fig. 8.3. The orientation of the dipole field as described by IGRF 1990.
and simple trigonometry then provides the orientation of the centered
dipole:

m
6 = arccos —
m

=169.1°,

My

2 2
mg + my

=108.9°,

¢ = arccos

where 6 is colatitude, and ¢ is longitude with respect to Greenwich
meridian. The field produced by this “best” geocentric dipole is called
the dipole field.

As depicted in Figure 8.3, the extension of the positive end of the
geocentric dipole intersects the earth’s surface at coordinates (0, ¢) =
(169.1°,108.9°), or at latitude 79.1°S and longitude 108.9°E; the neg-
ative end intersects the surface at (6,¢) = (10.9°,288.9°), or at lati-
tude 79.1°N and longitude 71.1°W in the Kane Basin between Ellesmere
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Island and Greenland. These two points are called the south and north
geomagnetic poles, respectively. The magnetic poles, on the other hand,
are the points where the total field is normal to the surface of the earth,
that is, the south magnetic pole is that point where the inclination
is —90° and the north magnetic pole is located where the inclination
reaches +90°. If the geomagnetic field were perfectly dipolar (i.e., if
g = h =0 for all n > 1), the distinction between geomagnetic poles
and magnetic poles would be unnecessary. Table 8.1 shows that the field
departs significantly from that of a geocentric dipole, however, and the
north magnetic pole, as defined by the IGRF 1990 field model, is located
off the south coast of Ellef Ringnes Island in the Queen Elizabeth Is-
lands, roughly 700 km from the geomagnetic pole. The departure of the
geomagnetic field from that of a geocentric dipole will be the subject of
the next section.

Exercise 8.1 Use Table 8.2 to describe the centered dipole of the earth in
1965. How many degrees did the dipole “rotate” between 1965 and 19807

The first three nonzero coefficients of the spherical harmonic expan-
sion define the single magnetic dipole, centered at the origin, that best
fits the observed magnetic field. A better approximation results if the
dipole is not constrained to be at the origin. The overall “best-fit” dipole
is located about 400 km up the positive z axis from the earth’s center,
and the field that it produces is called the eccentric dipole field.

8.2.4 The Nondipole Field

Excluding the n = 1 harmonic from equation 8.16 eliminates the dipole
term from the geomagnetic field. The remainder, given by

(o ] n
a\ntl .
yN = az (;) Z (g cosm¢ + h]* sinmg) P (6), (8.20)
n=2 m=0
is called the nondipole field. To estimate the relative importance of the
nondipole field, consider the vertical component B, as measured at the
north geographic pole (r = a, § = 0°). Differentiating equation 8.16 with
respect to r yields
ov
B, =——
or

n

= i(n +1) (%)7&2 Z (97" cosme + ht sinme) P (6) .
n=1

m=0
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Now we let r = a and 6 = 0° and note from Table 6.2 that P/*(0) = 1
if m = 0 and P7*(0) = 0 otherwise. Thus the radial component of B at
the north geographic pole is simply

oo

n=1

Let BP and BY represent the radial components of the dipole and
nondipole fields, respectively, at the north geographic pole. Then from
Table 8.1,

By =2¢}

T
=-59,550  (nT),

10
BN~ Z(n +1)g2

n=2
~3,518 (nT),

and the percent provided by the nondipole field to the total vertical field
at this particular location is

BN
Bl _ 6.3 (percent) .

100 X =" =
|BP + BY|

Though this percentage is of only one component at only one location,
it is characteristic of the main field as a whole: The nondipole field com-
prises only about 10 percent of the main field, and thus the geomagnetic
field is dipolar to a very good first approximation. The spatial character
of the nondipole field is one of large-scale anomalies (Figure 8.4), eight
or ten in number, with spatial dimensions comparable to continental
size (although no correlation is apparent), and with magnitudes on the
order of 10 nT.

It is tempting but not advisable to attach physical significance to the
nondipole and dipole geomagnetic fields. As discussed in Chapter 6, the
various terms of a spherical harmonic expansion represent the poten-
tials of highly idealized sources (monopoles, dipoles, quadrupoles, and
so forth) situated precisely at the center of the sphere. These geocentric
models are not unique, of course; the same potential could be modeled
equally well by more complex, distributed sources, and Problem 2 at the
end of this chapter provides one example. Moreover, it is well established
on the basis of many lines of evidence that the low-degree terms of the



(a)

(b)

8.2 Description of the Geomagnetic Field 171

ffﬁ@%\\%%\ 7z
DA(Cawrs)(@ )
= %\(ﬁ%%x ~vr/|
TN

.

3
B

i
N
(€

of Il |/
e

I
e R

/5%'\\

o
=
NG

[
e TS

N~
b, Sl
N\ <

/

(4
~\
Za\l

A0

W77/

=
1
o4

Fig. 8.4. The total intensity of the nondipole field at two different epochs.
Contour interval 1000 nT. (a) Based on DGRF 1945. (b) Based on IGRF
1990.

geomagnetic field originate primarily from the fluid outer core, not from
the precise center of the earth.

Furthermore, the origins of the dipole and nondipole fields are not in-
dependent of each other. Alldredge and Hurwitz [3] modeled the main
field by placing a number of radial dipoles near the core—mantle interface,
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to represent the nondipole field, and a single dipole at the earth’s center.
By progressive iteration to minimize the mean squared error between the
observed field and the modeled field, they found that eight radial dipoles
(ranging in magnitude from 0.8 x 1022 to 3.6 x 10?2 A -m?) located at
about 0.25 earth radii, plus the centered dipole, provided an excellent
representation of the main geomagnetic field. However, the strength of
the best-fit centered dipole was found to be 18.0 x 10?2 A -m?, about
twice that of the dipole determined from spherical harmonic analysis.
Hence, if physical significance is to be given to the radial-dipole model,
too much emphasis should not be placed on the separation of dipole and
nondipole components in spherical harmonic analyses.

8.2.5 Secular Variation

Repeated measurements of the main field at fixed localities demon-
strate that the elements of the magnetic field are undergoing tempo-
ral changes over time scales ranging from milliseconds to millions of
years. Short-period variations (yearly or less) are caused primarily by
external sources, such as electric currents in the ionosphere. These tem-
poral changes are manifested in various ways, ranging from very periodic
behavior, such as the daily or diurnal variation, to transient magnetic
storms.

Longer-period variations arise primarily from the fluid outer core of
the earth and are called geomagnetic secular variation. Secular varia-
tion is often displayed by contour maps, called isoporic maps, where the
contours represent constant rates of change, either in nT per year or
degrees per year. Figure 8.5, for example, shows the rate of change of
the total intensity of the geomagnetic field in 1990 based on the 1990
IGRF field model. Such maps display cells (or anomalies) of either in-
creasing or decreasing field. The cells are continental in size, although
no correlation with continents appears to exist, and persist in the same
sense for decades or longer. At any given location, the nondipole field
changes in amplitude at an average (rms) rate of about 50 nT per year
with maximum rates of about 100 nT per year.

Figure 8.4 shows the nondipole field at two epochs separated in time
by 45 years. Subtle differences in various anomalies are apparent, even
over this relatively short time period. Many of the foci drifted noticeably
westward over this period and have been doing so since at least the time
of Gauss; for example, the positive anomaly over the Gulf of Guinea (off
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Fig. 8.5. Secular change in nT/yr based on IGRF 1990. Calculated by sub-
tracting the total intensity in 1990 from that predicted in 1991.

the west coast of Africa), the positive anomaly south of Australia, the
negative anomaly over the Mediterranean Sea, and the negative anomaly
over Ecuador and Colombia. Indeed, the nondipole field in an average
sense is drifting systematically westward at a rate of roughly 0.2° per
year, although the rate varies with latitude (e.g., Bullard et al. [45],
Yukutake [292]). On closer examination it has been shown that this west-
ward drift is only an average characteristic of the nondipole field; some
features drift westward more rapidly than 0.2° per year, while others
remain stationary (e.g., Yukutake [293], Yukutake and Tachinaka [294]).
The large positive anomaly over Mongolia in Figure 8.4, for example, has
remained stationary over the 45-year period represented by this figure,
and in fact for a much longer period of time. This dual behavior suggests
that the nondipole field has a long-term stationary component in addi-
tion to westward-drift (Yukutake [293], Yukutake and Tachinaka [294]),
and no doubt even greater complexity (James [141, 142]).

These observations of secular variation are direct ones; i.e., as deter-
mined from continuously operating observatories, repeat measurements,
and surveys conducted from ships, aircraft, and satellites. Paleomagnetic
studies are continuing to piece together the behavior of the geomagnetic
field in the geologic past, including the long-term record of secular vari-
ation, reversals of geomagnetic polarity, excursions of the geomagnetic



174 The Geomagnetic Field

poles, and true polar wander. This considerable body of information is
beyond the scope of this text, and the interested reader is referred to
books by Merrill and McElhinny [183] and Butler [47] for information
on these subjects.

8.3 Crustal Magnetic Anomalies

The internal sources of the geomagnetic field are located primarily in
two regions of the earth. The majority of the field is generated in the
fluid outer core by way of complex magnetohydrodynamic processes and
is called the core field or main field. The remainder, called the crustal
field, originates primarily from a relatively thin outer shell of the earth
where temperatures are below the Curie temperatures of important mag-
netic minerals, primarily magnetite and titanomagnetite (Chapter 5).
The depth to which such minerals exist is still a matter of discussion,
however. The mantle is generally considered to be nonmagnetic (e.g.,
Wasilewski, Thomas, and Mayhew [289]; Frost and Shive [92]), so accord-
ing to this view, the depth extent of magnetic rocks is either the crust—
mantle interface or the Curie-temperature isotherm, whichever is shal-
lower. Some studies have concluded, on the other hand, that upper mantle
rocks may have significant magnetizations, especially in oceanic regions
(e.g., Arkani-Hamed [6]; Harrison and Carle [117]; Counil, Achache, and
Galdeano [76]). In the following, we will loosely regard the crust-mantle
interface as magnetic basement, with the understanding that rocks in the
uppermost mantle in some geologic environments may also contribute
to the geomagnetic field. Hence, the vast region between the Curie-
temperature isotherm (or crust—mantle interface, whichever is shallower)
and the core-mantle interface is generally considered to be nonmagnetic.
The calculation of crustal magnetic anomalies then amounts to subtract-
ing the core field from measurements of the total magnetic field. Paterson
and Reeves [212, Figure 8] showed an excellent example of the enhance-
ment of an airborne magnetic survey by this simple residual calculation.
The large difference in depth between the sources of the crustal and
core field is reflected in spherical harmonic analyses. This depth informa-
tion is perhaps best displayed by way of the power spectrum R,,, defined
as the scalar product B, -B,, averaged over the spherical surface; that is,

27 7

1

- B, - B, a’si .

R, 47ra2// B,a“sinfdbdo, (8.21)
00
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Fig. 8.6. Power spectrum of the geomagnetic field at the earth’s surface based
on 26,500 measurements from the Magsat satellite mission. Dots indicate
calculated values of log R.; best-fit lines are shown for 2 < n < 12 and
16 < n < 23. Modified from Langel and Estes [160].

where

B, = -V la (;)"H zn: (g™ cosme + h™™ sinme) P™(6)

m=0

evaluated at r = a. Using the orthogonality property of spherical surface
harmonics, Lowes [167, 168] reduced equation 8.21 to

n 1
3

Ro=(n+1) Y [(g2) + ()] (8.22)
m=0

It is clear from Table 8.1 that R,, decreases with increasing n at least
through degree 10. Figure 8.6 shows R,, through degree 23, as calculated
by Langel and Estes [160] from 26,500 low-orbit satellite measurements.
The logarithm of R,, takes the form of two straight-line segments with
a change in slope at about degree 14 (Figure 8.6), which is in general

agreement with earlier studies (e.g., Cain, Davis, and Reagan [49]).
Within any range of n, the rate of decrease of R, with increasing
n is directly related to the depth of sources principally responsible for
that part of the spectrum. To demonstrate this relationship, we first

note from equation 8.21 that the power spectrum R, is proportional to
(a/r)2n+4‘

Exercise 8.2 Prove the previous statement; i.e., use equation 8.21 to show
that R, is proportional to (a/r)*"t4.
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Then to transform R,, based at the surface of the earth into a spectrum
that would be determined at some new radius r, we simply have to
multiply R,, by the factor (a/7)?" "4, or add (2n +4)log(a/r) to log R,,.
This manipulation changes the slope of the logarithmic power spectrum
by a constant 2log(e/r). If r > a, R, is transformed onto a larger
sphere, the slope of log R,, is steepened, and the procedure is called
upward continuation. If r < a, R,, is transformed to a smaller sphere
(within the earth), the slope of log R,, is flattened, and the procedure
is called downward continuation. Downward continuation is legitimate,
however, only if all currents and other sources of magnetic fields are
absent between radii @ and r (e.g., Booker [34], Lowes [168]). We will
have considerably more to say about upward and downward continuation
in Chapter 12.

It is commonly assumed that the radius required to make log R,, as
nearly constant as possible (i.e., to make the power spectrum “white”)
is the radius at which the important sources of the field are located
(e.g., Lowes [168], Langel and Estes [160]). With this assumption, the
principal sources are located at a radius given by the value of r that
satisfies

S+210g%:0,

where S is the slope of log R,,. The line that best fits log R,, for n < 14 in
Figure 8.6 has a slope of —1.309 (Langel and Estes [160]). Substituting
this value into the previous equation provides r = 3311 km, which places
the sources of this part of the spectrum at a radius about 174 km below
the seismic core—mantle boundary. The spectrum at n > 14 indicates
sources within the upper 100 km of the earth.

Hence, it is logical to interpret the steep part of the spectrum (n < 14)
in Figure 8.6 to be caused by sources within the outer core, and the
flatter part of the spectrum (n > 14) to be dominated by lithospheric
sources (e.g., Bullard [44], Booker [34], Lowes [168], Cain et al. [49]; Lan-
gel and Estes [160]). It would seem, therefore, that a crustal magnetic
map could be constructed from satellite data by subtracting a 13-degree
spherical harmonic expansion derived from the same data (e.g., May-
hew [177]; Regan, Cain, and Davis [241]; Cain, Schmitz, and Math [50];
Langel, Phillip, and Horner [159]).

This assumption deserves consideration, however. Carle and Harri-
son [53] showed that residual fields calculated in this way may con-
tain long-wavelength components, too long to be caused by near-surface
sources. This happens in part because in practice we usually measure
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the total intensity of the geomagnetic field (discussed more fully in Sec-
tion 8.3.1) rather than a single component of the field. The residual
crustal anomaly in such cases is computed by subtracting the magni-
tude of a low-degree regional field from measurements of the geomag-
netic intensity. The total intensity is the square root of the sum of the
squares of three orthogonal components, as in equation 8.15. Although
the potential is modeled in a spherical harmonic expansion as the sum
of sinusoidal terms, in squaring the three components to form the in-
tensity, each of those sinusoidal terms becomes a combination of both
longer and shorter wavelength terms, as demonstrated by the following
exercise.

Exercise 8.3 Consider a potential field given by B = —VV, where V =
a(a/r) g PP (). Show that each component of B (i.e., B and By) has
only one sinusoidal term of wavelength 27, but that |B| has two terms,
one with infinite wavelength and a second with wavelength .

Hence, a value of n that represents the transition from dominantly core
to dominantly crustal contributions to the geomagnetic field may not
be appropriate for the total intensity of the field. A residual anomaly
computed by subtracting the magnitude of a regional field truncated at
n still will contain contributions from harmonics less than n.

Langel [156] agreed that the anomaly field includes long wavelengths,
but that these can originate strictly from crustal sources by virtue of the
way the anomaly field is calculated and do not necessarily imply con-
tamination from sources in the core. Arkani-Hamed and Strangway [7]
and Harrison, Carle, and Hayling [118] independently concluded that
the crustal portion of the magnetic field dominates the total intensity at
degrees 19 and greater; that is, to be sure that the residual anomaly rep-
resents only crustal sources, they recommended truncation of anomalies
up through degree 18.

The important conclusion for our purposes here is that subtraction
of a 10-degree IGRF model, such as that shown in Table 8.1, from a
magnetic survey will be inadequate to eliminate the entire core field.
Magnetic studies of continental or global scale should be evaluated care-
fully in the context of long-wavelength anomalies that might originate
from the core and that may be confused with the crustal field. The long-
wavelength shortcomings of the 10-degree IGRF are much less significant
for local- or regional-scale magnetic studies applied to geologic problems.
In such cases, additional regional fields can be removed subsequent to
subtraction of the IGRF using a variety of techniques, such as simple
curve fitting and digital filtering.



178 The Geomagnetic Field

Chapter 7 focused on the reduction of measurements of the total grav-
itational attraction of the earth to gravity anomalies reflecting crustal
density variations. This reduction procedure consists of a series of steps,
including a subtraction of the gravitational effects of an average earth,
the elevation of the measurement, and terrain. In crustal magnetic stud-
ies, the calculation of anomalies is often treated in a more cavalier way,
usually consisting of only two steps: (1) an adjustment for daily varia-
tions and magnetic disturbances and (2) the subtraction of a suitable
regional field, such as the IGRF model appropriate for the date of the
survey. Some of the corrections routinely applied to gravity measure-
ments generally are not attempted in magnetic studies simply because
they are less tractable in the magnetic case. Terrain corrections in grav-
ity studies, for example, aithough tedious are nevertheless straightfor-
ward because the density of the terrain is relatively uniform. Crustal
magnetization, however, can vary by several orders of magnitude (and
change sign) at essentially all spatial scales. This additional complex-
ity requires less-straightforward techniques to correct for terrain effects
(e.g., Clarke [61], Grauch [101]), and the effects of terrain are often left
to the modeling and interpretation stage.

Exercise 8.4 Discuss the magnetic analog of the simple Bouguer correction.

8.3.1 Total-Field Anomalies

Total-field magnetometers are usually the instrument of choice for air-
borne and shipborne magnetic surveys. As the name implies, total-fieid
magnetometers measure the magnitude of the total magnetic field with-
out regard to its vector direction. The total-field anomaly is calculated
from total-field measurements by subtracting the magnitude of a suit-
able regional field, usually the IGRF model appropriate for the date of
the survey. If T represents the total field at any point, and F is the
regional field at the same point, then the total-field anomaly is given by

AT = |T| - |F]. (8.23)

Because AT will form the basis of future discussions on interpretation
of magnetic data, it is important to establish under what conditions
AT is harmonic. Let AF represent the perturbation of F due to some
anomalous magnetic source. Then the total field is given by

T=F+AF
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Fig. 8.7. Vector representation of total-field anomalies. Total field T is the vec-
tor sum of the regional field F' and the anomalous field AF. Length |T| — |F|

represents the total-field anomaly, but length F- AF is a suitable approxima-
tion if |F| > |AF)|.

(Figure 8.7). Note that the total-field anomaly is not equivalent to the
magnitude of the anomalous field because

AT = |F + AF| — |F|
# |AF|.

Ideally we would like to know all three components of AF, or at least
a single component of AF, in order to understand the source of the
anomaly. Fortunately, under conditions that usually prevail in crustal
magnetic studies, the total-field anomaly is a good approximation of one
component of AF and moreover can be considered a harmonic function.

The first of these conditions is met if the anomalous field is small
compared to the ambient field. If |F| 3> |AF|, then

AT = |F + AF| — |F|
~(F-F +2F - AF)? — |F|
~(F-F)% + (})(2)(F-F)"%(F - AF) - |F|
_F-AF
~|F
AT~ F . AF, (8.24)

which is the projection of AF onto F. Figure 8.7 graphically illustrates
equations 8.23 and 8.24. Hence, if the ambient field is much larger than
the perturbing field, AT is approximately equal to one component of
the field produced by the anomalous magnetic sources, namely the com-
ponent in the direction of the regional field. Typical crustal anomalies
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measured in airborne and shipborne surveys range in magnitude from
a few nT to several 1,000 nT, but rarely exceed 5,000 nT. Hence, the
condition that |F| >> |AF| is usually met in studies of crustal magneti-
zation.

Another condition is also necessary, however, in order for AT to satisfy
Laplace’s equation and be harmonic over the dimensions of the survey.
In general, the total-field anomaly is not harmonic because, as defined
by equation 8.23, V2AT # 0. If, however, the anomaly field is small
compared to the total field, then

VIAT = V3(F - AF).

If in addition the direction of the regional field is approximately constant
over the dimensions of the survey, then F' is a constant and can be moved
outside of the Laplacian, that is,

V2AT =F - V2AF.

As discussed in Section 6.4, specific components of a harmonic potential
field are themselves harmonic. Hence, each component of AF in the
previous equation is harmonic, V2AT = 0, and AT itself is harmonic.
The condition of invariant field direction depends on the scope of the
study; it is a reasonable assumption for local and regional surveys, but
not for studies of continental or larger scale. We will revisit this problem
in Section 12.3.1.

In summary, the total-field anomaly at any point is approximately
equal to the component of the anomalous field in the direction of the
regional field if the anomaly field is small compared to the ambient
field. In addition, the total-field anomaly is a potential and satisfies
Laplace’s equation if the direction of the ambient field is constant over
the dimensions of the survey. Both conditions generally prevail in studies
of local and regional scale, a conclusion with fortunate implications for
discussions in future chapters.

8.4 Problem Set

1. Suppose that the northward-directed component of a force field F
is known on the surface of a sphere with radius a. The field has a
potential V' that is harmonic in source-free regions. Sources may exist
both inside and outside the sphere but not at the surface. Show from
spherical harmonic analysis that the eastward-directed component of
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F can be determined at any point on the sphere from knowledge of
the northward-directed component.

. Use a spherical harmonic expansion to show that the field of a single
eccentric dipole is equivalent to the field produced by multiple sources
located at the center of the sphere (geocentric dipole, quadrupole, and
so forth).

. On the surface of a planet with radius a the only nonzero Gauss co-
efficients are g and g3, and these have values 0.3 and 0.5, respectively.

(a) Find the declination D, inclination I, and intensity |B| at a point
with colatitude 90° and longitude 45°.

(b) Repeat for a point with the same colatitude and longitude but at
five planetary radii (r = 5a).

. The magnetic field of Planet X is known on the basis of orbiting satel-
lite measurements to have a power spectrum satisfying the equation
R, = 0.5 x 10° - (0.3)" (nT?). The radius of the planet is 8000 km,
and the satellite altitude was 500 km above the planet’s surface.

(a) Assume that the magnetic field is caused by a very thin, spherical,
concentric, randomly magnetized layer. What is the radius of the
layer?

(b) Suppose instead that the field is actually caused by a thick layer of
broadly circulating electrical currents. Discuss the errors involved
in erroneously assuming a thin, randomly magnetized layer.

. A vertically and uniformly magnetized sphere is buried at the mag-
netic equator. The radius of the sphere is 10 m, its center is 15 m
below the profile, and its magnetization is 1 A-m~!. Assume the sur-
rounding rocks are nonmagnetic.

(a) Calculate the total-field anomaly along a profile directly over the
sphere.

(b) Quantitatively describe the error in using the approximation ex-
pressed by equation 8.24.

. The electrical current flowing in a spherical shell is adjusted so that
the field inside the shell is uniform. Show that the magnetic field of
the shell appears dipolar at points outside the sphere.
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Physicists believe that known laws should suffice to explain the Earth’s
behavior, but the complexities of geology have defied simple explanation.
(J. Tuzo Wilson)

The purpose of models is not to fit the data but to sharpen the questions.
(Samuel Karlin)

9.1 Methods Compared

The magnetic or gravity survey is complete, the data are processed, and
regional fields have been removed appropriately. Now comes the inter-
esting challenge of interpretation. The problem is conceptually straight-
forward: Estimate one or more parameters of the source from observed
gravity or magnetic fields, while incorporating all available geologic, geo-
physical, and other independent information.

The many techniques of interpretation can be divided into three cat-
egories (Figure 9.1). Each category has the same goal, to illuminate the
spatial distribution of gravity or magnetic sources, but they approach
the goal with quite different logical processes.

1. Forward method: An initial model for the source body is constructed
based on geologic and geophysical intuition. The model’s anomaly
is calculated and compared with the observed anomaly, and model
parameters are adjusted in order to improve the fit between the two
anomalies. This three-step process of body adjustment, anomaly cal-
culation, and anomaly comparison is repeated until calculated and
observed anomalies are deemed sufficiently alike.

2. Inverse method: One or more body parameters are calculated auto-
matically and directly from the observed anomaly. Simplifying as-
sumptions are inevitable.

182
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FORWARD METHOD

Guess at initial

model parameters INVERSE METHOD

Py Pys Py

A

Calculate model

anomal
Y Inverse calculation
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—— =] Compare model anomaly
with observed anomaly

Dy Doy Doysen
New re2T3
Pp Pyr Py

Adjust model
parameters

ENHANCEMENT
AND DISPLAY

A Transform anomaly A Display
into enhanced anomaly anomaly

Fig. 9.1. Three categories of techniques to interpret potential field data. Mea-
sured anomaly is represented by A, calculated anomaly by Ao, and transformed
measured anomaly by A’. Parameters p1,p2,... are attributes of the source,
such as depth, thickness, density, or magnetization.

3. Data enhancement and display: No model parameters are calculated
per se, but the anomaly is processed in some way in order to enhance
certain characteristics of the source, thereby facilitating the overall
interpretation.

The importance of employing all available independent information
in the interpretive process cannot be overemphasized. Knowledge of the
geologic and tectonic setting should be incorporated at each step of the
process. Seismic reflection or refraction surveys, previous potential field
studies, or other kinds of geophysical information may be available to
guide the modeling. The interpretation in any case will be inherently
nonunique, but incorporation of independent information may reduce
the infinite set of mathematical solutions to a manageable array of mod-
els, still infinite in number but at least more geologically reasonable.

It may seem from the previous description that the inverse method is
considerably simpler and more straightforward than the forward method.
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This is not necessarily the case. Grossly simplified models are still re-
quired in the inverse method, and inclusion of independent information
may be more difficult. The iterative process inherent in the forward
method, on the other hand, facilitates the incorporation of independent
information in the interpretive process.

This and the following chapters deal with these three approaches to
interpretation of gravity and magnetic anomalies. The remainder of this
chapter discusses various ways to calculate gravity and magnetic anoma-
lies from relatively simple models, the essential ingredient of the forward
method. The geophysical literature is replete with such techniques, far
too many to include in a textbook of this scope. Instead we focus on
a few of the “classic” techniques. Readers interested in additional dis-
cussions are referred to textbooks by Telford, Geldart, and Sheriff [279],
Parasnis [203], and Grant and West [99].

9.2 Gravity Models

Equations 3.5 and 3.6 provide the gravitational potential U and gravi-
tational attraction g at point P due to a volume of mass with density
p, that is,

UP) =y [ Lav,

R
g(P)=VU
f
:_7/pr_2dv7
R

where r is the distance from P to an element of the body dv, and
is the gravitational constant. In the following we use the tradition of
directing the z axis vertically downward and arranging the x and y axes
in a right-handed system (Figure 9.2).

Gravity meters measure the vertical attraction of gravity (i.e., in the
direction of increasing z), here denoted by lowercase g. In cartesian co-
ordinates, therefore,

oUu
g(x7y7z) = E

ot
—— [ [ [  aay . o)

z/ y/ m/
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P(x,y,z)

y

3 p(xl,yr,zr

Fig. 9.2. A three-dimensional body with density p(z’,vy’,z’) and arbitrary
shape observed at point P(z,y, z). Unit vector f points from an element of
the mass to P.

where

r=V(@—a)2+@y—y)+(z—-2)2.
Notice that equation 9.1 has the general form
9(z,y,2) = /// pz’,y, 2 ) p(z — 2’y — ¢,z — 2') dz’ dy’ d’,
zl y/ I/

where
z

$2+y2 +22)3/2 !

’l/)(x,y,z) = (

As discussed in Section 2.3.2, ¥(z,y, z) is called a Green’s function. In
equation 9.1, the Green’s function is simply the gravitational attraction
at (z,y,2) of a point mass located at (2,3, 2"). More will be made of
this in later chapters.

The forward method requires the repeated calculation of g(z,y, z) us-
ing equation 9.1, simple enough in concept but not so simple in practice.
The difficulty comes in trying to approximate complicated geologic sit-
uations by geometric shapes where the shapes are sufficiently simple to
make the volume integral of equation 9.1 amenable to computers. Es-
sentially, we must divide the hypothetical gravitational sources into [N
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simpler parts and convert equation 9.1 into something like

N
gm = Z pnwmn 3 (92)
n=1

where g,, is the vertical attraction at the mth observation point, p,, is
the density of part n, and ., is the gravitational attraction at point
m due to part n with unit density.

9.2.1 Three-Dimensional Examples
Rectangular Prisms

A collection of rectangular prisms provides a simple (but not particularly
practical) way to approximate a volume of mass (Figure 9.3). If small
enough, each prism can be assumed to have constant density. Then by
the principle of superposition (Section 3.2), the gravitational anomaly
of the body at any point could be approximated by summing the effects
of all the prisms, as described by equation 9.2.

The gravitational attraction of a single rectangular prism is found by
integration of equation 9.1 over the limits of the prism. For example, a
rectangular prism with uniform density p and with dimensions described
by the limits z1 < x < 39, y1 <y < ¥, and z; < z < 29 has a vertical

P(x,y,z)
®

Fig. 9.3. Approximation of the three-dimensional mass by a collection of rect-
angular prisms.
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attraction at the origin given by
22 Y2 T2
g=p

Z1 % 1

z/

—dx’' dy' d2’ .
[x/2 + y/2 + 2/2]7

Moving the observation point to the origin simplifies the integral, a com-
mon trick that we will use frequently. Plouff [229] provided a derivation
of the preceding integral with the following result:

2 2
Ty
9= VPZ Z E Mijk [zk arctan Zk};“/]k — x;log(Rijk + ;)
=1 j=1k=1

—Yj log(Rijk + xl)] R (93)

Rije = /2 + 47 + 23,
pigk = (=1 (=17 (-1,

Equation 9.3 can be used to calculate each ¥, in equation 9.2, and
by summation thereby derive the gravitational attraction of bodies with
arbitrary shape and variable density. Subroutine B.6 in Appendix B
provides a Fortran subroutine to calculate equation 9.3 in order to pro-
vide the vertical attraction at a single point due to a single rectangular
prism. The anomaly observed at any point and due to any body can be
calculated, at least in principle, with repeated calls to this subroutine.

where

Stack of Laminas

Although conceptually straightforward, the previous approach would be
cumbersome in practice. Geologic bodies are often difficult to model
with rectangular blocks. Moreover, the computation does not take ad-
vantage of the fact that if the densities of neighboring prisms are iden-
tical, there is no need to include their mutual interface in the calcu-
lation. A more practical method was described by Talwani and Ewing
[276]. Their technique approximates a body by a stack of infinitely thin
laminas. The shape of each lamina is approximated by a polygon (Fig-
ure 9.4), the polygonal boundaries of individual laminas easily taken
from topographic contour maps. Hence the method is often applied to
the calculation of gravity anomalies over topographic or bathymetric
features. It has led, for example, to a variety of computer algorithms to
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facilitate the correction for terrain effects in gravity measurements, as
discussed in Chapter 7.

As before, we let the observation point be located at the origin and
begin again with equation 9.1,

/dl
g(fc,y,Z):w)/Z'dZ’// = d:fz Y YD
(22 + y'2 + 22)3/
z/

y/ x’

='yp/z' G(z') dz’, (9.4)

2!

, dz’ dy’
G(Z):// (2 + y2 + 22)3/2

y/ x!

where

The integrations over ' and ¥y’ represent a surface integration over a
single horizontal lamina of the body. Eventually, we will consider the
body to be a stack of laminas and replace the integration over 2z’ with
a summation, but first consider the surface integration over a single
lamina.

As shown in Figure 9.4, this surface integration is equivalent to a
two-step integration around the perimeter of the lamina. For example,
consider integration of an integrand f(z,y) over x and y. Referring to
Figure 9.4, integration over z produces a new integrand F(z,y) with x
evaluated at limits I; and I5:

Y2 z=l2(y)
[ [rewicas= [Faw|
n z=01(y)
Y2 Y2
=/F(lz(y),y)dy—/F(ll(y),y)dy-
Yi Y1

Notice that I3 and Iy are functions of y and represent two paths around
the perimeter of the lamina. The two integrals taken together are equiv-
alent to integration in a clockwise direction around the complete perime-
ter of the lamina, that is,

[ [ 1wz = § Py ay.
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Fig. 9.4. Approximation of a three-dimensional body by a stack of laminas,
each lamina approximated by a polygon.

Hence, the double integral of equation 9.4 becomes a line integral
around the perimeter of the lamina,

G(z') = o dy
(y2 + 27?) /12 Fy? 27 ’

and replacing the smooth integration around the perimeter with inte-
gration over M straight-line segments yields

Ym+1

G() = 3 v dy 9.5
(Z)_ Z (y/2+212) x/2+y/2+z/2’ ( ’ )
Y

m=1
Ym

where y,, and y,, 11 are the y coordinates of the two endpoints of side m.
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The variable 2’ can be eliminated in equation 9.5 by using the equation
of a straight line

' = amyl + Bm s

where

Tm4+1 — Tm
Qo = )
Ym4+1 — Ym

B = ImYm+1 — Tm+1Ym
. .

Ym4+1 — Ym
Substitution of a;, and 3,, in equation 9.5 provides

M Ym+1 ' ,
e Uiy 22V (2, + 1)y? + 2amBmy’ + 62, + 272

which according to Grant and West [99] can be written

M
G(z') = Z {arctan Q,,, 41 — arctan Q. }, (9.6)
m=1
where
Z/(ﬂmym - amzlz)
m

aml(1+a2)2% + B2] — (02,22 + B2) /2% + y2, + 22

z/(ﬂmym+l - amzlz)

T [(1402,)2"2 + BZ] — (a2,2"2 + BZ) /2211 + Y24 + 22

Qm+1 =

Although cumbersome in appearance, equation 9.6 can be programmed
easily to provide G(z') for any lamina; depth 2’ and the z,y coordinates
of its M vertices are all that is required. Substituting equation 9.6 into
equation 9.4 provides the vertical attraction of a stack of laminas. Inte-
gration over 2z’ can be done with numerical quadrature techniques (e.g.,
Press et al. [233]).

Measured gravity anomalies over bodies of unknown shape can be
modeled by trial-and-error adjustment of density and polygon vertices.
If the anomalies are caused by known topographic or bathymetric fea-
tures, the trial-and-error process is greatly simplified. This method is
particularly powerful in such applications because the polygonal lami-
nas can be constructed simply by digitizing contours on topographic or
bathymetric maps.
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In the method of Talwani and Ewing [276], the mass is approximated
by a stack of infinitely thin laminas. Plouff [227, 229] took this repre-
sentation one step farther. In effect, he used equation 9.4 to derive the
gravitational attraction of a layer of finite thickness, with vertical sides
and with top and bottom surfaces approximated by polygons. Analo-
gous to the method of Talwani and Ewing [276], these polygonal layers
can be stacked on top of one another in order to approximate three-
dimensional bodies of arbitrary shape. Plouff [229] used the method to
calculate gravitational effects of terrain, and the method has been im-
plemented in various programs for removing the effects of terrain from
gravity surveys (Plouff [230], Godson and Plouff [97]).

9.2.2 Two-Dimensional Examples

Geologic structures are often longer than they are wide. Fracture zones,
faults, dikes, rift zones, and anticlines, for example, are often lineated in
a particular horizontal direction, and the gravity or magnetic anomalies
that they produce are similarly lineated (Figure 9.5). If anomalies are
sufficiently “linear,” it may be possible to consider the gravitational or
magnetic sources as completely invariant in the direction parallel to the
long direction. The y axis is directed parallel to the invariant direction
leaving only the z and z dimensions to consider further; the body is said
to be two dimensional. Density, for example, becomes

p(@,y,2) = plx,2).

Section 3.3 discusses some of the theory behind the potential of two-
dimensional masses.

“Sufficiently linear” is, of course, a rather subjective criterion. Pe-
ters [219], in discussing a method for estimating depth to magnetic
sources, considered a body to be two-dimensional when it produces
closed anomaly contours roughly elliptical in shape, with long dimen-
sions at least three times greater than their short dimensions. Grant
and West [99], in discussing anomalies over ribbon-like sources, suggested
that a shallowly buried ribbon must be at least 20 times longer than it is
wide for the two-dimensional assumption to be legitimate. Problem 7 at
the end of this chapter further investigates the two-dimensional assump-
tion. As discussed subsequently, end corrections have been devised for
some two-dimensional calculations to allow bodies that are not ideally
two-dimensional (Rasmussen and Pedersen [237], Cady [48]).
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Fig. 9.5. Contour map showing examples of anomalies due to two- and three-
dimensional sources. Contours represent the total-field anomaly of an area in
north-central Nevada. A: two-dimensional anomaly caused by basaltic intru-
sions of the northern Nevada rift active during the middle Miocene (Zoback
and Thompson [295]); B: three-dimensional anomaly probably caused by a
Tertiary granitic intrusion (Grauch et al. [102]). Contour interval 100 nT.
Data from Kucks and Hildenbrand [151].

Two-dimensional sources are easier to conceptualize and consider-
ably easier to model than their three-dimensional counterparts, so there
is an advantage in using them whenever the geologic situation per-
mits. A bundle of parallel cylinders would constitute one simple kind of
two-dimensional model. Then the anomaly could be approximated by
equation 9.2, where in this case ,,, is the attraction at point m due to
cylinder n with unit density. Subroutine B.2 in Appendix B provides a
way to calculate v, for infinitely long cylinders.

A more useful way to approximate geologic situations is to replace the
cross-sectional shape of two-dimensional bodies with simplified polygons.
This method stems from an early paper by Hubbert [130], but Talwani,
Worzel, and Landisman [278] first presented this method in a way suit-
able for adaptation to computer algorithms. This method and a similar
magnetic method to be discussed subsequently are arguably the most
widely used techniques in potential field interpretation today.
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Fig. 9.6. Approximation of a two-dimensional body by an N-sided polygon.

The following derivation provides the same result as Talwani et al. [278]
in a slightly different way but with many similarities to the derivation of
the previous section. Equation 3.21 provided the gravitational potential
of a two-dimensional body with volumetric density p(z, z):

U:Q'y/p(S)log%dS,
s

where integration is over the cross-sectional surface S and where r is the
perpendicular distance to an element of the body, given by

r=-/(z -2’2+ (z — 2')2

(Figure 9.6). To simplify matters, we now move the observation point to
the origin and require the density to be constant. The vertical attraction
of gravity is given by

op) = = [ [ L 97)
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and integration over x’ yields
x/
g=2vyp / [arctan =2 _ arctan | d,
z

where £} and x4 are both functions of 2’ and, as shown by Figure 9.6, rep-
resent separate paths around part of the perimeter of the cross-sectional
surface. These two partial paths, when taken together and considering
the change in sign, amount to a single clockwise integration around the
perimeter, that is,

/
g= 2fyp%arctan % dz'. (9.8)

Now we replace the smooth perimeter with an N-sided polygon so
equation 9.8 becomes

Zn+1

/
g=2yp Z / arctan =dZ, (9.9)

where z, and z,y) are the z coordinates of the two endpoints of side n.
Before continuing, we need an expression for =’ in terms of 2/, and this
is provided by the equation of a straight line:

/ /
2 = a,z + Bn, (9.10)
where
Tn4+l — Tp
Qpn=—""»
zn+1 — 2n

ﬁn =Tpn — Qplp .

Substituting equation 9.10 into equation 9.9 provides

Zn+1

/
g= 2’YPZ / arctan (Wﬁ) dz’

z z
=2yp Z{ (Zne1 — 2n) + (zn arctan —= — z, . arctan —-* )

Tn Tn+1
Bn ) \V IR
0g
L+aq Vi + 23

Zn41 z.
—an (arctan “tl _ arctan —n) .
Tn41 Tp

+
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The first two terms in parentheses of the summation add to zero around
any closed polygon, so the previous equation simplifies to

N
B T+l
9= 2%021 TTaz |18 T = an(Bne1 = ) (9.11)
n=

in such cases where r,, and 6,, are defined as shown in Figure 9.6.

Exercise 9.1 Some license was used in the preceding derivation. In particu-
lar, an and B are not defined if the ribbon is horizontal. What happens
to equation 9.2.2 in this case and how might the problem be treated in
a computer algorithm?

The gravitational attraction of the two-dimensional body, therefore, de-
pends on the position of the N corners of the polygon. If we imagine
N lines drawn from the observation point to each of the corners of the
polygon, the gravitational attraction depends on the lengths of those
lines and the angles that they make with the horizontal (Figure 9.6).

Exercise 9.2 What happens if the observation point falls on a corner of the
polygon? How might this problem be treated in practice?

Equation 9.2.2 is implemented in Subroutine B.7 (Appendix B). This
subroutine provides the vertical attraction at a single point due to a
two-dimensional body with polygonal cross section. Similar subroutines
form the core of various two-dimensional modeling systems available
from commercial software companies and from public-domain sources
(e.g., Saltus and Blakely [251]).

Strictly speaking, the preceding discussion applies to bodies that are
infinitely extended along one horizontal axis. End corrections to these
two-dimensional calculations have been developed (Rasmussen and Ped-
ersen [237], Cady [48]) for anomalies that seem to be caused by two-
dimensional bodies of limited extent. Such calculations are sometimes
referred to as the “2%—dimensional” case.

9.3 Magnetic Models

Equation 5.3 describes the magnetic field of a volume of magnetic ma-
terial,

B= —cmvp/M : vQ%dv, (9.12)
R

where M is magnetization, and r is distance from the observation point
P to element dv of the body. The value of the constant Cy, depends
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on the system of units (see Chapter 4). Most magnetic surveys measure
the total-field anomaly or a single component of B. As described in
Section 8.3, the total-field anomaly is given approximately by

AT = —Cn, - Vp /M-VQ%dv, (9.13)
R

where F is a unit vector in the direction of the regional field.

Exercise 9.3 Write equation 9.13 in the form of equation 9.1. What is the

physical meaning of ¥(z,y, z) in this case?
Analogous to the discussion of three-dimensional gravity sources in Sec-
tion 9.2, algorithms that implement equation 9.12 in order to calculate
a component of B or the total-field anomaly, given a body’s shape and
distribution of magnetization, can be used for the forward method. As
in the gravity case, the main difficulty arises in solving the volume inte-
gral. In practice, the body is approximated by collections of much sim-
pler bodies, such as magnetic dipoles, rectangular prisms, or polygonal
laminas.

9.3.1 A Choice of Models

As discussed in Chapter 4, magnetic material can be considered to be a
collection of magnetic dipoles, magnetic charge, or circulating currents.
These representations provide a variety of ways to model magnetic bod-
ies (Figure 9.7), as discussed in the following sections.

Volume of Magnetization ~ Volume and Surface Charge

+

Volume and Surface Currents Poisson's Relation

80

Fig. 9.7. Four ways to regard distributions of magnetization.
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Volume of Magnetization

Equation 9.12 or 9.13 could be evaluated directly. In practice, however,
this can be done analytically for only simple shapes and is not an ap-
propriate strategy for trial-and-error forward modeling. Alternatively, a
volume of magnetic material could be divided into N magnetic cells,
analogous to equation 9.2. The three components of magnetic field be-

come
N

B; =) Mby, (9.14)
i=1
where B; is the magnetic field at the jth observation point, M; is the
magnitude of the magnetization of the ith cell, and b;; is the magnetic
field at the jth observation point due to the ith cell with unit magneti-
zation,

b = _cmvp/M-vQ%dv. (9.15)

If the cells are sufficiently small, they each can be considered to have
uniform magnetization. In practice, cells would have to consist of simple
shapes, such as rectangular prisms or magnetic dipoles, in order to easily
compute equation 9.14 and so that the aggregate of all cells is easily
visualized and adjusted.

Surface Charge

As discussed in Section 5.1, the volume integral of equation 9.12 can be
converted into the sum of a volume and surface integral by first applying
the vector identity V - (pA) = Vo - A 4+ ¢V - A and then applying the
divergence theorem. The magnetic potential, for example, expands to

1
V:C’m/M-VQ;dv

:cm/M'ndS—cm/v'Mdv
R

r

/QS s + C, /7 . (9.16)

The integrals in equation 9.16 have the same form as gravitational poten-
tial, where the scalar quantities ()5 and @), represent magnetic “charge”
on the surface and within the interior of the body, respectively.
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Exercise 9.4 Prove that the number of positive magnetic charges must equal
the number of negative magnetic charges within and on the surface of
any isolated magnetic volume.

If magnetization is uniform, then the second integral of equation 9.16
vanishes, and the potential is given by

V=Cm/M'nds. (9.17)
J T

If magnetization is uniform, therefore, the body can be completely repre-
sented by a distribution of magnetic charge on the body’s surface. This
representation has led to a number of powerful algorithms, several of
which will be discussed in detail subsequently.

Surface Currents

The Biot—Savart law (equation 4.4) was used in Chapter 4 to show that
the magnetic field of a small current loop appears at a distance like the
field of a dipole. Hence a distribution of dipoles can be considered to
be a volume of elemental currents. (This is not surprising; the ultimate
sources of magnetization are circulating currents.)

As discussed in Section 5.1, circulating currents resolve into surface
and volume currents,

I.=Mxn,
L,=VxM.

If the magnetization is uniform, then the volume current vanishes, and a
magnetic body can be replaced with an empty volume of identical shape
carrying electrical currents on its surface (Figure 9.8).

This representation is rarely applied to forward modeling of magnetic
anomalies but is useful in a variety of other geophysical applications.
For example, a cylindrical rock sample uniformly magnetized along its
axis is equivalent to a nonmagnetic cylinder with electrical currents on
its surface. It is clear from Figure 9.9 that I, = 0 and I, = M x 1.
Hence, I is zero on the top and bottom of the cylinder and directed
in a circular fashion around the cylindrical surface; that is, the current
has the form of a simple solenoid, as shown in Figure 9.9. Laboratory
magnetometers for measuring magnetization of cylindrical rock samples
could be calibrated with a properly designed solenoid.

Exercise 9.5 Design a device to approximate cubical magnetic samples.
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Fig. 9.8. The circulating currents responsible for the magnetization of a uni-
formly magnetized body are equivalent to currents on the body’s surface.

Fig. 9.9. A uniformly magnetized cylinder is equivalent to currents circulating
on a nonmagnetic cylinder of identical size.

Poisson’s Relation

Poisson’s relation was discussed in Chapter 5. It is included here as a
fourth way to derive forward-modeling algorithms. Any algorithm de-
signed to calculate gravity anomalies in principle can be converted with
Poisson’s relation into an algorithm to calculate magnetic anomalies.

9.3.2 Three-Dimensional Examples
Dipoles

A three-dimensional magnetic body can be approximated by a collec-
tion of smaller elements, simple enough in form to possess analytical
expressions for their magnetic field. The magnetic dipole is perhaps the
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simplest example. The magnetic field of a dipole was derived in Chap-
ter 4 and is given by equation 4.14,

B = Cng [3(th - £)F — 1], r#0, (9.18)

where m = m is the dipole moment, and r = r £ is the vector directed
from the dipole to the observation point. Subroutine B.3 in Appendix B
calculates the magnetic field of a single dipole. Although cumbersome
in practice, the magnetic field of a body could be calculated by dividing
the body into an array of small volume elements, assuming that each
element appears at a distance as a dipole, using equation 9.18 to derive
the field of each dipole, and finally summing the effects of all dipoles.
The dipole moment m of each element is given by the product of its
magnetization and its volume. In later chapters, we will discuss an in-
verse model that approximates the magnetic source by layers of dipoles.
This type of approximation has been used to model the magnetization

of the earth’s crust based on satellite-altitude magnetic measurements
(e.g., Mayhew [178, 179]).

Rectangular Prisms

Rather than dipoles, we could model a three-dimensional body with
a collection of rectangular prisms. The magnetic field of a rectangular
prism was derived by Bhattacharyya [13] starting with equation 9.13.
Each prism is oriented parallel to the z, y, and z axes and has magne-
tization

M = M(iM, + jM, + kM),

and dimensions given by z; <z < 22, y1 Ly < y2, and 77 < 2 < 0.
If the anomaly due to the prism is observed in a regional field directed
parallel to F= (Fz,ﬁ‘y,ﬁ;), then the total-field anomaly observed at
the origin is given by

/

23 r—z 13 r—vy
AT:CmM[T log<r n x’) + 5 log<r n y’) — a2 log(r + 21)

1o, ot

A 'y s ry
— M,F, arctan(m) — MyFy arctan(rz Tz — x’2>
'y ' =z 1y =y2
+ M,F, arctan( rzyl >] ) (9.19)
z'=z) ly'=y
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where

12 = MIFy + Myﬁ‘x,
13 = MIFZ + Mzan
Qo3 = Msz + Mzﬁy,

2 2 2
rP=2"+y + 27 .

Equation 9.19 provides the total-field anomaly of a prism with top at
z1 and bottom at infinity. If this equation is evaluated twice, once for
z1 = z and M = M, and once for z; = z, and M = —Mj, then
according to the superposition principle, the sum of the two calculations
will provide the magnetic field of a prism with magnetization My, top
at z;, and bottom at z,. Subroutine B.8 in Appendix B provides an
algorithm to calculate equation 9.19.

By dividing the body into a collection of rectangular prisms, equa-
tion 9.19 could be used to iteratively model bodies of arbitrary shape.
Rectangular prisms have also been used in the inverse method to di-
rectly derive vector M from the total-field anomaly (Vacquier [285));
more about this is given in Chapter 10.

Stack of Laminas

Talwani [275] used the volume integral of equation 9.12 to derive an al-
gorithm for the calculation of magnetic fields due to bodies of arbitrary
shape. His method and its derivation are analogous to the method of
Talwani and Ewing [276] for calculating gravity anomalies over three-
dimensional bodies, discussed earlier in this chapter. The magnetic body
is approximated by a stack of laminas, and each lamina is approximated
by a polygon. Hence the volume integral of equation 9.12 is solved ana-
lytically in the  and y directions and numerically in the z direction. The
method is particularly amenable to anomalies caused by topographic or
bathymetric features because contours can be digitized directly from to-
pographic or bathymetric maps in order to represent individual laminas.

Plouff {228, 229] extended the method of Talwani [275] by replacing
the infinitely thin laminas with layers of finite thickness, thereby provid-
ing more accurate representation of the modeled body. The theoretical
expression for the magnetic field of an individual polygonal layer was
derived (Plouff [228]) by integration with respect to depth of the field
caused by one lamina.
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Fig. 9.10. A magnetic body of arbitrary shape modeled as a surface composed
of polygonal facets.

In a later chapter, we will apply the methods of Talwani [275] and
Plouff [229] to the inverse problem, that is, to derive the three compo-
nents of magnetization directly from measured total-field anomalies. The
inverse form of this method played a key role in our understanding of
seamount magnetization, apparent polar wander, and seafloor spreading.

Polyhedrons

The previous section showed that, if magnetization is uniform, a mag-
netic body can be modeled by magnetic charge on the body’s sur-
face. Several workers (Bott [36], Barnett [11], Okabe [197], Hansen and
Wang [114]) have exploited this simplification by developing methods
that approximate the body’s shape by a surface composed of flat polyg-
onal facets (Figure 9.10). The following derivation follows the original
work of Bott [36]. The technique of Hansen and Wang [114] will be
discussed in Chapter 11.

Equation 9.17 provides the magnetic potential of a uniformly magne-
tized body; the magnetic field is given by

B=-VpV

—Ch / o £ds. (9.20)
S

To simplify matters, the origin is placed at the observation point P. If
the surface of the body is replaced by N polygonal facets, equation 9.20
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(a) (b)

corner j+/ S

Area ABCD = Area ABP' + Area BCP'
+Area CDP' - Area ADP’

Fig. 9.11. (a) The ith facet of the polyhedron within an z,y,z coordinate

system. Vector 1” is a unit vector along side j, Pi; is a unit vector from P’
perpendicular to side j, and PP/ is normal to the face. (b) The area of a
K-sided polygon is equal to the sum of the areas of K triangles.

becomes

B =0, Z(M nz/ (9.21)

i=1 S5

where S; represents the surface of the ith facet and f; its outward
normal. Now consider just the ith facet consisting of K; corners (Fig-
ure 9.11). We always will regard the corners of any facet ordered in a
clockwise sense as viewed from outside the body. Let P/ be the inter-
section of the plane that contains the facet and a perpendicular line
passing through P, and define L-j as the unit vector from corner j to
corner j+ 1, and P,; as the unit vector from P/ perpendicular to side j.
Consider K, triangles constructed such that each triangle has a vertex
at point P/ and an opposite side equal to one side of the facet. It should
be clear from Figure 9.11 that the area of a Kj-sided facet equals the
sum of the areas of K; triangles weighted by +1 or —1 depending on
whether L-j points left or right as viewed from P/. Hence the integral
inside equation 9.21 can be replaced with the sum of integrals over K;
triangles,

- K;
r
[ s =3 sy, (9.22)
i=1

S
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u (\ corner j
.

corner j+/

v

Fig. 9.12. Triangular facet within new u, v, w coordinate system. The facet is
in the plane of the page.

where p;; = 1 if Lj X Pyj; is parallel to fi;, p;; = —1if L-j X Py; is antipar-
allel to 11;, and p;; = 0 if Lj x Pi; = 0, and where ®;; is integration over
the triangle including vertex P] and side j. At this point, it is convenient
to move the origin to P; and orient new axes u, v, and w parallel to p;;,
L-j, and 1;, respectively (Figure 9.12). In this new coordinate system,
the corners of the triangle are (0,0,d;), (ui;,vi;,d;), and (w5, v j+1,di),
where d; is the distance between P and P;. Then integration over the
triangle becomes

Uij vy

- / / ubij + Uiij +difl; du dv
0 vq

(u? +v2 + d)3/2

where v, = vjju/u;; and vy = v; j11u/u;;. Evaluation of this double
integral yields

B =B «a 1 r+py 1 o 7w
l]—pZ] mog |dz| 2 gr_'l}

~ly L/ﬁlog (r@p)}

V=i, 541

e (S [T

=i
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where

a=v/u;j,

p=JuF + v,
r=Jul +v2 +d7.

If P lies in the plane of the face, however, equation 9.23 becomes singular.
This problem is treated by removing a small sector around P} from the
triangle, with the result that

. o r+p 1 r4+v
P, =pji | —=1{1+l0g —— — -1
f p“[m( T8 e QOgr-v>]
1 + V=Vi,+1
R r+p
-1 | ——= {1+ log — 9.24
5 | s (1410612 L (929
V=4

where € is a small number. Equation 9.23 (or 9.24) is evaluated for each
side of the facet, transformed back to the original coordinate system, and
summed in equation 9.22. This result provides the attraction of facet ¢
which then can be used in equation 9.21 for the entire polyhedron. Sub-
routine B.10 in Appendix B uses equations 9.23 and 9.24 to calculate
the three components of magnetic field due to a polygonal sheet of mag-
netic charge. The magnetic anomaly of an arbitrary polyhedron can be
found with repeated calls to this subroutine, one call for each face of the
polyhedron.

9.3.3 Two-Dimensional Example

We again use the concept of surface magnetic charges, this time to de-
velop an algorithm to model two-dimensional bodies. As in Section 9.2.2
of this chapter, we will replace the cross-sectional shape of the body
with an N-sided polygon. If the body is uniformly magnetized, the mag-
netization can be replaced with magnetic “charge” on its surface (Fig-
ure 9.13). Hence, the problem reduces to the calculation of the magnetic
attraction of N flat ribbons of charge, infinitely extended in the + y
and — ¥y directions. Although this two-dimensional forward method was
first presented by Talwani and Heirtzler [277] nearly 20 years ago, it and
its gravity counterpart (Talwani et al. [278]) probably remain the most
widely used algorithms in potential field interpretation today.
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X X

Fig. 9.13. Approximation of a two-dimensional body with infinitely extended
ribbons of magnetic charge.

So far as I know, the following derivation differs from previously pub-
lished discussions. It hinges on the following observation: The magnetic
field of a uniformly magnetized body with volume R and surface S is

given by equation 9.20,
M -1
B=Cn / 2445,
s

r2

and this equation has the same form as the gravity field of a hollow shell
with identical shape, that is,

g=— [ 2 sas,

r2
S

where o(S) is surface density in units of mass per unit area. If an expres-
sion for the gravitational field of shell S is known in terms of its surface
density, the magnetic field of a uniformly magnetized body of volume R
can be found by substituting —M - ii for o(S) and Cy, for ~.

First consider a flat, horizontal ribbon with a surface density of o,
continuing infinitely far in the 4+y and —y directions, and extending
from (z1,2’) to (x2,2’) (Figure 9.14(a)). One element dz of the ribbon
penetrates the z, z plane at (z’, 2') and is equivalent to a wire infinitely
extended parallel to the y axis and having mass per unit length A = o dx
(Figure 9.14(b)). As discussed in Chapter 3, the wire has a gravitational
attraction observed at the origin given by

r

1+ 2’k
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(b)

Fig. 9.14. (a) Horizontal ribbon of mass extending from (1, ') to (z2,2’) and
infinitely extended parallel to the y axis. (b) Wire mass infinitely extended
parallel to the y axis and piercing the z,z plane at (z,2'). (c) Horizontal
ribbon in new coordinate system.

The gravitational attraction of the horizontal ribbon is found by letting
A = odzx in equation 9.25 and integrating over x,

T2 CC/
— !
gw—270/$ PR dr

1

=20 log T—Z,
1

) d !/
g = 270'2'/ =
x

T2 + 212
= 2’)’0’(01 - 02),
g=2vo [f log :—2 + k(6 —6y)]| , (9.26)
1

where r; and r; are distances from P to edges 1 and 2, respectively, and
0, and 6, are angles between the x axis and those lines connecting edges
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1 and 2, respectively (Figure 9.14(b)). Equation 9.26 is the gravitational
attraction of a horizontal ribbon. To generalize to any ribbon, we rotate
the ribbon an arbitrary amount and define two unit vectors i1 and § that
remain normal and parallel to the ribbon, respectively (Figure 9.14(c)).
Vector § is always directed parallel to the ribbon from edge 1 to edge 2;
vector 11 is always normal to the ribbon and directed as in a right-handed
system. Note that

=
Il

A~
x 827

N, = —8g.

The components of gravitational attraction in the 8§ and #fi directions are
given by equation 9.26,

gs = 27yo log Cg’
T

gn =—2v0(0; — 63),
and the z and z components are given by
g-=1g
= 58295 + Nagn

=38.9s + 8.9n
. 2 A
=20 [sm log o 5,(61 — 02)] ,
1

9~ :Rg
=5.9s+M.9n

=S829s — Sz9n

=2v0 [éz log :—2 + 8,(6; — 02)] .
1

Exercise 9.6 What happened to the y component of g?

The previous equations provide the gravitational attraction of an in-
finitely extended ribbon of mass. To convert these equations to the mag-
netic case, we simply let v = Cp, and 0 = —M - 1i,

By =—2Cu(M- ) |é, log:—j —5,(61 — 6)] (9.27)
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B, =—2Cwm(M - 1) |4, log :—2 + 34(6, — 02)] . (9.28)
1

Exercise 9.7 Describe B, and B, for both horizontal and vertical ribbons.

Equations 9.27 and 9.28 represent the magnetic attraction of a ribbon
of magnetic charge; they can be used N times to calculate the magnetic
attraction of an N-sided prism, that is

B= i (ile + lEBlz) , (9.29)

=1

where B;, and B;, are the  and z components of B due to side /. Finally,
the total-field anomaly can be found by substituting equation 9.29 into
equation 8.24,

N
AT=3" (F'xBlw n FZBZZ) , (9.30)
=1

where F, and F, are the  and z components of the ambient, unper-
turbed field.

The earlier comments concerning the advantages of two-dimensional
forward modeling of gravity anomalies hold doubly for the magnetic
case. Two-dimensional models are far easier to construct than three-
dimensional models, and they generally should be used whenever the
geologic situation permits. Subroutine B.15 in Appendix B performs the
calculations described by equations 9.27 and 9.28. The magnetic attrac-
tion of an N-sided prism at a single point can be calculated by summing
the results returned from N calls to this subroutine. Algorithms simi-
lar to Subroutine B.15 are the essential ingredients in a variety of two-
dimensional forward-modeling programs (e.g., Saltus and Blakely [251]).

As discussed in Section 9.22, the question of whether an anomaly
is sufficiently linear to permit the two-dimensional approximation is
problematic. A useful variation on this two-dimensional method replaces
the infinitely extended prisms with prisms of finite length (Shuey and
Pasquale [256], Rasmussen and Pedersen [237], Cady [48]). This so-
called 2%-dimensional calculation comes in handy when the anomalies
are somewhat linear but depart substantially from two-dimensionality.
The anomaly in the south-central part of Figure 9.5 is an example of
an anomaly that might suitably be treated with the 2%-dimensional ap-
proach.
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9.4 Problem Set

1. Find the vertical attraction of gravity and the vertical and horizontal
components of magnetic induction for the tabular bodies shown in
Figure 9.15. In each case, the body is 1 km thick, 1 km deep, and
infinitely extended in both the y direction and in the direction in-
dicated. The bodies have uniform density and magnetization of 2.7
g/cm3 and 1 A/m, respectively. The directions of magnetization are
shown by the arrows. The bodies are surrounded by nonmagnetic
sedimentary deposits of density 1.5 g/cm?®.

(a) Horizontal sill greatly extended in the +z direction and magne-
tized in the 4+ direction.

(b) Horizontal sill greatly extended in the +z direction and magne-
tized vertically downward.

(¢) Vertical dike extending to great depths and magnetized vertically
upward.

2. For purposes of calibrating a magnetometer, you wish to generate a
system of surface currents that will produce exactly the same mag-
netic field as a uniformly magnetized prism with rectangular cross
section of 1 cm x 2 cm and a length of 5 cm.

(a) Design an experimental arrangement for doing this that allows
the simulated magnetization to be directed in any direction rela-
tive to the sides of the prism.

(b) Discuss quantitatively the electrical currents needed to simulate
a magnetization of 10 A/m parallel to the long dimension of the
prism.

3. In the course of doing laboratory work in rock magnetism, it is some-
times necessary to measure the field strength of large magnets. This

A B C

B d |42

Fig. 9.15. Infinitely extended tabular bodies.
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Fig. 9.16. Infinite slab containing two reversal boundaries.

may be done from first principles without recourse to secondary stan-
dards in the following way. Suspend a rectangular loop of wire from
a balance such that the plane of the rectangle is perpendicular to
flux lines between the pole pieces of the magnet, and such that one
horizontal side of the loop lies completely in the uniform part of the
magnetic field of the magnet and the other horizontal side lies outside
the magnet gap. The weight of the loop is then related to the current
in the loop and the strength of the magnet.

(a) What is the difference between the induction inside and outside
the pole pieces of the magnet if the weight of the loop changes by
100 milligrams when the current in the loop increases from 0 to
100 milliamperes? The horizontal dimension of the loop is 1 cm.

(b) What do you think would limit the accuracy of magnetic induc-
tion measurements made in this way?

. An infinitely extended slab of thickness T is horizontally magnetized
with magnetization M in the x direction (Figure 9.16). The slab
has two vertical reversal boundaries trending in the y direction and
separated by a distance L.

(a) Solve in terms of L, T', and M for the values of B, and B, at
point P midway between the two reversals and directly on the
slab.

(b) What happens to B, and B, if L and T are both doubled?
(c) What happens to the values of B, and B, as T — oco?

. The following vertical-field anomaly was measured over a narrow out-
crop of magnetite in southern Alaska.
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x (feet) AB, z (feet) AB,

0 -14 130 95
10 -13 140 3
20 -12 150 15
30 -11 160 —-20
40 -10 170 =27
50 -8 180 —-33
60 —4 190 31
70 3 200 -21
80 11 210 -13
90 21 220 -11

100 37 230 -10
110 101 240 -10
120 180 250 =10

The heading of the traverse was 19°E over flat ground. Sensor height
was about 4 ft above ground level. The outcrop is two dimensional
and perpendicular to the traverse and is located between x = 120 ft
and ¢ = 128 ft. The direction of magnetization is believed to have an
inclination of 75° and a declination of 24°E. The intensity of magne-
tization is about 500 A/m. Assume that the surrounding terrain is
nonmagnetic.

(a) Write a computer program to calculate the magnetic anomaly
over two-dimensional bodies. Hint: Subroutine B.15 in Appendix
B could form the bulk of such a computer program.

(b) Use your program to estimate the size and shape of the magnetite
body. To keep the problem simple, assume that the body has only
four sides.

6. You are measuring the magnetic field with a proton-precession magne-
tometer above the geologic section shown in Figure 9.17. The section
has a normal fault (erosion has removed the surface expression of the
fault) with an east-west strike and a dip of 60°N. The rock units
and their magnetic properties (in SI units) are shown in Figure 9.17.
Happily, the regional field has zero declination, 60° inclination, and a
magnitude of 0.05 mT. Assume that remanent magnetization is par-
allel to the regional field. Find the total-field anomaly in units of nT
at point P, the surface trace of the fault. (Hint: Poisson’s relation
greatly simplifies this problem.)
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Fig. 9.17. Geologic cross section.

7. Consider a horizontal cylinder of length [, radius a, density p, and
susceptibility x. The long axis of the cylinder is oriented east-west
and is at a depth d below ground level (d > a). The inclination and
declination of the earth’s magnetic field are 60° and 0°, respectively.
The gravity and total-field anomalies are measured at ground level
along a line perpendicular to and directly above the midpoint of the
cylinder.

(a)

(b)

Discuss the errors involved in assuming that this finite-length
cylinder has infinite length. How does the error change as [ in-
creases?

Let ¢1(z) represent the gravity anomaly caused by the finite-
length cylinder and go(x) the anomaly of the infinite cylinder.
At what length [ does the maximum error along the gravity pro-
file fall below 10 percent, where maximum error is defined as

max|gi(z) - go(2)] ,

FE =
max |go()]

Suppose that gravity and magnetic profiles are available over a
finite-length cylinder but that the source of the anomalies is in
fact unknown. What erroneous conclusions might be drawn about
the source from a two-dimensional, forward-modeling study?
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Inverse Method

The goal of inverse theory is to determine the parameters from

the observations or, in the face of the inevitable limitations of

actual measurement, to find out as much as possible about them.
(Robert L. Parker)

Errors using inadequate data are much less than those using no
data at all.

(Charles Babbage)

Solid-earth geophysical studies generally aspire to learn something about
the interior of the earth from measurements of physical quantities taken
on or above the earth’s surface. The previous chapter in particular dis-
cussed a general methodology, forward modeling, in which crustal and
upper-mantle lithology and structure can be deduced from gravity or
magnetic measurements. In that methodology, source parameters are
estimated indirectly through trial-and-error calculations. The present
chapter deals with another methodology, the inverse method (or direct
method), in which source parameters are determined in a direct way
from gravity or magnetic measurements.

The following discussion is sometimes heuristic in nature, relying on
examples from the literature. Readers are referred to reviews by Parker
[207] and Parker, Shure, and Hildenbrand [210] and to the textbook by
Menke [182] for more rigorous discussions. We will revisit this subject
in Chapter 11 where the inverse formulation will be transformed to the
Fourier wavenumber domain.

10.1 Introduction

In Chapter 9, we became familiar with integral relations between po-
tential fields and their causative sources. A few examples are listed

214
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subsequently, where in each case R is the volume occupied by the caus-
ative source, P is the observation point located at (x,y, z) and always
outside of R, @ is the point of integration (z’,y’, 2’) within R, and r is
a vector directed from @ to P:

Vertical attraction of gravity
z—2
9(P)=~v [ p(Q)—5—dv. (10.1)

R

Vertical magnetic field

=cm/ M) [3f(z . rk} dv. (10.2)

Total-field anomaly (approximately)

AT(P) = —CpF - VP/M(Q) - VQ% dv

R
=Cn M(@©Q) . 3(F - £)F —
}Z 3 [ r)r

=53

: } dv. (10.3)

In these equations, p(Q) and M(Q) have the usual meaning of density
and magnetization, respectively. Unit vector F is in the direction of
the unperturbed magnetic field, and unit vector k is directed vertically
down. Factors v and C,, are constants discussed in Chapters 3 and 4,
respectively.

Exercise 10.1 Fill in the missing steps leading to equations 10.2 and 10.3.

Equations 10.2 and 10.3 both have the general form

f(P) = / s(Q)- G(P,Q) dv. (10.4)

R

We may be willing to specify the directional behavior of the magneti-
zation in some situations. It is sometimes assumed, for example, that
magnetization is entirely induced by the ambient field. Then magneti-
zation will be nearly unidirectional if susceptibility is isotropic and the
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magnetic survey is not too large. In these cases, we can let M(Q) =
M(Q)M in equations 10.2 and 10.3 and move the unit vector into the
bracketed term. Then all three equations, 10.1 through 10.3, have the
same general form

f(P) = / S(Q(P,Q)dv, (10.5)

R

where f(P) is the potential field at P, s(QQ) describes the physical quan-
tity (density or magnetization) at @, and ¥(P,Q) is a function that
depends on the geometric placement of observation point P and source
point Q. Equation 10.5 is known as a Fredholm equation of the first
kind (Morse and Feshbach [188]). As in Section 2.3.2, we call ¥(P, Q)
and G(P, Q) Green’s functions. The remaining comments of this section
refer to equation 10.5 but could be generalized readily to equation 10.4.

Equation 10.5 is a convenient vehicle with which to contrast the for-
ward and inverse methods. The forward calculation is the calculation of
f(P) from known or assumed functions s(Q) and ¥(P,Q) and the vol-
ume R. For any given calculation of equation 10.5, f(P) is completely
determined with a complete knowledge of s(Q), ¥(P,Q), and R; that is,
the forward calculation has a unique solution. The forward method, as
discussed in Chapter 9, involves the repeated adjustment of s(Q) and R,
calculation of f(P), and comparison with measured values of the field
until the calculated field suitably “fits” the measured field. Although
the forward calculation is unique in a mathematical sense, a model for
magnetic or gravity sources developed by way of the forward method is,
of course, not unique. The inverse method, on the other hand, inserts
measurements of f{P) directly into the left side of equation 10.5 and
solves for some aspect of s(@) or R. Calculation of s(Q) is known as the
linear inverse problem, whereas calculation of some property of R is the
nonlinear inverse problem.

First consider the linear problem. We could, for example, reformulate
equation 10.5 as a matrix equation,

N
fi=) s, i=1,2,...,L, (10.6)
j=1

and if L > N use least squares to find the N values of s;. This is not
as simple as it seems. The first fundamental difficulty is the problem
of nonuniqueness. Even if we knew f(P) precisely, we might not be
able to determine a unique inverse solution for s(@). Uniqueness can
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be determined by asking whether there are any nontrivial solutions for
a(Q) in the equation

[ a@ur.q) s =o.

R

If the answer is yes, then s(Q) is nonunique. The class of all a(Q) is
known as the annihilator for that particular kernel ¢(P, @) and volume
R (Parker [207]).

What can we do faced with limitations of nonuniqueness? There are
two approaches: We could make simplifying assumptions about the
source. We might, for example, be willing to assume that magnetization
is uniform throughout the body or that the body is infinitely extended
in one direction. Such assumptions may reduce the number of permis-
sible solutions, but the solution may still be nonunique} and certainly
will be much simpler than reality. Nevertheless, this is the tack gener-
ally taken in inverse studies. A second approach would be to attempt
to find aspects about the source that are common to the entire infinite
set of solutions. For example, we might be able to determine the maxi-
mum depth of burial of any realistic source. This leads to the theory of
ideal bodies to be discussed subsequently. Regardless of which method
is favored, independent geologic and geophysical information should be
employed whenever possible to narrow the range of realistic solutions.

The second problem is instability. According to equation 10.5, the po-
tential field at a single point depends on the entire source distribution. In
fact, the potential field at a single point is a weighted average of all parts
of the source, where the weighting function is ¥/(P, Q). In the language
of linear systems analysis, f(P) is a linear functional of s(Q). For all
P # Q, ¥(P,Q) is a smoothly varying function. Hence, f(P) is always
“smoother” than s(Q) as long as P is outside the body. Consequently,
the inverse problem of deriving s(Q) from equation 10.5 amounts to an
“unsmoothing” of f(P). Small changes to f(P) cause large and unreal-
istic variations in $(Q), and the solution is said to be unstable. Potential
field inversion is notoriously unstable. There are ways to reduce the in-
stability, as we will see in this and the next chapter, but only at the
expense of giving up information about the source.

1 Unique solutions may exist for a given anomaly if enough assumptions are stated.
Smith [264] showed, for example, that a gravity anomaly has only one possible
solution if the density of the body is uniform, the body is finite in extent, and
every vertical line passes through the body at most one time.
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Exercise 10.2 Demonstrate that calculation of potential fields from equa-
tion 10.5 is always a smoothing operation. Hint: Let f(P) be the vertical
attraction of gravity and let s(Q) = poé6(P — Q). What is the physical
meaning of this s(Q)?

The third problem is one of construction. Inverse methods are made
tractable by modeling the source distribution with simple geometries. A
particular method may assume, for example, that the causative body is
composed of simple parts, such as dipoles, line sources, or thin sheets,
and we will discuss a number of techniques in the next sections that are
highly model dependent. Of course geology is never so simple, and our
results almost certainly will be less than accurate.

10.2 Linear Inverse Problem

Some of the problems of the previous section are best demonstrated
with some examples from the geophysical literature. From equation 10.5,
magnetic or gravity fields are linearly dependent on magnetization or
density, and estimation of magnetization or density from magnetic or
gravity fields is a linear inverse problem.

Estimation of a single best density for a given mass is a simple exam-
ple. Equation 9.4 describes the vertical attraction of gravity for a body
of uniform density. If the shape of the body is known, the integral term
in this equation could be calculated by one of the forward techniques
of Chapter 9. The gravity anomaly measured at N discrete locations is
then

Qz‘:P'(/h‘ i:1a2a"',Na

and the constant p could be determined by simple linear regression.
Plouff [229] and Ishihara [135] discuss this type of calculation in detail.

We could complicate this procedure by dividing the body into smaller
compartments and use least-squares methods to solve for the density of
each compartment. This approach is considered in the next section for
the magnetic case.

10.2.1 Magnetization of a Layer
Early attempts to model the magnetization of ocean crust with inverse
methods (Bott [37], Bott and Hutton [39], Emilia and Bodvarsson [84])
were motivated by an interest in seafloor spreading and how this dynamic
process records geomagnetic field behavior. Magnetization was assumed
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Fig. 10.1. Inverse model of the oceanic magnetic layer. Total-field anomaly
AT; is measured above a row of polygonal cells infinitely extended perpendic-
ular to the page. Cells are uniformly magnetized with magnetization Mj.

to be two-dimensional (often a good assumption for anomalies related to
seafloor spreading), so these early models consisted of a row of polygonal
cells (Figure 10.1), arranged so that the tops of the cells correspond with
the top of the magnetic layer. Then rewriting equation 10.6, the total-
field anomaly at point ¢ is given by

N
AT =3 My, i=12.L, (107
J=1

where M; is the intensity of magnetization of cell j, and 1;; is the total-
field anomaly at field point i due to cell j with unit magnetization. The
left side of equation 10.7 is composed entirely of measured quantities.
Matrix 9;; can be calculated with equation 9.30 (Subroutine B.15 would
do most of this job). Hence, the only unknown quantities in equation 10.7
are the N values of magnetization, and if N < L, these can be calculated
by least-squares methods. Claerbout [60] provided a good discussion of
least-squares modeling.

This same sort of approach has been used to model magnetization of
the earth’s crust using satellite data (Mayhew [178, 179]; von Frese,
Hinze, and Braile [287]; Ravat, Hinze, and von Frese [239]; Arkani-
Hamed and Strangway [7]). Mayhew [178, 179], for example, constructed
a model of magnetized crust with dipoles oriented parallel to the main
field, and then used least-squares techniques to find the dipole moment
of each dipole. Magnetizations were found by dividing the calculated
dipole moments by the volumes that they represent.

It would be tempting to make the widths of the cells in Figure 10.1
as narrow as possible in order to learn about short-wavelength informa-
tion in crustal magnetization. To do so in the case of seafloor spreading
anomalies might answer questions concerning short-period behavior of
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Fig. 10.2. Unstable solution for magnetization of magnetic layer. (a) Total-
field anomaly is zero except at single point. Layer is composed of cells of
width W and located at depth D. Thickness of layer is 2W. (b) Resulting
magnetization when D/W = 3. Modified from Bott and Hutton [38].

the earth’s magnetic field (e.g., short polarity events and excursions of
the main field) and about the process of seafloor spreading. Choosing
cell width is a question of resolution; for a given depth to the magnetic
layer, how much information can be squeezed out of the calculated mag-
netization? Bott and Hutton [38] showed that the resolving power of this
inverse method has definite limits. As illustrated in Figure 10.2, they let
AT; = 0 everywhere except at a single point, where AT; = 1 nT, and
used equation 10.7 to solve for the magnetization. Clearly, a realistic
solution for the M; causing this special anomaly should be nearly zero
for all 7. Instead they found magnetization solutions that varied unre-
alistically (Figure 10.2), and the amount of the variation depended on
the depth to the layer and the width of the cells (Figure 10.3). Bott
and Hutton [38] concluded empirically that when cell width is made less
than one or two times the depth to the layer, the inverse solution to
equation 10.7 is unstable. In Chapter 11, we will be in a position to
show this relationship in a more deductive way.
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Fig. 10.3. Magnitude of instability as a function of resolution attempted.
Curve represents various trials of the experiment described in Figure 10.2.
Modified from Bott and Hutton [38].

The reason for the instability can be seen from simple algebraic con-
siderations. Rewriting equation 10.7 in matrix notation provides

[ AT ] Y1 Yz o IN M,

AT, Y a2z o YN M,

ATz | = |31 32 -+ Ysn Ms | . (10.8)
| AT | Y1 Y2 - Yyl LMy

Each column of matrix 1;; represents the total-field anomaly along a
profile over a single cell, namely, cell j. If cell widths are small relative
to depth, then the profile over single cell j will be very similar to profiles
over cell 5+ 1 or cell j— 1. In other words, small cell width causes neigh-
boring columns of matrix ;; to be similar. In the parlance of matrix
algebra, the matrix becomes ill conditioned.

To see how this situation might affect solutions for Mj;, consider just
two simultaneous equations,

21 = a11% + a2y,

z2 =a21% + axy

representing some experiment, such as a simple case of equation 10.8;
z1 and 2y are measured quantities, a11, a2, @21, and ago are calculated
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%

Fig. 10.4. Solution of two simultaneous equations. Equations are represented
by solid lines and solution (zo, yo) is shown by their intersection. Errors in z)
or zz cause lines to shift up or down, as shown by dashed-dotted lines. (a) If
two solid lines make a large angle to each other, small errors in z1 or z2 will
not affect the solution greatly. (b) If two lines are nearly parallel, small errors
in 21 or zz will greatly affect the solution.

quantities, and x and y are to be determined. As shown in (Figure 10.4),
these two equations define lines in z,y space, and the solution (zo, yo)
of the two equations is given by the intersection of the two lines. Errors
in measurements of z; or ze cause parallel displacement of the lines. If
the lines make a large angle with each other, as shown in Figure 10.4(a),
slight displacements will not greatly affect the determination of (zo, yo).
However, if the two lines are nearly parallel (Figure 10.4(b)), slight errors
in 2) or 2z will cause significant errors in the determination of (xg, o),
and the solution is unstable.

The two lines will be nearly parallel if a11/a12 = ag;/az2. In terms of
the magnetic layer (Figure 10.1), this kind of situation would occur if
the field at point 7 due to cell j is similar to the field at point ¢z due to
cell  + 1 and if the field at point i due to cell j is similar to the field at
point ¢ 4+ 1 due to cell j.

Equation 10.8 is simply an N-dimensional extension of these two si-
multaneous equations. Rows and columns of ;; are smoothly varying
functions. Hence, the forward calculation of AT; from M; is a smoothing
operation, whereas the inverse calculation is an unsmoothing operation.
Moreover, the deeper the layer is relative to cell width, the smoother
is the matrix 4;;. If cell width is too small relative to the depth to the
layer, the matrix 1;; becomes ill-conditioned, and small changes in AT;
will cause unrealistic values in the calculated M;.
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10.2.2 Determination of Magnetization Direction
Uniform magnetization

In some geologic situations, it may be appropriate to assume that a
body is uniformly magnetized and to solve for the single vector that best
describes that magnetization. A well-known application of this inverse
method is the determination of seamount magnetization. In this case,
measurements are made, usually at the sea surface, of the bathymetry
and total-field anomaly of the seamount. The magnetic part of the
seamount is assumed (1) to be uniformly magnetized, (2) to be bounded
by an upper surface equal to the bathymetric surface, and (3) to have a
known lower surface (usually flat and at the same depth as surrounding
seafloor). Then the magnetic field can be inverted to determine the sin-
gle vector that best describes its uniform magnetization. The magnetiza-
tion thus determined is in effect a paleomagnetic sample, assuming that
the magnetization is primarily remanent and was recorded at the time
that the seamount formed. A collection of magnetization vectors from
seamounts of different ages, therefore, provides a record of movement of
the lithospheric plate on which the seamounts reside (e.g., Francheteau
et al. [91], Harrison et al. [119]).
Equation 10.3 can be rewritten as

- g1 01
R
01
+ MZ(Q):?—;;
If M is uniform, then
AT(P)=M, | -CoF -V /ildv
T m Pl oz
R
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where £, §,, and £, are integral terms involving the geometry of the
seamount. Assuming the total-field anomaly is measured at N discrete
locations, equation 10.9 can be written in matrix notation as

ATl glz gly glz
M,
AT2 §2z §2y §2z
= T T M. (10.10)
. . . M,
ATw gNz gNy gNz

The three columns of matrix &; in equation 10.10 represent the total-
field anomaly at the various field locations, assuming unit magnetiza-
tions in the x, y, and z directions, respectively. Each element of the ma-
trix can be calculated using forward-calculation methods (Chapter 9),
but to do so requires approximation of the shape of the body with
a simplified model, for example, an aggregate of rectangular blocks
(Vacquier [285]), a stack of laminas (Talwani [275]), or a stack of lay-
ers (Plouff [229]). Then equation 10.10 represents N equations with
only three unknowns, namely, the three components of magnetization,
and these can be estimated by straightforward least-squares techniques
(Claerbout [60]); that is, find M, M,, and M, that minimize the quan-
tity

N
E? =Y (AT, - ATY)?,
i=1
where AT/, i =1,2,..., N, are the measured anomaly values. In addi-
tion, we may wish to subtract a regional field F'(P) so that equation 10.9
becomes

AT(P) = Mo&:(P) + My&y(P) + M.&.(P) — F(P).

If F(P) is a linear surface, for example, equation 10.10 simply would be
expanded to six unknowns.

Various quantities can be calculated to evaluate the ability of this
simple model to fit the measured data. The residual field, e; = AT, —
AT/, for example, provides a spatial view of the quality of the model,
and the “goodness-of-fit” parameter

N
-1 AT
= N

>iz ledd

provides an overall evaluation.
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Nonuniform Magnetization

Seamount magnetization has proven to be a powerful tool in understand-
ing plate tectonics, but the method has limitations. Perhaps the most
serious is the very assumption of uniform magnetization. Least-squares
analysis requires that the residual errors e; be randomly distributed, but
residuals resulting from the assumption of uniform magnetization often
show broad regions of positive and negative misfit, reflecting in part
variable magnetizations. There are many reasons to suspect nonuniform
magnetization. Seamounts may form over times during which the geo-
magnetic field has varied significantly. Chemistry and mineralogy may
not be completely uniform throughout the seamount because of chang-
ing magma sources during formation and because of subsequent low-
temperature oxidation and hydrothermal circulation.

Several studies have sought to allow for variable magnetization in
seamounts (Harrison [115], Francheteau et al. [91], Sager et al. [249],
Emilia and Massey [85], Ueda [284]) and arc-related volcanoes (Kodama
and Uyeda [149], Blakely and Christiansen [25]) by dividing the topo-
graphic edifice into discrete compartments. McNutt [181], for example,
modeled several seamounts located on the Cocos plate by dividing their
topographic edifices into two or three compartments, assuming each
compartment was uniformly magnetized, and using least-squares meth-
ods to simultaneously solve for the direction of magnetization within
each compartment.

In each of these studies, the boundaries between uniformly magnetized
parts of the topographic features were determined subjectively, usually
by inspection of the residual magnetic anomaly. An entirely different ap-
proach was proposed by Parker et al. [210]. Rather than pursuing a single
magnetization direction, they sought a magnetization with both uniform
and nonuniform components such that the nonuniform component was
as small as possible. Their main points are summarized here.

First a few definitions are in order. The total-field anomaly of the
seamount is given by equation 10.3,

AT(P) = —CouF - Vp / M(Q) - VQ% dv,
R

which can be written more simply in a form like equation 10.4,

ATiz/M(Q)-Gi(Q)dv, i=1,2,....L, (10.11)
R
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where the subscript ¢ denotes a discrete observation point. The function
M(Q) in this equation is a vector-valued function of position and can be
treated as an infinite-dimensional vector. It represents one element of an
infinite variety of possible magnetizations that might occur in R. The set
of all such magnetizations forms an infinite-dimensional space called a
Hilbert space. The Green’s function G;(@) in equation 10.11 is analogous
to coordinate vectors in a three-dimensional vector space (e.g., i, j, and
k in the cartesian coordinate system) and is called a coordinate function.
The inner product of two elements A(Q) and B(Q) of the Hilbert space
is given by

(A,B) = / AQ) B(Q)dv,
R

analogous to the dot product of two vectors. Hence, equation 10.11 is
the inner product

AT, = (M, G;), (10.12)

and each observation AT; is said to be a linear functional of M(Q). The
“size” of an element is measured by its norm

lA]l = (A, A)2

2
/ APdo|
R

and the difference between two elements is given by ||A — B]|.

In the method described by Parker et al. [210], the magnetization
M(Q) in equation 10.11 is represented by both uniform and nonuniform
components,

M(Q) = My + Mn(Q),
where My is a vector constant. Equation 10.12 becomes

Aﬂ =(MO,G1)+(MN7GZ)7 /L:1,2,,L (1013)

The element M(Q) having minimum My(Q) is the magnetization that
is most nearly uniform for any given M.

First consider that My is known. Then an element Mn(Q) of small-
est norm is required obeying the L inner-product constraints given by
equation 10.13, where all quantities are known except Mn(Q@). Parker
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et al. [210] showed that this magnetization can be represented by an
expansion in terms of Green’s functions,

L
=Y Gi(Q), (10.14)
j=1

where the expansion coeflicients «o;, 7 = 1,2,...,L, are to be deter-
mined. Substituting equation 10.14 into 10.13 yields

AT MO) Eaj GJ’G

=(Mo,G +Zaj i (10.15)

where the inner product I';; is called a Gram matriz. All quantities are
known in equation 10.15 except the L expansion coefficients, and they
can be determined uniquely because I';; is nonsingular.

The vector constant Mg is not known in application to seamount
magnetization, of course, and in fact is the main point of the calculation.
The problem is the same, however: Find My and My(Q) that cause
Mn(Q) to have the smallest norm. Being a constant, Mg belongs to
a three-dimensional subspace of the Hilbert space and can be written,
analogously to equation 10.14, as

3
Mo =Y BeXk, (10.16)
k=1

where Xy, k = 1,2, 3, are unit magnetizations in each of three orthogo-
nal directions. Substituting this summation into equation 10.15 yields

3 L
AT, = Bu(Xe, Gi) + > ayTy; . (10.17)
k=1 =1

Hence, we wish to find parameters 81, 2, 83, a1, g, ..., that mini-
mize

L L
IIM = Mol = [ Y ;G;, Y axGe (10.18)

j=1 k=1
subject to the constraints described by equation 10.17. All quantities
are known in equations 10.17 and 10.18 except the L + 3 parameters
B1, B2, B3, a1, g, . .., Parker et al. [210] described how these could
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be determined by the introduction of Lagrange multipliers. (See Claer-
bout [60] for a general discussion of least-squares inversion subject to
constraints.) With these L + 3 parameters, the most uniform direction
of magnetization is given by equation 10.16. Notice that if magnetization
is indeed uniform, equation 10.18 vanishes, and equation 10.17 reduces
to equation 10.9.

10.3 Nonlinear Inverse Problem

The potential field on the left side of equation 10.5 is a linear functional
of the distribution of mass or magnetic material. Doubling the intensity
of magnetization, for example, doubles the amplitude of the total-field
anomaly, whereas tripling the magnetization would triple the amplitude
of the anomaly. In general terms, a system is said to be linear if it satisfies
the following test: If f,(P) is the field caused by source distribution
51(Q), and fo( P) is the field caused by another distribution s2(@Q), then
the field caused by as,(Q) + bs2(Q) is simply af1(P) + bf2(P), where a
and b are constants.

Exercise 10.3 Prove the previous sentence using equation 10.5.

The same cannot be said for other parameters that define the source.
The potential field is not a linear functional of, for example, depth,
thickness, or shape of the source. All of these parameters are contained
within ¥(P, ) and in the limits of integration implied by volume R in
equation 10.5. Inverse methods that attempt to estimate these nonlinear
parameters are called nonlinear methods, but in fact, most nonlinear
methods entail simplifying assumptions that in effect render the problem
linear.

10.3.1 Shape of Source

This difficult class of inverse problem is addressed here by describing sev-
eral examples from the literature. By nature, these methods are highly
model dependent. They must make simplifying assumptions about the
source distribution, and the validity of the calculated shapes naturally
depends on whether or not the true source behaves in accordance with
the assumptions. For example, one of the methods subsequently dis-
cussed finds the most compact mass satisfying a given set of gravity
measurements. It is easy to imagine geologic situations in which mass
would not be distributed in this way.



10.3 Nonlinear Inverse Problem 229

Fig. 10.5. Cross-sectional model of a sedimentary basin, as used in the method
described by Bott [35]. Basin is assumed to be infinitely extended perpendic-
ular to profile. Basin is divided into rectangular blocks, one block per field
point.

Tterative Methods

As discussed in Chapter 9, forward models are developed by a three-step
process. An anomaly is calculated from a model, the calculated anomaly
is compared with the observed anomaly, and the model is adjusted in
order to improve the comparison. The three-step process is repeated
until the modeler is satisfied with the results. A number of computer-
based algorithms use the same logical process, but we will consider them
inverse methods here because the model is derived automatically with
minimal control by the modeler.

An early example was described by Bott [35] to estimate the cross-
sectional shape of sedimentary basins. In this method, the basin is as-
sumed to be infinitely extended in one direction and to have uniform
density contrast Ap with respect to surrounding rocks. The basin is di-
vided into NN rectangular blocks infinitely extended parallel to the basin
and extending to depths ¢;, j = 1,2,..., N, as shown in Figure 10.5.
Only N field points, g;, i = 1,2,..., N, along a profile perpendicular to
the basin are considered, and each field point is centered above a block.
An initial guess is made for the thickness of each block by assuming
each block is a slab infinite in all horizontal dimensions. Equation 3.27
provides the thickness of an infinite slab based on a single gravity mea-
surement,

(1) 9i :

i = ’ =1,2,...,N.

J 2myAp . ’ ’
The superscript indicates the level of iteration, the first iteration in this
case. Then a three-step procedure is conducted to iteratively modify
block thickness. The steps are as follows, where k denotes the number
of the iteration:
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1. The residual g; — g

Inverse Method

1. The field g§k) is calculated at each observation point due to all

blocks, assuming thicknesses from the previous iteration. In the
original work of Bott [35], this calculation was done in an elabo-
rate way in order to save computer time. With modern computers,
algorithms that implement equation 9.2.2 would be appropriate.
(k

5 ) is found at each observation point.

. The infinite-slab approximation is used again to estimate a new

set of thicknesses. The correction to each block is calculated un-
der the assumption that the block is an infinite slab of thickness
required to accommodate the residual; that is, the new thickness
is

k)
JB+1) (9; — g;- )
J

(k)
.
2myAp i

These three steps are repeated until the modeler is satisfied that con-
vergence is met.

Cordell and Henderson [71] improved on this method in a number of
ways. They employed data measured on or interpolated to a rectangular
grid so that sources could be investigated in three dimensions. Sources
are modeled as a bundle of rectangular blocks, one block per gravity
value, as shown in Figure 10.6. Block thickness ¢;, j = 1,2,..., N, is de-
fined relative to a reference surface, which could represent, for example,

Fig. 10.6. Three-dimensional model for the iterative method of Cordell and
Henderson [71]. Block thicknesses are relative to a common reference surface.
Observed gravity is measured on a rectangular grid.
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the top or bottom of all blocks. Similar to the method of Bott [35], ini-
tial block thickness is estimated by assuming each block to be an infinite
slab. However, the ratio
57 _ 9
t§k) g](k)
is used to revise block thickness rather than an infinite-slab approxima-
tion. As before, the three-step procedure of calculation, comparison, and
adjustment is carried out automatically at each iteration. This algorithm
has been implemented in a Fortran program described by Cordell [65],
and a similar version is available in a form compatible with microcom-
puters (Cordell, Phillips, and Godson [73]).

A somewhat different approach was described by Jachens and Mor-
ing [137]. Like the two previous methods, their method estimates the
shapes of basins filled with low-density deposits, but their method takes
into account the possibility that underlying basement rocks may have
variable density. Their method proceeds by separating gravity measure-
ments into two components: the component caused by the basins them-
selves and the component due to variations in density of underlying
basement. Let g represent observed gravity after regional fields are re-
moved (isostatic residual gravity (Chapter 7) would be an appropriate
starting point) and let g = g, + g4, where g, is the anomaly caused
by underlying basement and g4 is the anomaly caused by low-density
deposits. Then the following steps are conducted:

1. The first iteration assumes that gy, is defined by just those stations lo-
cated on basement outcrops and calculates a smooth surface through
just these data, as shown by the dashed line in Figure 10.7. This
constitutes the first approximation gt()l) to the basement field gy; it is
only a crude approximation because stations will still include the ef-
fects of nearby basins. These effects are to be removed in subsequent
iterations.

2. The first approximation to gq is found by subtracting gt()l) from ob-
served gravity g. This new residual gél) is used to find a first ap-
proximation to basement depth using the infinite slab approximation,

similar to the method of Bott [35].

3. The gravitational effect of the basins can then be calculated by a
variety of methods. Jachens and Moring [137] used the method of
Parker [204], to be discussed in Chapter 11. This result is subtracted
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Iteration 1

Observed Gravity

Iteration 1

Fig. 10.7. Separation of residual gravity into two components, the component
caused by density variations within basement and the component caused by
basin fill. Closed dots signify measurements made on basement outcrops, open
circles on sedimentary or volcanic cover.

from basement gravity stations to produce the next approximation
for basement gravity 91(32)-

These three steps are repeated until the solution converges to the sat-
isfaction of the modeler. Two products result: the shape of low-density
basins and the gravitational attraction of basement without the effects
of the basins. The method was applied to the entire state of Nevada by
Jachens and Moring [137] in order to analyze the shape and distribution
of basins in this part of the Basin and Range (Blakely and Jachens [31]),
and a similar method was used by Saltus [250] to estimate the thickness
of concealed sedimentary deposits beneath the Columbia River Basalt
Group in Washington State.

Linearizing the Nonlinear

Although potential fields depend nonlinearly on certain source param-
eters, this dependence is nearly linear with respect to sufficiently small
changes in those parameters. For example, the potential field of a polyg-
onal prism is related to the coordinates of the corners of the polygon
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Fig. 10.8. Approximation of a two-dimensional source by an infinitely ex-
tended prism with polygonal cross section. Vectors M and B are projections
of magnetization and ambient magnetic field, respectively, onto the z, z plane.

by way of arctangents and logarithms (see equations 9.2.2, 9.27, and
9.28), that is, the field is a nonlinear function of the coordinates of the
polygon. Such nonlinear relationships can be rendered linear, however,
by considering only very small changes in the parameters. For exam-
ple, the gravity or magnetic field due to a set of polygonal prisms can
be expanded in a Taylor’s series based on changes in the positions of
the coordinates of the polygons. If changes in the coordinates are small,
the Taylor’s series can be truncated, and the functional dependence on
these changes thus becomes linear. An algorithm then could be devised
to determine the best set of prisms for a given anomaly, where the cross-
sectional shapes of the prisms are iteratively changed by small amounts
through linear least-squares techniques.

This approach has been described in various forms for both grav-
ity anomalies (Corbato [64], Al-Chalabi [2], Coles [62]) and magnetic
anomalies (Johnson [144], McGrath and Hood [180], Rao and Babu [236]).
Webring [290] has developed a computer program that implements both
gravity and magnetic cases simultaneously and allows the user to in-
tervene as necessary. This program also is available for microcomputers
(Cordell et al. [73]). The following discussion summarizes the method
described by Johnson [144].

Equations 9.2.2 and 9.30 provide the vertical attraction of gravity
and the total-field anomaly, respectively, of a prism infinitely extended
in one direction, with uniform density or magnetization, and with cross-
sectional shape defined by an N-sided polygon (Figure 10.8). Let A;
represent one of L discrete measurements of the gravity or magnetic
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anomaly. Both equations then have the form

!/ ! !/ ! ! ! .
A= A(x), 21,25, 25, .. ., Ty, 2N T, 21), 1=1,2,...,L

= A($i, Zi,W) 3

where (z;, 2;) is the location of the ith measurement. The primed coor-
dinates are the N corners of the polygon, represented in shorthand by
the 2/N-dimensional array w. Array w includes only the body coordi-
nates for the sake of discussion, but other parameters, such as density,
the three components of magnetization, and parameters that describe a
regional field, could be included as well. Furthermore, the following dis-
cussion treats all corners of the polygon as free to move in any direction.
A practical algorithm would have the flexibility to analyze only specified
corners.

Let A; and A; represent the observed and calculated anomalies, re-
spectively, at one observation point. We wish to find the vector w such
that the squared error

E? =Y [Ai - A(w)]’ (10.19)

is as small as possible. Because A; is a nonlinear function of w, we cannot
use the usual techniques of least-squares analysis. Instead, we will change
the elements of w only small amounts over a number of iterations. If the
changes in w are small, A; will be nearly a linear function of those
changes.

A Taylor’s series is a convenient way to do this. For example, the value
of a function f(z,y) can be extrapolated to location (z + Az,y + Ay)
by the series

0f(z,y) 9f(z,y)
£ Az + By A

where the higher-order terms have been dropped because Az and Ay
are taken sufficiently small.

Similarly, we let w() represent the values of (], 2}, Th, 25, - - ., T, 2y
after the kth iteration. Then, the Taylor’s series expansion of the anomaly
at point ¢ is

B 2N 4
Aw ) & A (w®) + 37 o2

m

A(wEHAw® i =1,2,...,L,
m=1

(10.20)
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where Aw$ = wE — w¥ . Notice that A;(w*+D) is a linear func-

tion of Awﬁ,’f), where m = 1,2,...,2N, that is, we have “linearized” a
nonlinear problem.
Now substitute equation 10.20 into equation 10.19 to get

L 2
2
E Z_:l A; — A Z 8wm () Aqo k

Expressions for A;(w) have already been derived, namely, equations 9.2.2
and 9.30, and we could just as easily derive expressions for their partial
derivatives. Thus, given an initial array of parameters w'*), the only
unknowns in the above equation are Awﬁ,’f), m=1,2,...,2N. To find
the set of these parameters that provides the smallest E?, we calculate
the partial derivative of E? with respect to w;, §=1,2,...,2N, and set
each equation equal to zero:

L 2N 9 9
A (W) — 9 A (w® (k) —
; A; — A;(w) mzla A (w )Awm] [&UJA( )] 0,

j=1,2,...,2N,

where again we have dropped higher-order terms. This complicated equa-
tion is just a matrix expression of the form

2N
aj =Y GmjAw®, (10.21)
m=1
where
L . 5 -
@ = YA = AW 5 Aiw®) (10.22)
=1
Goni = Z i/}(w(k))ifi»(w(k)) . (10.23)
J P Ow,, " ow; ¢

The steps in the solution then are as follows:

1. Pick an initial set of corner coordinates w = (, 21,25, 25,...). The
foregoing discussion has assumed that all corners of the polygon are
free to move. In practice, most corners would be fixed and only a few
corners allowed to move during a given calculation.

2. Calculate A;(w(®) and 3 A (w®) for s = 1,2,...,L and m =
1,2,...,2N.
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3. Calculate o; and Gp,j in accordance with equations 10.22 and 10.23.
4. Invert the matrix in equation 10.21 in order to find Aw(*),
5. Adjust w accordingly.

Steps 2 through 5 are repeated until the solution converges, that is, until
E? is reduced to a specified level or elements of Aw,,, m =1,2,...,2N,
become sufficiently small.

Johnson [144], following the algorithm of Marquardt [174], suggested
weighting the diagonal of the matrix in equation 10.21 in order to con-
trol the convergence of the iterations. As discussed by Marquardt [174],
equation 10.21 becomes

M
aj =Y GuiAwP (14 6m;)), (10.24)
m=1
where
0, ifm#j;
6mj = . .
1, ifm=yj,

and where A is positive or zero. If A\ = 0, equation 10.24 reduces to
equation 10.21. For A > 0, the new values of w(**1) are restricted to
a neighborhood about w®): as A — oo, equation 10.24 becomes the
method of steepest descent.

Compact Bodies

Any solution for the distribution of mass or magnetic material from
its corresponding gravity or magnetic field should strive to satisfy equa-
tion 10.5. Equation 10.5 is the principal constraint equation. We may also
be willing to add other constraints, for example, that density should ev-
erywhere be positive (or everywhere negative) with respect to surround-
ing rocks. In addition to the constraints, we might strive to minimize
or maximize some scalar property of the source. Last and Kubik [161],
for example, described how to find the body with minimum volume that
satisfies the constraint equations. They divided the source into N rect-
angular blocks, either two- or three-dimensional, as shown in Figure 10.9
for the two-dimensional case, and assumed that the density of each block
p; is uniform. Given measurements of gravity at L discrete locations, the
constraint equations from equation 10.5 can be written as

N
gi=z¢¢jpj+ei, 1=1,2,...,L, (10.25)
=1
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Fig. 10.9. Source region divided into rectangular blocks, where the number
of blocks exceeds the number of measurements. As shown here, the source is
considered to be two-dimensional.

where e;, ¢ = 1,2,..., L, are errors associated with each measurement.
If L > N, we could use least-squares techniques and find a density for
each block, as was discussed earlier in this chapter for the magnetic case.
Instead, we select N > L, and require that the nonzero part of the source
region be as small as possible, thereby providing an estimate of the shape
of the most compact body that satisfies the L gravity measurements.

A single parameter representing the volume (or cross-sectional area in
the two-dimensional case) of the nonzero source region is required. If we
note that

lim
e—0

pi+e |1, ifp;#£0,

the volume of the body having nonzero density is given by

N 2

p,

V =AVli J
B

where AV is the volume of an individual block (or the area of an in-
dividual rectangle in the two-dimensional case). The algorithm then is
required to minimize the scalar

N 2 L
_ Pj 2
q=>Y_ T+ ;we (10.26)

2
j=1 p]

subject to the L constraints expressed by equation 10.25, where ¢ is cho-
sen to be sufficiently small and where w;, i = 1,2,...,L, is a
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noise-weighting function. Last and Kubik [161] described an iterative,
least-squares procedure to achieve such a solution while allowing the
weights and densities to depend on the outcome of the previous itera-
tion.

Hence, the solution minimizes both the volume of the body and a
weighted sum of squared residuals. The N values of p; will have both
zero and nonzero values. The nonzero cells within the source region
provide an estimate of the shape of the most compact body satisfying
the gravity measurements. Whether or not such a body is geologically
reasonable is another matter; it is easy to imagine geological situations in
which masses are not expected to be packed into the smallest of volumes.

10.3.2 Depth to Source

Methods of estimation of the depth to magnetic or gravity sources can be
classed into two categories: those that analyze a single, isolated anomaly
and those that analyze a profile over many sources. A few examples of
each type are described here. In the next chapter, we will visit the subject
again in the Fourier domain.

Peters’s Method

One early and useful depth rule was described by Peters [219]. If a mag-
netic anomaly is caused by a two-dimensional body with vertical sides,
uniform and nearly vertical magnetization, and great depth extent, then
the depth to the top of the body can be found approximately by the fol-
lowing graphical procedure (Figure 10.10). Draw two parallel lines with
slope equal to one half of the maximum gradient of the anomaly, one
line tangent to the peak of the anomaly and the other tangent to the
minimum part of the anomaly. The horizontal separation of the two lines
is proportional to the depth to the top of the body. The proportionality
constant is 1.2 for very thin bodies and 2.0 for very thick bodies; a value
of 1.6 is often used.

Peters’s method requires many simplifying assumptions about the
body (Skillbrei [262]). Yet it provides, with just graph paper and a pen-
cil, a quick and rough estimate of depth to source in many geological
situations at high latitudes. It amounts to finding the horizontal dis-
tance over which the anomaly is roughly a linear function of distance.
Therefore, it is amenable to contour maps of gravity or magnetic anoma-
lies; the distance over which the contours are roughly equally spaced is
proportional to the depth to the source.
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.0d if body very thick

=7
S /—/| p  x=12d if body very thin
/ x=2
x=1.6d for intermediate thickness

Fig. 10.10. Illustration of Peters’s method.

Mazximum Depth

Interpretation of gravity or magnetic anomalies is complicated by the
fact that many geologically reasonable density or magnetization solu-
tions may perfectly satisfy the observed anomaly. Fortunately, some un-
equivocal parameters can be gotten directly from the anomalies with-
out appeal to numerous assumptions about the source distribution. We
will delve into this subject in more detail in the upcoming section on
ideal bodies, but here we list some handy rules derived by Smith [263]
and Bott and Smith [41] that quickly provide the maximum depth of
causative sources. These rules are based on the first, second, and third
derivatives of gravity and magnetic anomalies as measured along pro-
files (Figure 10.11); they are especially useful because they require no
assumptions about the shape of the causative body.

The limiting depths from Smith [263] and Bott and Smith [41] are
summarized below for both gravity and magnetic anomalies. In these
inequalities, A(x) signifies a profile across either a gravity or magnetic
anomaly. In the gravity case, A(x) represents the vertical attraction of
gravity. In the magnetic case, A(x) represents the component of magnetic
field parallel to & = (75,7, 7,) (e.g., if A(x) is the total-field anomaly, £
is in the direction of the ambient field). Parameter d is depth to a plane
below which the entire source distribution lies. The following abbrevia-
tions are used: A = A(z), A’ = 4@ Ar — F£A@) and A7 = LA

) dr dz? Tdzd
Subscript “max” signifies the maximum value obtained along the z axis.
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dA(x)
/\_/} =

max

dA(x)
"—L‘ dxx

A(x)

max

max

Fig. 10.11. Maximum depth to causative sources based on first, second, and
third derivatives of their anomalies. Profile A(z) represents either a magnetic
or gravity anomaly.

The parameter Aw is the half-width of a symmetric anomaly, that is, the
distance between positions where the anomaly reaches its maximum and
half-maximum values. The maximum value of density or magnetization
is denoted by pmax Or Mpax, respectively. Note that these relationships
were derived in the emu system and should be used accordingly.

Three-Dimensional Gravity Anomalies

Density of both signs:

'ypmax
d<5.40 —tmax
- By -
Y Pmax
d? <696 T
. IA/HImax

Density entirely positive (or entirely negative if signs are changed appro-
priately):

A
<1.
d<1.5b A7 for all z,
2 A > "o :
d“<-3 — for all x for which A” is negative,

A/l
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Amax

d<0.86 ,
- | A max

YPmax
d<2.70 ,
- | A | max

YPmax
d® <313 tmex
- |A/“|max

Two-dimensional Gravity Anomalies

Density entirely positive (or entirely negative if signs are changed appro-
priately):

A
A7 for all z,

A
d? < -2 Y for all z for which A” is negative,

Amax
d<0.65 ,
- | A" | max
d< Aw (symmetric anomaly).

Three-Dimensional Magnetic Anomalies

No restrictions on magnetization:

M
d < 6.28(472 + 372 4 372)F X
| A" | max
My
d? <9.73(372 + 272 4 272)3  _mmax
| A" | max

Magnetization everywhere parallel and same sense:

M,
d <3.14(472 + 372 4 372)F X
|A’[max
2 2 L 0s2 | oa2nl  Mmax
d° < 4.87(3r; + 27y, + 273)2 Vg

Vertical # and vertical M:

Mmax

d<5.18 ,
| A’ |max
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Mmax
| A" | max

Vertical £ and vertical M; M everywhere of same sense:

d? < 6.28

Mmax
d<2.59 ma.

| A’ | max”

d®><3.14 Moo

|A” | max

Two-Dimensional Magnetic Anomalies

No restrictions on magnetization:

M,
d<8(F2 4 72)5 I
( x ) |A/lmax
1 Mpax
d? <9.42(F2 +72)z
| A" [ tmax
M everywhere parallel and same sense:
Miyax
d<A(F} +72)F o
| A [max
Minax
& <ATUR 4727 oW
|A” [max

Each depth rule has specific applicability. Some require knowledge of
a significant part of the anomaly in order to find maximum amplitudes
and gradients. Others require only parts of the anomaly. In practice, as
many depth rules as seem applicable should be tried to determine which
provides the smallest value for maximum depth.

Euler’s Equation

The previous methods of depth estimation are best suited for anoma-
lies caused by single, isolated sources. Another class of techniques uses
a somewhat different strategy, namely, to consider magnetic or gravity
anomalies to be caused by many relatively simple sources. Such a strat-
egy is amenable for long profiles or large surveys with many anomalies.
For example, a technique that can estimate the location of a simple
body (monopole, dipole, thin sheet, etc.) from only a few measurements
of the magnetic or gravity field could be applied to a long profile of
measurements by dividing the profile into windows of consecutive mea-
surements, each window providing a single estimate of source location.
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When all such determinations are plotted in cross section, they may tend
to cluster around magnetization or density contrasts of geologic interest.

Euler’s equation, discussed in Section 6.4 (equation 6.19), has led to
one such method. Euler’s equation in its general form is given by

r-Vf=-nf.

Functions f that satisfy Euler’s equation are said to be homogeneous; if
they also satisfy Laplace’s equation, they can be represented in spher-
ical coordinates as a sum of spherical surface harmonics. Any spatial
derivative of a homogeneous function is also homogeneous. For example,
taking the partial derivative with respect to = of both sides of Euler’s
equation yields

7] 7] 7]

7]
- _né—x_fy

0 0

and consequently a% f is homogeneous with degree n + 1.

It is easily shown that f = % satisfies Euler’s equation with n = 1,
so clearly the potential of a point mass (or uniform sphere) must also.
Because potential fields arising from other point sources (dipoles, wires,
and so forth) involve spatial derivatives of 1, they too should satisfy
Euler’s equation, but with their own characteristic integer values for n.
The total-field anomaly of a magnetic dipole (or uniformly magnetized
sphere), for example, is given by

AT = Cpb -V (m- 1),

where b is the unit vector parallel to the ambient field, and m is the
dipole moment. It is easily shown that AT thus defined satisfies Euler’s
equation with n = 3. The parameter n in Euler’s equation is referred
to as the structural index or attenuation rate. Table 10.1 shows the
structural index for various sources.

Exercise 10.4 Use Euler’s equation to verify the values of n in Table 10.1.

Euler’s equation has been used by a number of authors for analyz-
ing both magnetic anomalies (Thompson [280], Barongo [12], Reid et
al. [242]) and gravity anomalies (Marson and Klingele [176]). Consider,
for example, the total-field anomaly over a simple body, such as a sphere
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Table 10.1. “Structural index” for various gravity
and magnetic sources.

Type of Body

line of mass

line of dipoles

point mass (sphere of uniform density)

point dipole (sphere of uniform magnetization)

w3

or cylinder. Let AT; be the ith point of a magnetic survey over a sim-
ple body, such as a sphere or cylinder, with the point of measurement
at (z,y, z), and the center of the body at (zq, yo, 20)- Substituting into
equation 6.19 provides

p) B p) r—%o

IAT, ZAT ZAT| |y—uo | = nAT;.

e By 92 ZZO "
— <0

Assuming we have some way of measuring or calculating horizontal and
vertical gradients of the total-field anomaly, this equation has only four
unknowns: g, Yo, 20, and 1, the first three of which provide the location
of the body. We can obtain as many equations as necessary by writing
this equation for various measurement locations,

0 d d i

— AT, — ATy, —AT

Ox dy 0z T — 0 ATy
0 o} d — =n | AT
AT, —AT, —AT,| |Y7Y *
o Gy 8z | |- 20 :

and use least-squares methods to solve for the unknowns. If the position
of the body is known, we can solve for n and learn something about the
kind of body involved (Barongo [12]). If on the other hand we suspect the
nature of the body (e.g., we might believe that the body is spherical in
shape), we can select an appropriate n and solve for the body’s position.

Although Euler’s equation provides a useful way to locate bodies of
ideal shape, such as spheres and cylinders, the method has definite limi-
tations when applied to more typical, distributed sources. In these more
realistic cases, n may not be a constant with respect to depth and po-
sition of the source (Steenland [272]; LaFehr, as quoted by Steenland
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[272]; Ravat [238]), because f is no longer simply a derivative of * but
rather an integration over the entire source distribution. Reid et al. [242]
showed that anomalies over certain extended bodies, such as thin dipping
sheets, do satisfy Euler’s equation, but such is not the case in general.
Ravat [238] concluded that the method is strictly valid only when the
anomaly has constant attenuation rate with respect to distance from the
source.

In spite of these theoretical limitations, Euler’s method seems to pro-
vide useful results in practical applications. Thompson [280] applied the
Euler method to profile data. In this application, the source distribution
is assumed to be two dimensional, and the derivative with respect to y
is not needed. The profile is divided into groups of points, and a source
location (zg, ¥o) is calculated for each group using the previous equation
and least-squares methods. Source locations, when plotted in cross sec-
tion, tend to cluster around presumed magnetization contrasts. Rather
than solving for n simultaneously, Thompson [280] recommended speci-
fying various values of n. Reid et al. [242] and Marson and Klingele [176]
expanded this general technique to two-dimensional magnetic and grav-
ity surveys, respectively, over three-dimensional source distributions. In
this case, the survey is divided into square, perhaps overlapping win-
dows, and for a specified value of n, each window is analyzed for the
location of a causative source.

It is clear that Euler’s method requires not only the anomaly but
also its gradient in three directions. We might be fortunate enough to
have actual gradient measurements at our disposal (Hood [129]), but
more likely the gradients would have to be calculated from anomaly
measurements, a subject that is left until Section 12.2.

Werner Deconvolution

The magnetic field of a thin sheetlike body has a very simple form that
directly depends in part on its location and depth. It is possible in princi-
ple to estimate the location of the top of the body and its magnetization
from only four measurements of the total-field anomaly. A profile of
total-field measurements over the body could be divided into groups of
four or more measurements, each group providing an estimate of the
source location. When locations are plotted in cross section, individual
depth estimates tend to cluster around the true location of the sheetlike
body. If the true geologic section can be modeled appropriately by a col-
lection of such bodies, then analyzing numerous groups of consecutive
points along the profile may indicate their locations.
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This technique was discussed by Werner [291] and later implemented
in a practical way by Hartman, Teskey, and Friedberg [120]. Groups
of consecutive points are treated as a “window” sliding along the pro-
file. The method is similar in some respects to deconvolution in seis-
mic interpretation, where seismic waves are transformed into impulses
representing individual reflectors. Hence the method is called Werner
deconvolution.

Vertical dikes may seem like a highly specialized application. How-
ever, as shown by Hartman et al. [120] and Hansen and Simmonds [113],
it is relatively straightforward to generalize the method to other hy-
pothetical bodies. For example, the anomaly over a very thin dike is
equivalent to the horizontal gradient of a semi-infinite half-space. (Proof
of this relationship is left for the problem set at the end of this chapter.)
Hence the horizontal gradient of the anomaly can be analyzed in pre-
cisely the same way, thereby providing a way to detect abrupt offsets in
magnetic layers, as well as dikelike bodies. Klitgord and Behrendt [148]
described an application of Werner deconvolution to a detailed aeromag-
netic survey along the entire Atlantic seaboard of the United States. Ku
and Sharp [150] combined the Werner deconvolution method with the
Marquardt inversion scheme (discussed in a previous section) in order
to analyze the shapes of two-dimensional magnetic sources. An algo-
rithm to perform Werner deconvolution on total-field data was written
by L. Cordell and R. Godson and is available in a form suitable for
microcomputers (Cordell et al. [73]).

Ku and Sharp [150] provided an excellent discussion of Werner de-
convolution, which is summarized here. A magnetic sheet of vanishing
thickness is equivalent to a sheet of dipoles, as shown in Figure 10.12. To
find the anomaly of a semi-infinite sheet, we begin with the equations
for a single line of dipoles and integrate from depth d to infinity. The
horizontal and vertical components of a horizontal line of dipoles are
given by equations 5.18. Dipole moment per unit length m is equivalent
to magnetization M times the cross-sectional area. We let the width of
the sheet be Ax and let m = M Az dz. The x and 2z components of the
magnetic field due to a line of dipoles and observed at the origin then
are given by

2CmMA ~ N
= W [Mz(m’2 —Z?%)+ 2Mzac’z’] dz,

_ 20 M Ax

7T (a2 4 22)2 [Mz(zm - %) + 2]\2/7::5’2’] dz',
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(@) (b)

Fig. 10.12. Total-field anomalies over sheets of dipoles. (a) A single vertical
sheet; (b) a single sheet with dip ¢.

and the total-field anomaly of the line source is given approximately by
ATi=F-B
= % [a(z”? — 2%) +282'2'] d2', (10.27)
where F is a unit vector parallel to the ambient field and where
o= Bl - B,
B=FM, + F,M,.
To find the anomaly of a vertical sheet, we integrate equation 10.27

from depth d to infinity to get

o0

2 _ 02 1t
ATS=2CmMA:c/O“” az” + 257’2

(22 + 212)2

dz'

ad — Bz’

/2 + d2 )

This equation remains valid under a rotation of the coordinate system.
Rotating the z, 2z coordinate system by an angle 6 produces a new coor-
dinate system u,w, where the rotation is accomplished by letting

=-2CL,MAzx

r=wucosf + wsinb,

z=—usinf 4+ wcosf.
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But rotating the coordinate system by an angle € is equivalent to rotating
the thin sheet by an amount —6. Applying the coordinate transformation
and letting the observation point be located at (z,0) rather than (0,0)
provides the general equation for the total-field anomaly over a semi-
infinite sheet of dipoles

A(z —z')+ Bd

ATS(a:) = ($_ 33/)2 +d2 )

(10.28)

where
A= -2C MAz(acos ¢+ [Fsin @),
B=2C,MAz(—asin¢ + Scos¢),

and where ¢ is the dip angle of the sheet below the horizontal, as shown
in Figure 10.12.

For any given dip ¢, equation 10.28 has four unknowns, A, B, =/, and
d, and these can be determined from four or more measurements of the
total-field anomaly. Equation 10.28 can be rewritten as

JJQATl =ag + a1z + b AT; + b1z AT; )

or in matrix notation as

ag
AT, =[1 z AT, zAT,] Z; , (10.29)
b1
where AT is the ith point of the profile and

ap =—Az' + Bd,

ar = A4,

bo=—2" — d?,

b =2z

The four unknowns are contained within ag, a1, bg, and by; that is,

$/:b1/2»

b2
d= —bO_Zlv
A=a1,
B— 2aq0 + a1b;

2d ’
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so solving for ag, a1, by, and b; provides an estimate of z’, d, A, and B.
Four consecutive measurements of the total-field anomaly provide four
equations like equation 10.29, or in matrix notation,

T3 AT 1 zii AT 2l ATia | (o (10.30)
27, AT, qo 1 242 ATiyz  2i2ATi2 | | bo '
T3, 3AT; 43 1 zi43 ATiys T430Ti43 by

Application of equation 10.30 to four consecutive measurements of the
total-field anomaly over a single sheet of dipoles in principle should yield
the four unknowns concerning the sheet, namely, z’, d, A, and B. If the
geologic section can be modeled appropriately by many such sheets, a
four-point operator such as equation 10.30 can be moved through the
anomaly profile, each operation potentially yielding the location of a
hypothetical sheet. The resulting locations when plotted in cross section
may assist the interpreter in identifying geologic structure.

A regional field could be determined simultaneously with unknowns
ag, a1, bg, and by. If the observed total-field anomaly is composed of both
the effects of the thin sheet and a regional field given by ¢y + ¢z + cax2,
for example, then equation 10.30 could be modified to include three
additional unknowns, namely, cg, ¢1, and ca.

As mentioned earlier, the Werner deconvolution method can be ex-
tended by noting that the total-field anomaly over a thin sheet is equiv-
alent to the horizontal gradient of the total-field anomaly over a semi-
infinite half-space (see problem set). The method described here is typi-
cally applied to both the total-field anomaly and the horizontal gradient
of the total-field anomaly (e.g., Ku and Sharp [150]). Hansen and Sim-
monds [113] discussed an extension of Werner deconvolution to polyg-
onal sources. In their method, deconvolution is applied to the analytic
signal of the anomaly, to be discussed in Chapter 12, rather than to
the anomaly itself. Hansen and Simmonds [114] also discussed the sim-
ilarities between Werner deconvolution and CompuDepth™ { another
widely used algorithm developed by O’Brien [196].

In the previous discussion, it was assumed that consecutive points of
the profile are used for each estimate, but this may not be appropriate.
If consecutive points are too close together relative to the depth to the
body, they may fall on relatively linear parts of the anomaly and lead to
depth estimates that are too deep. On the other hand, if the consecutive

t+ CompuDepth™ is a registered trademark of TerraSense, Inc.
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points are too far apart, they may sample more than one anomaly leading
to erroneous results. In practice, profiles can be analyzed numerous times
with successive decimation of the measured total-field profile.

10.3.3 Ideal Bodies

The previous sections of this chapter discussed a variety of techniques
to find various details about source distributions from their gravity or
magnetic fields. These methods sometimes take a cavalier approach in
confronting the problems of nonuniqueness and model construction. The
iterative methods, for example, iterate until the calculated anomaly sat-
isfies some measure of goodness of fit; the model is deemed successful
if it fits the geologic intuition of the modeler. Measures of goodness of
fit can be misleading. The Taylor’s series method, for example, tries to
find the minimum squared error E? in a multi-dimensional parameter
space w by changing the elements of w by small amounts. The method
may converge rapidly to acceptably low levels of E2, but there is no
guarantee that w will seek the true rather than a local minimum of EZ2.
Moreover, there is no guarantee of uniqueness even if the fit is perfect.
(The depth rules of the previous section are an exception; they provide
limiting depths to the top of a body with only minor assumptions about
the body.)

Rather than attempting to find detailed information about the caus-
ative source, we could look instead for fundamental properties that are
common to the entire infinite set of reasonable sources. It should be clear
that such fundamental properties are available; the total excess mass of a
body, for example, can be found from its gravity anomaly using Gauss’s
law (Chapter 3) with no assumptions about the shape or density of
the mass.} “Reasonable” is, of course, a subjective term. A reasonable
mass distribution, for example, would have a density distribution that
nowhere exceeds the greatest density contrast expected on the basis of
rock property studies.

Parker [205, 206] discussed how to find the greatest lower bound on
maximum density p; consistent with a set of gravity measurements.
If such a bound could be found, then every body that produces the
observed anomaly must somewhere have a density contrast equal to
or greater than p). This parameter is of some interest in itself. For
t But even this calculation has basic assumptions: The gravity anomaly must be

isolated from the effects of all other sources, a difficult proposition in practical
applications. See Grant and West [99] for further discussion on this calculation.
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example, it might help the interpreter to determine the predominant
rock type of the anomalous mass (Goodacre [98]). Unconsolidated sed-
imentary deposits have much different densities than granitic plutons,
but both lithologies are usually less dense than pre-Cenozoic sedimen-
tary and metamorphic rocks. A sedimentary basin within pre-Cenozoic
crust typically produces a negative gravity anomaly; calculation of p
might help decide whether the gravity anomaly is caused entirely by the
sedimentary basin or in part by underlying granitic rocks.

The primary application of p;, however, is in determining other bound-
ing parameters (Parker [205, 206]). For example, p is a function of depth
to source; the deeper that all bodies are constrained to lie, the greater
must be the limiting density contrast. It stands to reason that p; must
increase monotonically as the limiting depth increases. For a given grav-
ity anomaly, a series of p; could be calculated for various source depths
and plotted as shown in Figure 10.13. For any depth, the curve in Fig-
ure 10.13 provides the greatest lower bound on maximum density; that
is, any source located at that depth, including the one true source, must
somewhere have a density contrast at least as large as the corresponding
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Fig. 10.13. Trade-off curve for ideal body. The curve represents the greatest
lower bound on maximum density. The horizontal line represents the maximum
density based on geologic constraints. The intersection of the curve and line
provide the maximum depth to the body.
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o1- The concave region above this “trade-off curve” represents the range
of acceptable solutions based on mathematical grounds.

Given some knowledge about the geologic setting, we might be able
to specify the largest density contrast of any reasonable source caus-
ing the anomaly. This provides a mazimum density based on geologic
grounds, shown by the horizontal line in Figure 10.13. The two bound-
ing conditions, one mathematical and the other geological, constrain
the permissible depths and densities of all possible sources. In particu-
lar, they determine the maximum depth of any geologically reasonable
source that can cause the anomaly.

To find p1, we begin with gravity measurements at N discrete loca-
tions. Equation 10.5 provides

9 :/p(Q)wi(Q) dv, i=12,....N, (10.31)

v

where g; represents the anomaly at point ¢, V is the region within which
the body is confined, p(Q) is the density contrast at @, and ¥,(Q) is the
Green’s function (the field at point ¢ due to a point source at Q). The
problem is to find the greatest lower bound on p(@) that satisfies the
N constraint equations implied by equation 10.31. Parker [205] showed
that a sufficient condition for the existence of a greatest lower bound is
the existence of N + 1 constants pg, vy, @z, . .., N such that pg > 0 and

po where N ;4:(Q) >0,
p(Q) = N (10.32)
0 where > .1, 09(Q) <0

satisfles equation 10.31. Moreover, the constant po is the greatest lower
bound on maximum density p;.

The body composed entirely of this minimum density and satisfying
equation 10.31 is called the ideal body. The ideal body is unique; for
any higher density, there are infinitely many bodies that satisfy equa-
tion 10.31; for any lower density, there are none. The only assumption
about the mass distribution is that density contrast must be of one sign.
The shape of the ideal body most likely will not reflect the true shape
of the source. This is not important; the ideal-body density is the only
important property in this application.
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If no restrictions are placed on the sign of p(@Q), then a sufficient
condition is the existence of parameters pg, o, o, ..., an such that

po  where SN ai(Q) >0,
p(Q) =40  where Zf;l o i(Q) =0,
po  where Zf\il ;i (@) <0

satisfies equation 10.32.

As it turns out, the only analytical solutions for ideal bodies are for
N =1 and N = 2. To incorporate more measured data, we must settle
for an approximation. Parker [206] described how to use the techniques
of linear programming (e.g., Gass [93]). The source region is divided into
many compartments similar to Figure 10.9, and a uniform density p; is
assigned to each compartment. The objective then is to minimize all p;
subject to the constraints

M
9i=ZPj¢ij+€i, i=12,...,N,
i=1

_|emax| <e < |emax|a 1=12,...,N,

p]ZO’ j=172""’M’

where e;, ¢ = 1,2,..., N, are the errors associated with each measure-
ment, and e,y is the maximum expected error. Minimizing the maxi-
mum value of p; is equivalent to finding the smallest value of p; such that
p; < p for all j, a problem suitable for the methods of linear program-
ming. Huestis and Ander [131] describe a Fortran algorithm to calculate
ideal two-dimensional bodies, and Ander and Huestis [4] provide a For-
tran algorithm for the three-dimensional case.

Figures 10.14 and 10.15 show an example of this method. A linear
gravity gradient in the Cascade Range of the northwestern United States
(Figure 10.14) was suspected of being caused by a magma chamber at
mid-crustal depths (Blackwell et al. [19]). This hypothesis can be tested
(Blakely [24]) by calculating trade-off curves for various profiles across
the gravity gradient (Figure 10.15). If the maximum density contrast of
partially melted crustal materials is, say, —300 kg-m—2, then the trade-
off curves indicate that the source can be no deeper than about 2 km
(Figure 10.15). But this limiting depth is too shallow to be directly re-
lated to pervasive partial melting, and we can safely reject the hypothesis
that the gradient is caused directly by partial melting.
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Fig. 10.14. Gravity gradient in the Cascade Range of the northwestern United
States suspected to be caused by partial melting at mid-crustal depths. Profiles
A, B, and C were analyzed by ideal-body theory, and the results are shown in
Figure 10.15. Modified from Blakely [24].

In the previous discussion, p; was found as a function of increasing
depth to the top of the source region. We could also investigate the
behavior of p; as a function of the thickness or lateral extent of the source
region, thereby constraining the size of all bodies that satisfy the gravity
measurements. Ander and Huestis [4] discuss how this might be done for
the gravity case, and Huestis and Parker [132] apply the method to the
magnetic case. The steps are similar to the foregoing discussion: That is,
choose a layer thickness, calculate p (or an intensity of magnetization)
for that source region, and repeat for a range of thicknesses. At some
minimum thickness, p; will exceed the geologically acceptable value; this
thickness is then the lower bound on all models that fit the anomaly.
The source may be distributed in a thicker layer, but not entirely within
a thinner layer.

In the gravity case, we minimize some scalar parameter of the source,
namely, its density. The magnetic case presents a particular problem
because we are dealing with a vector quantity. However, as discussed
earlier, norms are scalar parameters that represent the “size” of vec-
tor quantities. We have various choices, as discussed by Huestis and
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Fig. 10.15. Ideal-body theory applied to the gradient of Figure 10.14. (a) The
ideal body for profile A assuming that the mass distribution is entirely below a
depth of 0.5 km; (b) trade-off curves for the three profiles. If maximum density
contrast is 0.3 g-em™2, the maximum depth is approximately 2 km. Modified
from Blakely [24].

Parker [132]. Possible norms include the 1-norm

lm s =/|m|dv
Vv
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used in this section, the 2-norm

l[mlfs = /m-mdv
Vv

discussed earlier in Section 10.2.2; or the sup norm

D=

[|m|]|00 = max |m|.
T,z

10.4 Problem Set

1. Suppose that you have N discrete measurements of the total-field
anomaly along a horizontal profile over a very thin, vertical dike.
Assume that you know the direction of magnetization and the depth
to the top of the dike.

(a) Write the equations and describe an iterative scheme that uses
Taylor’s series to find the depth extent of the dike.

(b) Write a computer program that implements your scheme. Use
Subroutine B.15 in Appendix B, or one like it, to calculate the
total-field anomaly over various thin, vertical dikes and use these
anomalies to test your algorithm.

2. The vertical magnetic field of a buried dipole is measured at five
locations on the z = 0 plane as follows:

Coordinates, m B,, nT

(0,0,0) 1730
(—10,0,0) 385
(0,—10,0) 285

(0,10,0) 20

(10,0,0) —75

Assume that the dipole is located at coordinates (0,0,10) and calcu-
late its inclination, declination, and magnitude in the sense of least
squares.

3. Show that the following bodies satisfy the inequalities discussed in
Section 10.3.2 of this chapter.

(a) A sphere of radius a and uniform density p buried so that its
center is at a depth d (d > a).



10.4 Problem Set 257

(a) (b)

Jo

Fig. 10.16. (a) A very thin dike with dip ¢; (b) a semi-infinite half space with
dip ¢.

(b) A sphere of radius a and uniform magnetization M. Magnetiza-
tion is induced in an ambient field with inclination I and decli-
nation D.

(c) A horizontal cylinder of density p, radius a, and center at depth
d (d > a).

4. Consider total-field anomalies over the two bodies shown in Fig-
ure 10.16. Anomaly (A) is over a very thin dike, and anomaly (B)
is over a semi-infinite half-space. Show that anomaly (A) is the hori-
zontal gradient of anomaly (B).
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Fourier-Domain Modeling

If your experiment needs statistics, you ought to have done a better
experiment.

(Ernest Rutherford)

Fourier is a mathematical poem.
(W. Thompson and P. G. Tait)

The relationship between the dominant wavelengths of a potential-field
anomaly and the size, depth, and shape of its causative source was a con-
tinuing theme of previous chapters. Figure 4.9, for example, shows that
the width of an anomaly produced by a dipole is fundamentally related
to the depth of the dipole. It stands to reason that Fourier analysis, a
methodology that maps functions of space (or time) into functions of
wavenumber (or frequency), might provide insights into the relationship
between potential fields and causative sources. We will see, for example,
that Fourier transformation of the gravity or magnetic anomaly caused
by a layered source immediately separates the anomaly into two multi-
plicative factors: a function that describes the depth and thickness of the
layer and a function that describes the distribution of density or magne-
tization within the layer. The source distribution can be determined in
this case, at least in principle, by simply dividing the Fourier transform
of the anomaly by a simple function that depends on the depth and
thickness of the layer.

Tsuboi and Fuchida [282, 283] were apparently the earliest to apply
Fourier analysis to the interpretation of potential-field anomalies; they
used Fourier series to show the relationship between gravity anoma-
lies and mass distributions, both two and three dimensional, confined
to horizontal planes. In the 1960s, a number of authors used Fourier
analysis in the interpretation of marine magnetic anomalies, notably

258
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Gudmundsson [106, 107], Heirtzler and Le Pichon [122], and Neidell [195].
Harrison [116] has provided a good review of this general topic. At about
the same time, Bhattacharyya published several key papers [14, 15, 16]
on Fourier analysis of gravity and magnetic anomalies. Perhaps his most
significant contribution in this regard [16] was his recognition that many
operations, such as upward continuation and reduction to the pole, are
relatively simple linear relationships in the Fourier domain.

We begin here with a brief review of Fourier transforms and linear
systems analysis, and then derive the Fourier transforms of anomalies
caused by simple sources, such as dipoles, monopoles, and line sources.
These simple Fourier transforms provide a foundation for the treatment
of more complicated magnetic and gravity sources.

11.1 Notation and Review

A brief review of Fourier analysis and linear systems analysis is presented
here. For more complete discussions, the interested reader is referred to
textbooks by Lee [162], Bracewell [42], and Papoulis [202].

11.1.1 Fourier Transform

Most textbooks devoted to Fourier analysis focus on functions of time.
Consequently they employ time-related terms such as “frequency,” “pe-
riod,” and “time domain.” In this chapter, however, we will be concerned
primarily with the analysis of functions of distance, such as the behav-
ior of gravity or magnetic fields as measured on specified surfaces. To
minimize confusion, we will use terms relevant to functions of distance
(e.g., wavenumber, wavelength, space domain) and reserve time-related
terms for when temporal analogies are required.

The Fourier series was discussed briefly in Chapter 6. In short, a peri-
odic function can be synthesized by an infinite sum of weighted sinusoids,
where the weights of the sinusoids are determined through analysis of
the periodic function. For example, if f(z) is a function that repeats
itself over an interval X, it can be represented as

fle)y= > Fne*, (11.1)

n=—od
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where k,, = 2—}}—" and ¢ = v/—1. The weights F}, in this summation are
complex numbers and can be determined with the integral

1 zo+X
Fn=3(— / f(z)e Hn® dy . (11.2)
o

Exercise 11.1 Show that equation 11.1 and equation 6.1 are equivalent

representations of f(z), where F,, = 1(an — ibn).

Now suppose that f(z) does not repeat itself over a finit . segment of
the x axis. Instead we require that f(x) be reasonably well behaved and
have its variation confined to a finite-length segment of the x axis. In
other words, we will require that

[ 5@l <o, 113)

It stands to reason that gravity and magnetic anomalies satisfy this prop-
erty if the survey extends well beyond the lateral extent of all causative
bodies. Then letting X — oo in equation 11.2 provides the Fourier trans-
form of an aperiodic function f(z),

F(k):/f(x)e‘““dx. (11.4)

Exercise 11.2 Use Gauss’s law to show that gravity and magnetic anomalies
measured along a horizontal profile satisfy inequality 11.3, given that all
sources are restricted to a localized region below the profile.

The variable k in equation 11.4 is called wavenumber and has units of
inverse distance; it is analogous to angular frequency in time-domain
Fourier transforms, which has units of inverse time. Wavenumber is in-
versely related to wavelength A, that is,

27
=5
Notice from equation 11.4 that the Fourier transform of a function f(z)

evaluated at k& = 0 is simply the average of f(x) over the entire z axis,
that is,

k
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The Fourier transform F(k) is, in general, a complex function with
real and imaginary parts, that is, F'(k) = ReF(k)+iImF' (k). It also can
be written as

F(k) = |F(k)|e*®®,

where

D=

IF (k)| = [(ReF () + (ImF(k))?] ",

_ ImF (k)
O(k) = arctan ReF(k)
The functions |F(k)| and ©(k) are called the amplitude and phase spec-

trum, respectively. The total energy of f(x) is given by
= [ 1o,

and |F(k)|? is called the energy-density spectrum.

Of particular importance is the fact that the Fourier transform has
an inverse operation. Analogous to equation 11.1, the inverse Fourier
transform is given by

o0

/ F(k)e™*® dk . (11.5)

—0o0

1
flz) = o
If f(z) satisfies inequality 11.3, then the Fourier transform F(k) exists
and satisfies both equations 11.4 and 11.5.

The discussion thus far has dealt with a function of one variable, but
the Fourier transform can be extended easily to functions of two vari-
ables. The Fourier transform of f(z,y) and its inverse Fourier transform,
for example, are given by

F(ke, ky) = / / F (@) e s gy, (11.6)
1 T 7 .
f(x,y)zm/ /F(kx,ky)e’(k”kyy)dkxdky, (11.7)

where k; and ky are inversely related to wavelengths in the = and y
directions, respectively: k; = 2m/\; and k, =27 /)\,.
It is important to note that f(z) and F(k) are simply different ways of
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looking at the same phenomenon. The Fourier transform maps a function
from one domain (space or time) into another domain (wavenumber or
frequency). Consequently, the following discussion will refer to the space
domain and the Fourier domain as two different frameworks to view the
same phenomenon.

In the remainder of this chapter and in the subsequent chapter, the
Fourier transform of a function f(z) will sometimes be denoted by the
shorthand notation F [f], that is,

Flf] = / f(z)e " dz .

11.1.2 Properties of Fourier Transforms

The Fourier transform has a number of important properties that will
be particularly useful in later discussions and derivations. Some of these
properties are described subsequently. The proofs are straightforward
and left to the exercises. As a shorthand notation in the following,
f(z) « F(k) should be read “f(z) has a Fourier transform given by
F(k).”

Symmetries

If f(z) « F(k), and if f(z) is a real function, then F(k) has a real
part that is symmetric and an imaginary part that is antisymmetric
about k = 0; that is, if f(x) is real, then F(k) = F*(—k), where the
asterisk denotes complex conjugation, and the Fourier transform of a
real function is said to be Hermitian. Moreover, if F(k) = F*(—k),
then f(z) must be a real function; that is, the Hermitian property is a
necessary and sufficient condition for f(z) to be real.

Linearity

The Fourier transform is a linear operation. For example, if fi(z) <
Fy(k) and fa(z) < Fa(k), then

[a1f1(2) + a2f2(2)] & [a1F1(k) + a2 Fa(k)]

where a; and ay are arbitrary constants.
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Scaling
If f(z) & F(k), then

1 k
flaz) — mF (a> ,

where a is an arbitrary constant. This implies that the = interval con-
taining most of the energy of f(x) is inversely related to the bandwidth
containing most of the energy of F(k). In terms of gravity or magnetic
anomalies, the scaling property shows that a broad anomaly will have a
narrower amplitude spectrum than will a narrow anomaly. Because the
width of an anomaly is directly related to the depth of its source, we
can expect that the narrowness of a Fourier-transformed anomaly also
will be related to depth of source.

Shifting
Shifting a function along the z axis in the space domain is equivalent to

adding a linear phase factor to the function’s Fourier transform; that is,
if f(x) — F(k), then

f(z — z) = F(k)e ok

Note that the amplitude spectrum and the energy-density spectrum of
f(z) are unaffected by a shift of f(z) along the z axis.

Differentiation

Differentiation of a function in the space domain is equivalent to multi-

plication by a power of wavenumber in the Fourier domain. For example,

if f(z) « F(k), then

d’n.

@Zf(z) — (k)" F(k). (11.8)

If the function depends on two variables and if f(x,y) — F(ks,ky), then
ot om . .
%——aymf(w,y) = (ike)" (iky)™ F(kz, ky) - (11.9)

We will have much use for this theorem in subsequent discussions.

Exercise 11.3 Prove each of the preceding properties (symmetry, linearity,
scaling, shifting, and differentiation). In each case, start with the defining
equations 11.4 and 11.6.
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11.1.3 Random Functions

Suppose r(z) is a random function of z extending to infinity in both the
4z and —z directions. By a random function, we mean that the value
of r(z) at any particular z is defined by a random process and cannot
be precisely predicted in advance. For example, the magnetization of an
infinitely extended, horizontal slab would constitute a random function
if the magnetization at any x could be described by, say, a Gaussian
probability distribution. In such cases, r(z) does not satisfy inequal-
ity 11.3 and does not have a Fourier transform. Still we should be able
to describe how the power of such a random function is distributed in
the Fourier domain.

Wiener Theorem

To see how this might be done, we need the definition of the autocorre-
lation function. First consider a function f(z) that does satisfy inequal-
ity 11.3 and does have a Fourier transform F(k). The autocorrelation in
this case is

é(z) = / [ +a') f() do!

(Lee [162]), and the Fourier transform of the autocorrelation is given
by F(k)F*(k) = |F(k)|2. Hence, if f(x) has a Fourier transform, its
energy-density spectrum and its autocorrelation are Fourier transform
pairs.

This relationship between autocorrelation and the energy-density spec-
trum can be extended to random functions. Although the Fourier trans-
form of a random function may not exist, the autocorrelation of the
random function in many cases can be derived and will have a Fourier
transform. Hence, we can find a representation for the energy of r(z),
analogous to the energy-density spectrum, by first calculating an auto-
correlation appropriate for random functions,

X
— 3 1 / ! !
P(z) = Jm o / r(@)r(z+z')dz (11.10)
'
(Lee [162]), and then Fourier transforming the autocorrelation

®(k) = / (z)e™* d . (11.11)
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This relationship is called the Wiener theorem for autocorrelation, and
the function ®(k) is called the power-density spectrum of the random
function.

Ensemble Average

Of course, we never will have a complete description of r(z) with which
to solve completely equation 11.10, but there is another way to estimate
the autocorrelation if we know its probabilistic behavior. To this end,
assume that r(z) describes a stationary process and let P.(p) describe
the probability that r(x) has the value p at any given z. Suppose first
that we wanted to find the average value of r(x). The average of r(x)
can be estimated in two ways: We could simply average r(z) over a long
section of z, or we could statistically average over all possible realizations

of the random process. The equivalence of these two averages is expressed
by

lim L r(z)dz = /pPT(p)dp. (11.12)

The right-hand side of equation 11.12 is an ensemble average and ex-
presses the expected value of r(x).

Now note from equation 11.10 that the autocorrelation is simply a
spatial average of r(z)r(z’ + z). We should be able to equate this to
an ensemble average analogous to the right-hand side of equation 11.12.
Lee [162] showed that if P, .,(p1,p2;x) is the joint probability that
r(z) = p1 at any x and r(z) = p2 a distance x away from z, then the
autocorrelation is given by

$(x) = / / P2 92 Pryoraprs pi x) dps dpo (11.13)

—00 =0

Equations 11.10 and 11.13, therefore, show two ways to derive the auto-
correlation of a random function. The first averages r(z) r(x + z’) over
all space, the second is an average over all members of the ensemble.
Most important, the power-density spectrum of a random function can
be derived from a model of its probabilistic behavior through the use of
equations 11.13 and 11.11.

Exercise 11.4 Assume that r(z) is an uncorrelated function with an am-
plitude at any x predicted by a Gaussian normal distribution with zero
mean. What is the autocorrelation and power-density spectrum of r(x)?
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11.1.4 Generalized Functions

Earlier chapters have made much use of the impulse §(x) function. In
Section 2.3, for example, an impulse was used to represent a point mass
in Poisson’s equation. We have treated it much like an ordinary function,
but it really is not a function in the usual sense. Because §(x) has unit
area and because §(z) = 0 when z # 0, the impulse is not only discon-
tinuous but also has infinite magnitude at « = 0. Indeed, the impulse is
defined in terms of other more ordinary functions, as in the definition

fao) = [ F(s)8(a = 20)da, (11.14)

where f(z) is an integrable function. In other words, when the impulse
is employed as a weighting function for f(x), it provides a value of f(x)
at a single value of z. It follows from equation 11.14 that

o0

50 = [ f@ 6@ as, (11.15)
and
/ §(z)dzr =1

It can be seen from these relationships that the Fourier transform of an
impulse is given by

o0

Flé(z)]= / 8(z)e " da

— 00

=1.

11.1.5 Conwvolution

The convolution of two functions f(z) and ¢(x) is given by the integral

h(ac):/f(ac’)g(ac—ac’)dac', (11.16)
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or, for two-dimensional functions,

y>=//f:c V)@ — 'y —y') de’ dy’ . (11.17)

The convolution integral has a simple physical meaning which can be
seen by considering an electrical circuit. Suppose that we have the abil-
ity to submit a current to one part of this circuit and measure the re-
sulting voltage at another part, as shown schematically in Figure 11.1.
Suppose further that a current pulse of very short duration (i.e., an im-
pulse) submitted to the circuit at time ¢ = 0 results in a voltage g(t).
The response of the circuit to an impulsive input is called its impulse re-
sponse. Electrical circuits are approximately linear systems, so it stands
to reason that another impulse submitted ¢y seconds later would produce
an identical response delayed by exactly ¢y seconds; that is, the voltage
would be g(t — tp). A series of impulses at times t1,ts, ... and weighted
by a1, as,... would result in the output a1g(t — t1) + azg(t — t2) + - -
In other words, the response to a series of impulses is simply a linear
combination of impulse responses. As the impulses are made arbitrarily
close together, the input to the circuit becomes a continuously varying

fit) = &1) g(1)

Linear System /\

N

fit) = &1) + &r-t,)
g(t) + g(t-1,)

=N
— Linear System >
L

Fig. 11.1. An electrical circuit is approximately a linear system. If an impulsive
input results in a response g(t), then a series of impulses will produce a linear
combination of g(t).
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current. It should be clear that, at this limit, the output voltage will be
a continuous combination of impulse responses.

The convolution integral, equation 11.16, is the mathematical expres-
sion of this linear relationship between input and output, where f(z) is
the input and h(z) is the output. Accordingly, if f(z) is an impulse in
equation 11.16, we see from the definition of an impulse (equation 11.14)
that

[ee]
[ #e)ate—a)de! = g(a),
— 00
and g(z) is the impulse response. It is also easy to show that if the
impulse is displaced by a distance zy and amplified by ag, the impulse
response is similarly delayed and amplified,
o]
[ aoste’ = zo)gte - o) ds’ = angl - aw),
— 00
which is exactly the property of the electrical circuit. In general, a se-

ries of weighted impulses produces an output consisting of a series of
weighted impulse responses,

/ (a16(x' — x1) + azd(z’ — z2) + -+ )g(z — o) dz’
= a1g(z — 1) + azg(x — x2) + -

In the limit, the series of weighted impulses becomes a continuous func-
tion f(z), and the convolution integral (equation 11.16) represents the
continuous output h(z) resulting from this continuous input.

Fourier-Convolution Theorem

A very important property of linear systems can be seen by transforming
the convolution integral to the Fourier domain. If the convolution of f(x)

and g(z) produces a function h(z), the Fourier transform of h(z) is given
by

H(k) = F(k) G(k), (11.18)

where f(z) « F(k) and g(z) —< G(k). Similarly, for two-dimensional
functions,

H(kzaky) :F(kzaky) G(kzaky)- (11'19)

Exercise 11.5 Prove equation 11.18.
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Thus convolution in the space (or time) domain transforms to multipli-
cation in the Fourier domain.

This relationship between convolution in the space (or time) domain
and multiplication in the Fourier domain is important for several rea-
sons. First, suppose that g(x) is the impulse response of a linear system;
when f(z) is submitted to the system, we can expect the output to be
h(z). Further suppose that g(z) is known on theoretical grounds so that
G(k) can be derived. We might be very interested in finding the input to
the system that resulted in some measured output, and equation 11.18
in principle provides a straightforward way to make this analysis: (1)
Fourier transform h(z) to get H(k), (2) divide H(k) by G(k) to get
F(k), and (3) inverse Fourier transform F(k) to get f(z). Second, equa-
tion 11.18 (or equation 11.19) provides a straightforward description of
how the wavenumber (or frequency) content of any input will be trans-
formed by the linear system. The energy-density spectrum of any input
will be multiplied by |G(k)|2.

Just as the convolution of two functions of space has a Fourier trans-
form given by the product of the Fourier transforms of the two functions,
it is easy to show that a similar relation holds for convolution in the
Fourier domain. If f(z), g(x), and h(z) have Fourier transforms given
by F(k), G(k), and H(k), respectively, and if h(z) = f(z) g(z), then

o

Hk) = % / FK) Gk — &) dk . (11.20)

—00
A similar relationship can be written for two-dimensional functions.

Exercise 11.6 Prove equation 11.20.

Parseval’s Formula

The total energy of a real function f(x) can be found by either integrat-
ing f2(x) over all space or by integrating the energy-density spectrum
of f(z) over all k. This relationship is expressed by Parseval’s formula:
If f(x) is real and if f(z) < F(k), then

o 7 |f(z)? dz = 7 |F (k)| dk.

Parseval’s formula is easily derived from equation 11.20 by letting g(z) =

f(z).
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11.1.6 Discrete Fourier Transform

The preceding discussion has treated convolution and Fourier transforms
of continuous functions. In practice, we must deal with sampled data,
and this limitation has profound effects on the kind of information avail-
able through Fourier analysis. Bracewell [42] provides a general review
of this aspect of Fourier transforms, and Cordell and Grauch [69] and
Ricard and Blakely [244] have discussed its limitations in the context of
potential-field data. Appendix C briefly reviews sample theory; here we
summarize the most important results.

The Fourier transform of sampled data is known as the discrete Fourier
transform. It has limitations at both the longest and shortest wave-
lengths. It should be clear, for example, that wavelengths less than twice
the sample interval cannot be represented adequately by the discrete
Fourier transform. This limitation is expressed in the Fourier domain
in an interesting way: The discrete Fourier transform is periodic with a
period inversely proportional to the sample interval.

Consider N sequential samples of f(x) evenly spaced at Az intervals.
If we assume that f(x) is zero beyond these N samples, then we can
consider N to be effectively infinite. In this case, the discrete Fourier
transform Fp(k) is related to the true Fourier transform F(k) by the
sumrmation

oo

Fo =55 3 (k-3

j=—oc0

(see Appendix C). At any given ko, we obviously would like for Fip (ko) to
equal F'(ko). Unfortunately, according to the previous equation Fp (ko)
actually equals F'(kg) plus F(k) evaluated at an infinite number of other
wavenumbers. This “self-contamination” is known as aliasing. The pe-
riod of the discrete Fourier transform is ks = 27/Az, and k; is called
the sampling wavenumber; half of the sampling wavenumber (7/Azx) is
called the Nyquist wavenumber. Because the discrete Fourier transform
repeats itself each 27/Ax, all unique information lies between +7/Az.
Hence, the Nyquist wavenumber is the largest wavenumber at our dis-
posal. Note that it has a wavelength of twice the sample interval.

As we will see shortly, potential-field anomalies, like many physical
phenomena, can be considered to be band-limited, that is, they have
Fourier transforms that decay with increasing wavenumber. Hence, the
contaminating high-wavenumber terms in the foregoing summation may
be relatively small, especially if the sample interval is made sufficiently
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small relative to the significant wavelengths of f(x). These principles are
important considerations in developing a digitizing strategy.

Numerous algorithms are available to perform the discrete Fourier
transform. Many of these employ a manipulation called doubling (Claer-
bout [60]) that makes them computationally efficient; such algorithms
are called fast Fourier transforms. Appendix B provides two such sub-
routines. Subroutine B.16 is from Claerbout [60] and performs the one-
dimensional discrete Fourier transform. Subroutine B.17 is from Press
et al. [233] and performs multi-dimensional transforms.

11.2 Some Simple Anomalies

Using the principles of the previous section, we now can derive the
Fourier transforms of potential fields caused by a variety of simple sources,
such as dipoles, monopoles, lines, and ribbons. This effort will be well
spent; these transforms will form the foundation for more complex grav-
ity and magnetic sources, eventually leading to a wide variety of applica-
tions, including forward and inverse calculations, upward continuation,
and depth-to-source estimations.

Let r describe the distance between point P located at (x,y,2) and
point @ at point (z’,y’,z’). The Fourier transform of 1/r is the cor-
nerstone of this discussion because potential fields depend on various
derivatives of 1/r. With the Fourier transform of 1/r in hand and with
the aid of the differentiation theorem (Section 11.1.2), subsequent deriva-
tions will be relatively straightforward. Spector and Bhattacharyya [267)
used the same sort of strategy in deriving energy-density spectra and au-
tocorrelation functions for dipole and line-source anomalies.

We will confine P to a horizontal plane at height z; and, for the
moment, consider @ to be fixed and located on the z axis at (0,0, 2},
where 2’ > 2y (Figure 11.2). The two-dimensional Fourier transform of
1/r is given by

o0 o0
1 1 ,
Fl=|= / / e~ kaz k) d dy .
[7’] Va2 +y2 + (20 — 2')2 v

—00 —00

We can simplify this equation considerably by noting that the function
1/r is cylindrically symmetrical about the z axis and by converting the
integral to polar coordinates. If we let

T =acos,
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Q(0,0.2")

Fig. 11.2. Coordinate system for the derivation of Fourier transformed anoma-
lies caused by point sources. Field is measured on a horizontal surface at 2,
and source is located on the z axis at 2’.

y=asinb,
ky =k cos ¢,
ky = ksin ¢,

a=z?+y?
k=4/k2+ k2,

w=2zy— 2,

the two-dimensional Fourier transform of 1/r becomes

21 oo
|: :| // —iakcos(9—¢) adadd
Va? +w?

o 27

—iak cos b
/\/m [/0 e dﬁ} ada.
0

The integral over 6 has the form of a zeroth-order Bessel function,

27

1 .
Jo(z) = %/e—mowda,

0
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Table 11.1. Fourier transforms of anomalies caused by simple sources.®

Type of Source Fourier Transform Eqgn.
Vertical attraction of gravity
Monopole (uniform sphere) 2nypelklzo—2") 11.22
Vertical line TRelklzo (g Iklzn _ mIklz2) 11.23
Horizontal line (uniform cylinder) 2myAelkl(z0==") 11.27
Vertical ribbon %elk‘zo (e~ lklzr _ o= lklz2) 11.28
Total-field anomaly
Dipole (uniform sphere) 27Cmm @m@f|k|e|k|(z°_z,) 11.25
Vertical line 21Cmm’ O, Osel*170 (e 1klz1 _ g=lklz2y 17 96
Horizontal line (uniform cylinder) 2rCnm’ ©',6%|kle*!(z0=2") 11.29
Vertical ribbon 2nCmm” O/, 04elk170 (e~ 1klz1 _ g=lklz2y 17 30

2Note: Observation surface is z = 2¢. Point sources are located at (0,0, z'); vertical
lines and ribbons extend from (0,0, 21) to (0,0, z2). u is mass, A is mass per unit
length, and o is mass per unit area; m is dipole moment, m’ is dipole moment
per unit length, and m’’ is dipole moment per unit area. See text for definitions
of O, 6, O, and ©f. In each case, 20 < 2/, 29 < 21, and 21 < 22.

and making this substitution into the Fourier transform produces a Han-
kel transform of zeroth order

1 T
F |- =27r/—J ak)ada.

H | Ve PR
This integral illustrates a general result: The two-dimensional Fourier
transform of a cylindrically symmetrical function reduces to a Hankel
transform. The solution of this particular Hankel transform is given by
Bracewell [42]:

1 elkl(z0—2")
F [—] = QFT, 2 > 29, k| #£0. (11.21)
Bhattacharyya [15] found the same expression using a different deriva-
tion. From equation 11.21, we can easily derive the Fourier transform of
the potential fields caused by a number of simple sources. The deriva-
tions follow, and the important results are repeated in Table 11.1.

We should note in passing that, although we have found a suitable
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expression for F [1], 1/r does not satisfy inequality 11.3 because the
integral

[c olENe o}

// dx dy // adadb
VaZ+y2 + (20— 2') Va2 + (20 — 2')?

— 00 —
7 d
271—/ i 2
J + (20 — 2)

is not finite. Hence, the Fourier transform of 1/r does not exist in the
rigorous sense of inequality 11.3, a fact expressed in equation 11.21 by the
undefined nature of F [1] at infinite wavelength (Jk| = 0). We can take
some solace in the fact that any spatial derivative of 1/r (and therefore
gravity and magnetic anomalies in general) does satisfy inequality 11.3.

Exercise 11.7 Show that any horizontal derivative of 1/r has a Fourier
transform.

11.2.1 Three-Dimensional Sources

In this section and the next, the Fourier transforms of several simple
two- and three-dimensional sources will be discussed. The terminology
herein can be a source of confusion. The anomaly of a three-dimensional
body (e.g., a sphere) is appropriately measured on a two-dimensional
surface, and to study the anomaly in the Fourier domain requires a two-
dimensional Fourier transform. Likewise, a two-dimensional source (e.g.,
a cylinder) is measured along a profile that requires the one-dimensional
Fourier transform. We will continue to refer to sources as either two-
or three-dimensional in accordance with their geometries, with the un-
derstanding that their anomalies are analyzed in the Fourier domain in
either one or two dimensions, respectively.

Monopole

Consider the Fourier transform of the gravitational potential observed
on a horizontal plane at z = zp and caused by a point mass (equivalent of
course to a spherical mass with uniform density) located below the plane.
The Fourier transform of this potential can be written immediately from
equation 11.21. The gravitational potential of a point mass p is given by
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U = yu/r, where v is the gravitational constant; the Fourier transform
of this potential observed on a horizontal plane is simply

F U] =ypuF H

olkl(z0—2")

Kl

=2myp 2> 2.

Gravitational acceleration g is related to the potential by the equation
g = VpU, so any component of g is simply a directional derivative of
U. In particular, the vertical attraction of gravity due to a point mass
is the vertical derivative of yu/r, that is,

01
9 =Wy

Observed on a horizontal plane, this field has a Fourier transform given
by

= 2mypelFl(0=2") P (11.22)

A number of important characteristics of gravity anomalies can be
seen from equation 11.22 and are illustrated by Figure 11.3(a). Maximum
energy of the gravitational field occurs at |k| = 0, and the value of the
energy-density spectrum at |k| = 0 is proportional to the total mass; the
proof of this assertion is left to the problem set at the end of this chap-
ter. Energy decreases exponentially with increasing wavenumber; that
is, the energy at each wavelength dominates the energy at all shorter
wavelengths. Moreover, the rate of decrease in energy with respect to
wavenumber depends on the depth to the mass; the deeper the mass,
the less significant are short wavelengths as compared with longer wave-
lengths of the anomaly. In other words, equation 11.22 and Figure 11.3
show that the gravity anomaly is approximately band limited; although
all wavenumbers contribute to the anomaly, the largest wavenumbers
are relatively insignificant.
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Fig. 11.3. Energy-density spectra of anomalies caused by some simple bodies.
(a) Monopole at depth 1 km; (b) vertical line mass with top at 1 km and
bottom at 2 km; (c) dipole at depth 1 km; (d) vertical line of dipoles with top
at 1 km and bottom at 2 km. Vertical axes are normalized to one.

Vertical Line Mass

Consider the gravitational attraction observed on a horizontal plane and
caused by a vertical wire extending along the z axis from (0,0, 2;) to
(0,0, z2), where zo > z1, as shown by Figure 11.4. Let the mass of one
element of the wire be p = Adz, where X is mass per unit length. The
Fourier transform of this field is found by integrating equation 11.22
along the z axis from z; to zo,

z2
Flg.]= 27r'y/\/e|k'(z°—z,) dz'
21

21y

= ] elklzo (g=lklzr _ olklz2) 50 5 21 21 > 2. (11.23)
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Fig. 11.4. Vertical line source located along the z axis between z1 and z2 and
observed on a horizontal surface z2o < 21.

Figure 11.3(b) shows the energy-density spectrum of this Fourier trans-
form; it has a shape very similar to that of an isolated point mass.

Exercise 11.8 Notice in F igure 11.3 that the energy of the field caused by
a vertical wire decays more rapidly with increasing & than for a point
mass. Why is this so?

Magnetic Dipole

The magnetic potential of a dipole with dipole moment m — mm is
given by equation 4.13,

1
V= —C'mm 4 VP-

’
o Ol 01 9
B R ~pe myayr i meg B

where Cy, is a constant as discussed in Chapter 4. This is, of course, iden-
tical to the potential of a uniformly magnetized sphere with magnetiza-
tion equal to m divided by the volume of the sphere. The Fourier trans-
form of this potential, as observed on a horizontal plane (Figure 11.2),
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is given by application of equation 11.9 to equation 11.21:

. 01 . 21 . 21

L 1 . . 1 . 0 1
=—Clmm <mw1kcc]: |:;:| +mylky]: |:;:| —I—mz&}' |:—:|>

P

= —27Cmm O elFlz0=2") 1 5 o (11.24)

where

O, = 1, + i zke TRy |:| My ky

is a complex function of k; and k, that depends only on the orientation
of the dipole.

The magnetic field is related to the potential by the equation B =
—VpV, so any component of B can be found by deriving a directional
derivative of V. For example, the total-field anomaly is given approxi-
mately by

AT =—f.-VpV
. 0 . 9 . 0
——fxav—fya—yv—fza‘/,

where f is the unit vector parallel to the ambient field. Therefore, ob-
served on a horizontal plane, the Fourier transform of the total-field
anomaly is

FIAT)=-f.F [%v} v [%V] — f.F [%V]
= —ifek F V]~ if R F V)~ fon P [V,
and combining this equation with equation 11.24 yields
F[AT] = 27Cqum OO || ef1z0=2) 57 5 o (11.25)
where

6 = . 4 idehe t oy,

Exercise 11.9 As discussed in Section 11.1.2, the Fourier transform of any
real function must be Hermitian. Show that this is indeed the case for
the Fourier transform of the total-field anomaly of a dipole.
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In equation 11.25, note that the orientations of vectors m and f are
contained entirely within ©,, and ©¢, respectively, whereas the depth
of the dipole is contained exclusively within the exponential term. This
separation of source distribution and source location into multiplicative
factors is an important attribute of Fourier-transformed potential fields
that will be exploited later in this chapter.

The functions ©y, and ©; behave in interesting ways. Although they
both are variables of k; and k,, they assume constant values along any
ray projected from the origin. This can be seen by converting &, and &,
to polar coordinates. In general, the value along each ray differs from
neighboring rays, and rays on opposite sides of the origin are complex
conjugates of one another. Consequently, the imaginary parts of ©, and
O are discontinuous through the origin. The average of B, and ©; along
any circle concentric about the origin is given by

2w
i/@mdQS:ﬁ"LZ
27

0

and

27
1 X
o [erds =1,
T

0

respectively. Hence, although ©,, and ©¢ are not radially symmetric
in general, they have average values along any concentric circle that
are independent of the radius of the circle. It follows that the shape of
the amplitude spectrum (or energy-density spectrum) of the anomaly
is identical, to within a multiplicative constant, when viewed along any
ray projected from the origin, and the shape of the spectrum along any
ray is proportional to the radially averaged spectrum. Consequently, the
shape of the amplitude spectrum as a function of |k| depends only on
the exponential term of equation 11.25 which in turn depends only on
the depth of the dipole; the shape is independent of the orientation of
the dipole and the orientation of the ambient field.

The energy-density spectrum of the total-field anomaly over a vertical
dipole is shown in Figure 11.3(c). Unlike point masses, the maximum
energy of the total-field anomaly does not occur at |k| = 0, but rather
at a value of |k| that depends on the depth of the dipole.

Exercise 11.10 At what wavenumber, in terms of 2o and z’, does the max-
imum of equation 11.25 occur? What does this imply about the shape
of the anomaly as a function of depth to the dipole?
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At wavenumbers greater than that maximum, the energy-density spec-
trum decays monotonically and approaches exponential decay at high
wavenumbers. Hence, as for the gravity case, any given wavenumber
greater than the maximum wavenumber will dominate all higher wave-
numbers. Note that the energy-density spectrum of the dipole anomaly
falls off much slower with increasing |k| than does the monopole anomaly.
This is to be expected: The field caused by a dipole has shorter wave-
lengths than the field caused by a monopole.

The fact that the energy-density spectrum approaches zero at |k| =
0 is a reflection of Gauss’s law for magnetic sources. As discussed in
Section 11.1.1, the value of the Fourier transform at |k| = 0 equals the
average of the space-domain function over all z and y, and Gauss’s law
tells us that this average must be zero for a magnetic anomaly caused
by any localized source.

Vertical Line of Dipoles

To find the Fourier transform of the anomaly over a vertical line of
dipoles, we simply integrate equation 11.25 along the z axis. Let the
top of the line source be at (0,0, 27) and the bottom at (0,0, z2), as in
Figure 11.4, and let each element of the line have a dipole moment given
by m = m’'dz, where m’ is dipole moment per unit length. Then the
Fourier transform of the total-field anomaly is given by

z2
F[AT] = 2nCpym’ @mef|k|/e*’°l(z0—Z’> dz'
Z1
=27 Cpym’ 0,6 e|k|20_(e‘|k|z1 — e_|k|z2), 2o > 21,21 > 20 -
(11.26)

The energy-density spectrum of this Fourier transform is shown in Fig-
ure 11.3(d).

Exercise 11.11 Consider the vertical magnetic field observed on a hori-
zontal plane and caused by a vertically magnetized, vertical wire that
extends from z; to infinite depth. Show that the Fourier transform of this
field is proportional to the Fourier transform of a gravity anomaly ob-
served on the same plane and caused by a point mass located at z = z;.
Explain why this is so.
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11.2.2 Two-Dimensional Sources

For infinitely extended line sources, equivalent to wires or uniform cylin-
ders, we can consider just single profiles above and perpendicular to the
line source, as shown by Figure 11.5. The one-dimensional Fourier trans-
form of the profile is appropriate in these cases, but the derivations and
results are very similar to the previous section.

Horizontal Line Mass
The vertical attraction at (z, 29) of a wire mass (equivalent to a uniform
horizontal cylinder) infinitely extended parallel to the y axis and passing
through the z axis at z = 2’ (Figure 11.5) is given by equation 3.17,
g:(T) = =27

I

(20 — 2)
2

where X is mass per unit length and r = /22 + (29 — 2’)? is the perpen-
dicular distance from the wire to the observation point. This function
has a Fourier transform given by

Flarl= 2120~ )7 [ 1]

= 2my A elFl(z0=2") 25 <2 (11.27)

P(x,0,2,)

0(0,0,z")

Fig. 11.5. Coordinate system and geometrical arrangement of line sources as
used for derivations of the Fourier transforms of their anomalies. Line source
is parallel to the y axis and intersects the z axis at z = 2’. Field is measured
along a horizontal line above and perpendicular to the line source.
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Note the similarity between equations 11.27 and 11.22. In fact, the ra-
dial energy-density spectrum of the field caused by a monopole, shown
in Figure 11.3(a), is identical in shape to that of an infinitely extended,
horizontal wire mass. All of the comments made earlier, concerning the
Fourier-domain characteristics of the anomaly caused by an isolated
monopole, also hold for the anomaly caused by a wire.

Vertical Ribbon Mass

A vertical ribbon infinitely extended in the horizontal direction is equiv-
alent to a vertical stack of horizontal wires all of infinite length. Let the
ribbon extend from z; to zz in the vertical direction and to infinity in
the +y and —y directions. The field is observed along a single line above
and perpendicular to the ribbon. The Fourier transform of the vertical
gravity field can be found by integrating equation 11.27 along the z axis:

Flgz] =270 / elFl(z0=2) gy

21

2nyo
= ﬁ e““'z"(e_““'z1 — e"k'”), 21 < 22, 22 < 29, (11.28)
where o is mass per unit area of the ribbon. The energy-density spec-
trum of the field caused by this ribbon source is identical in shape to

the energy-density spectrum of a vertical wire extending from z; to z2
(Figure 11.3(b)).

Horizontal Line of Dipoles

The potential at (z,29) due to a line of dipoles infinitely extended par-
allel to the y axis and intersecting the z axis at z = 2’ (Figure 11.5) is
given by equation 5.14

m' -r

2

V =2Cy
r

. . 1

= 2Cy,m/ (ex + M, (20 — ZI))ﬁ ,

where m’ = m/rh is dipole moment per unit length. Note that vector
r lies within the z, z plane. This potential is, of course, identical to the
potential of a uniformly magnetized cylinder with axis at z = z’. The
Fourier transform of the potential, as observed along a horizontal line
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above and perpendicular to the source, is given by
N x N 1
FV]=2Cuym' <m,;]~' [r_z] + 1. (z0 — 2')F [ﬁ])

— 21 Cym/ Oy m/ ek (z0=2") ,

where O, = 7, + i, sgn k. The total-field anomaly is given by

AT =—-f.VpV
LoV L8V
=—fogr —f: 5,

and the Fourier transform of the anomaly is found by application of
equation 11.8 to the previous equation,

F[AT) = 20Cum’ ., 0} |k| eFl(z0—=") (11.29)

where ©f = fo+ifssenk.

Again note the similarity between this result and the Fourier trans-
form of the anomaly caused by a single dipole (equation 11.25). Hence,
Figure 11.3(c) is applicable to the magnetized wire, and many of the
comments made earlier for isolated dipoles also pertain to the magne-
tized wire.

Vertical Ribbon of Dipoles

Finally, we can use equation 11.29 to find the Fourier transform of the
total-field anomaly caused by a vertical magnetic ribbon extending in-
finitely in the +y and —y directions and from z; to z; in the vertical
direction. We simply integrate along the z axis from z; to 23,

F[AT) = 27Cum” ©! Ojelklzo (e~ Iklz1 _ g~ lklz2) (11.30)

where m” is dipole moment per unit area of the ribbon. As before, the
energy-density spectrum of the total-field anomaly caused by a mag-

netic ribbon is identical in form to that of a vertical line of dipoles
(Figure 11.3(d)).

11.3 Earth Filters

The previous section was motivated by more than just an interest in
anomalies caused by simple sources. It also will provide the ground-
work to apply Fourier transforms to more general gravity and mag-
netic sources, eventually leading to both forward and inverse calculations
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and other applications. The keystone in this discussion is the Fourier-
convolution theorem of Section 11.1.5.

Equation 10.5 shows the relationship between a potential field f and
the distribution of source material s:

1P = [ 5@ u(P.Qav, (11.31)

R

where R is the region occupied by source material, P is the point of
observation, @ is one point of the distribution, and ¥ (P, @) is the Green’s
function. Recall that the Green’s function depends on the geometrical
placement of P and @ and is simply the potential field at point P due to
a single element of the source located at @. If f(P) represents vertical
attraction of gravity, for example, then s(Q) is density and (P, Q) is
the vertical attraction at P due to a monopole at Q. If f(P) represents
the total-field anomaly, then s(@) is magnetization and (P, Q) is the
total-field anomaly of a single dipole.

Now suppose that the source distribution is confined to a horizontal
layer with top at z; and bottom at z3. As usual, we will orient the z
axis down so that z; < 2. We also will require the source distribution
to vary in only the = and y directions, which will cause s(Q) to be con-
stant along any vertical line through the layer. With these restrictions,
equation 11.31 becomes

f(z,y,2

8\8
8\8

oo
/ s(z Y -2, y—y,z—2)dx' dy d7’
— 00

s(@,y) / Y@ -2y -y, 2 —2)d di’ dy

21

I
é\g
é\g

s(@',y)E(x — o',y —y')da' dy’ (11.32)

Il
é\g
é\g

which is the two-dimensional convolution integral. The Green’s function
¢ in this case represents the field at (z,y) due to a single element of
the layer, namely, a vertical line element extending from (z',vy’,2;) to
',y z2).

We now assume that the field is measured on a horizontal plane at
height z = zg, where 2z < 2z, and Fourier transform both sides of
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equation 11.32. The Fourier-convolution theorem leads to
Ff1=Fls] FIE; (11.33)

that is, the Fourier transform of the potential field is equal to the Fourier
transform of the source distribution multiplied by F [¢], the Fourier
transform of the Green’s function. In the previous section, several Fourier
transforms were derived that will serve for F [¢]. Equation 11.23, for ex-
ample, describes the Fourier transform of the vertical attraction of a
vertical line, and substituting into equation 11.33 yields

2
Flg.) = Flo] {ﬂ elklzo (g~ Iklz1 _ e-'k'”)} . <z, 2 <z,

|kl
(11.34)
where p is the density of the slab, a function of # and y only. Hence, in
the Fourier domain, the vertical attraction of a horizontal layer is equal
to two multiplicative factors: the Fourier transform of the density and a
function that depends on the depth and thickness of the layer.

Exercise 11.12 Show that equation 11.34 reduces to the “infinite slab
formula,” g. = 2mvyp(22 — 21), if z1, 22, and p are constants. Hint:

f(@)6(x) = f(0)6(x).

For the total-field anomaly, F [£] comes from equation 11.26, and equa-
tion 11.33 becomes

FAT] = F [M] {27rcmemef elklzo (g=lkle _ e-lklzz)} ,
Z20 <21, 21 <22, (11.35)

where M is magnetization, a function of z and y only. As before, the
Fourier transform has separated the total-field anomaly into two factors:
the magnetization and a function that depends on other attributes of
the layer, namely, its depth, thickness, and direction of magnetization.

Exercise 11.13 Use equation 11.35 to show that a uniformly magnetized,
infinite slab produces no magnetic field.

If the magnetization or density varies in only one horizontal direction,
then equation 11.31 reduces to a single convolution integral,

f(z) = / s(2')E(x — 2') da

where s(x) is the source distribution of a horizontal layer. The Green’s
function in this case is the field caused by a vertical ribbon extending
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from z; to 22 in the vertical direction and infinitely extended parallel
to y. In the Fourier domain, therefore, F [£] is given by equation 11.28
for the two-dimensional gravity case and by equation 11.30 for the two-
dimensional magnetic case.

Exercise 11.14 What form would equations 11.34 and 11.35 take if density
and magnetization were confined to a vanishingly thin plane?

The function F [€] in equation 11.33 relates the spectrum of the po-
tential field to the spectrum of the causative source in a very simple way.
It not only provides insights into the spectral relationship Letween field
and source, but it also facilitates a simple calculation of one from the
other. Two landmark papers by Schouten [252] and Schouten and Mc-
Camy [253] discussed these principles in detail for the two-dimensional
magnetic case. They called F [£] the earth filter; here we will apply the
term generally to both gravity and magnetic fields and to both two- and
three-dimensional situations.

Forward Calculation

Equations 11.34 and 11.35 permit a calculation of the vertical gravity
anomaly or total-field magnetic anomaly from a given distribution of
density or magnetization, respectively, when the distribution is confined
to a horizontal layer and varies in only horizontal directions. The steps
are to (1) Fourier transform s(z,y), (2) multiply by the earth filter, and
(3) inverse Fourier transform the product. Algorithms B.18 and B.19 in
Appendix B show the application of these three steps to gravity and mag-
netic sources, respectively. These subroutines treat the three-dimensional
case and employ the two-dimensional discrete Fourier transform. Sim-
ilar algorithms could be developed for the two-dimensional case using
the one-dimensional discrete transform (Subroutine B.16).

The spectrum of the field caused by a layer source, therefore, is equiv-
alent to the spectrum of the source distribution after “shaping” by the
earth filter. The earth filter in this case is merely the Fourier transform
of the anomaly caused by a vertical line element, so all of the earlier
comments regarding these line-element transforms are applicable here.
Moreover, the energy-density spectra shown on Figure 11.3 also reflect
the spectra of their respective earth filters. For example, Figure 11.3(a)
shows that the contributions of p(z,y) to a gravity anomaly g,(z,y)
will be attenuated exponentially as a function of increasing wavenum-
ber, and the rate of that attenuation will increase with increasing depth
to the layer. It follows that the &k = 0 component of p(z,y) will be least
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attenuated. Put another way, the gravity anomaly will always be
smoother than the density distribution, in the sense that all wavenum-
bers (except |k| = 0) of the gravity anomaly are attenuated relative to
the density distribution; the higher the wavenumber (shorter the wave-
length), the greater the attenuation.

Exercise 11.15 Show that when p(z,y) is a constant, equation 11.34 re-
duces to the infinite-slab formula (equation 3.27). Hint: L’Hospital’s rule
is helpful.

Likewise, many of the comments of Section 11.2.1 concerning verti-
cal lines of dipoles are relevant to the earth filter for a magnetic layer.
In particular, the earth filter for a magnetic layer has its maximum
value at a wavenumber kpy.x that depends on the depth and thickness
of the layer (Figures 11.3(c) and 11.6). Hence, the |k| = kmax compo-
nent of magnetization will be less attenuated than all other wavenum-
bers in the total-field anomaly. Notice in Figure 11.6 that kmax shifts
to higher wavenumbers (shorter wavelengths) as depth of the layer de-
creases. Wavenumbers higher than k,.x are each attenuated less than
all higher wavenumbers, and this attenuation approaches exponential
decay at high wavenumbers. The rate of attenuation with increasing
wavenumber increases with increasing depth to the magnetic layer. The
k = 0 component of magnetization is eliminated entirely by the earth
filter.

Exercise 11.16 Use equation 11.35 to show that a uniformly magnetized
slab produces no magnetic anomaly.

Parameters that determine the location and shape of the source (i.e.,
the depth and thickness of the layer) are restricted to the exponential
terms of equation 11.35; they influence the behavior of the earth filter as
a function of |k| only. On the other hand, the direction of magnetization
and the direction of the regional field are restricted entirely to the func-
tions O, and By, respectively. The direction of magnetization and the
direction of the regional field, therefore, have no effect on the behavior
of the earth filter as a function of |k|, but they completely control its
phase. For example, if the magnetization and regional field are directed
vertically (th, = 1y = fo = f, = 0), then O, and ©; will be real
constants. This implies that the phase of the source distribution and the
phase of the anomaly will be identical when magnetization and regional
field are vertical; for example, if M (z,y) is symmetric about the origin,
AT(z,y) also will be symmetric. On the other hand, if magnetization
is horizontal (7, = 0) and the regional field is vertical ( fo = fy = 0),
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Fig. 11.6. Examples of the earth filter for a magnetic layer. Parameters z; and
t represent depth and thickness of the layer, respectively, in km. Magnetization
and regional field are vertical. (a) Various depths to the layer with ¢ = 1 km;
(b) various layer thicknesses with z; = 3 km.

O, will be an imaginary function of k; and k,, and ©; will be a real
constant. The earth filter in this case will be purely imaginary. In the
space domain, this implies that if M(x,y) is symmetric about the origin,
AT(x,y) will be antisymmetrical.

Inverse Calculation

For a density or magnetization distribution confined to a layer, the for-
ward calculation was a simple matter of multiplying the Fourier trans-
form of the source distribution by the appropriate earth filter. It would
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Fig. 11.7. The inverse earth filter for a magnetic layer at various depths. Thick-
ness of layer is 1 km. Magnetization and regional field are vertical. Parameter
z1 indicates depth to top of layer.

seem that the inverse calculation would be just as simple; that is, divid-
ing both sides of equation 11.33 by the earth filter yields

Flsl=FIf1F 1, (11.36)

where F~1[¢] is the inverse earth filter. To calculate density or magne-
tization from a measured anomaly, therefore, we might try the following
steps: Fourier transform the potential field, multiply by F~![£], and
inverse Fourier transform the product. Unfortunately, as discussed in
detail by Schouten [252], this inverse method is not as straightforward
as it seems.

Figure 11.7 shows the amplitude of the inverse earth filter 71 [¢] for
a magnetic layer located at various depths. Notice that the amplitude
approaches infinity at both high and low wavenumbers. In the case of
gravity fields, the low wavenumbers pose no problem, but high wavenum-
bers similarly approach infinite amplitudes. Consequently, application
of the inverse earth filter to measured gravity or magnetic fields will in
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general cause the highest wavenumbers to be greatly amplified. More
important, any noise contained within the potential-field measurements
will be similarly amplified, thereby producing high-amplitude, short-
wavelength oscillations in the calculated source distribution.

Suppose, for example, that AT (z,y) is the true total-field anomaly
caused by a layer with magnetization M (z,y), but that our measure-
ments of AT include a random noise e(z, y). The magnetization M'(z,y)
that would be derived by inverting these contaminated data is given by

F[M')=F[AT +¢] F1[¢
= FIATIF7 [ + Fld 7' [g]
=F M)+ Fle] F7 g,

and the difference between the determined magnetization and the true
magnetization will be

FIM' —M]=FleF .

If the amplitudes of the measurement errors are randomly distributed
about zero mean with variance o2, then the power spectrum of the er-
ror will be a constant proportional to the variance.t Hence, the error
in the determined magnetization will be a function of wavenumber. In-
deed, it will be proportional to the inverse earth filter itself. As shown by
Figure 11.7, the amplified error will be most dramatic at shortest wave-
lengths and can reach extraordinary amplifications at high wavenum-
bers relative to the mid-range of the spectrum. Consequently, a small
random error added to the measurements can cause large-amplitude,
short-wavelength, and unrealistic fluctuations in the calculated source
distribution. In short, the solution is unstable.

In practice, we are concerned only with the Fourier transform of mea-
sured field values out to the Nyquist wavenumbers (k, = +7/Az and
ky = +n/Ay, where Az and Ay are the intervals at which the field was
sampled). Consequently, discrete values of F~1 [¢] similarly are needed
only out to k; = 7 /Ax and ky = +7/Ay. Nevertheless, if the depth of
the layer is large relative to the sample intervals, the Nyquist wavenum-
bers will be sufficiently large to cause extreme amplification of both sig-
nal and noise. Figure 11.8 shows this relationship for a magnetic layer
with Az = Ay and with a thickness equal to 2Az.

t Strictly speaking, the power spectrum of a finite segment of a random function

such as e(z,y) will not be a constant but will be o2 plus a random fluctuation.
See Claerbout [60, pp. 76-80).
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Fig. 11.8. High-wavenumber amplification of the inverse earth filter (magnetic
case) as a function of attempted resclution. Each point on the curve represents
the ratio of the amplitude spectrum at the Nyquist wavenumber divided by

the minimum amplitude. Abscissa represents resolution, that is, depth to the
top of the layer divided by sample interval.

Figure 11.8 is reminiscent of an earlier discussion in Section 10.2.1.
An inverse method was discussed in that section in which the magnetic
source was modeled in the space domain with a horizontal layer. The
layer was divided into N horizontal prisms, each with vertical sides and
width W, as shown by Figure 10.1. The total-field anomaly in this case

is given by
N
ATi:Zdejiﬁ i=1,2,---,L, (11‘37)

j=1
where AT; is the ith observation point, M; is the magnetization of the
Jjth cell, and ;; is the field at point ¢ due to cell j with unit magneti-
zation. Solving for the N values of M; from L measured values of AT;
constitutes the linear inverse problem, and if L > N, a least-squares
technique would be an appropriate strategy to find the M;. However,
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Bott and Hutton [38] showed that this calculation is unstable if too
much resolution is attempted, that is, if the width of the blocks is made
too small relative to the depth of the layer (Figure 10.3).

Now if the cells in Figure 10.1 all have the same top and bottom
depths, equation 11.37 is just the discrete form of the one-dimensional
convolution, where cell width W is equivalent to the sample interval Azx.
Hence, equation 11.37 is the space-domain equivalent of equation 11.33.
It follows that Figures 10.3 and 11.8 both represent the same phe-
nomenon. If the inverse calculation attempts too much resolution, small
errors in the measured field will generate large and unreaiistic oscilla-
tions in the calculated source distribution.

In practice, we can assume that the calculated source distribution is
not meaningful at wavenumbers outside of a certain range. Multiplying
the inverse earth filter by an appropriate bandpass filter will eliminate
all wavenumbers outside of this range (Schouten and McCamy [253]), in
effect forcing the determined source distribution to be band-limited. By
adjusting the bandwidth, the combined filter can be “tuned” depending
on the depth and thickness of the layer and the sample interval of the
measurements. Caution is still required, however, because the combi-
nation of the inverse earth filter and the band-pass filter has a narrow,
peaked shape that can generate unrealistic oscillations in determinations
of magnetization (Blakely and Schouten [32]).

11.3.1 Topographic Sources

The earth filters discussed previously are limited by an overly sim-
ple model for the source distribution. In order to apply the Fourier-
convolution theorem, equation 11.31 had to be rendered into a convo-
lution (equation 11.32), and this was possible only because the source
distribution was confined between horizontal surfaces z, and 22 and was
allowed to vary in only the horizontal directions. Parker [204] showed
how the first of these two assumptions could be relaxed; that is, he de-
veloped a model consisting of a source layer with uneven top and uneven
bottom surfaces. The following derivation is similar to that of Parker’s
three-dimensional magnetic case; the derivation for gravity anomalies
follows the same lines and is left to the exercises.

The total-field anomaly is measured on a horizontal surface at alti-
tude zg, and all magnetic material will be confined between two surfaces
z1(z,y) and z2(z, y), as in Figure 11.9. We will require z;(z,y) > 2o and
zo(z,y) > z(x,y) for all z and y. Note that z; and z; are no longer



11.8 FEarth Filters 293

Fig. 11.9. Calculation of the magnetic field caused by a magnetic layer with
uneven top and bottom surfaces. The source distribution is confined between
two surfaces z; and z2, both functions of z and y. The total-field anomaly AT
is measured on a horizontal surface at z = zo.

constants but rather are functions of z and y. From equation 11.31, the
total-field anomaly is given by

AT 1’ ?JaZO /
(11.38)

where 1 is the field at (z,y,29) due to a point source at (z’,3',2").
Fourier transforming both sides of equation 11.38 yields

22

M x’yl)/d)(m_:rl’y_y/sz—Zl)dzldx,dy,,

8\8

21

FAT]) = //M:z:y /wx—a:,y Y 20 — 2') d2’ dx’ dy

— 00 —O0
[o clNe o]

//M(acy /fw(m—a:y y' 20 — 2')|dZ' da’ dy’ .

—0o0 —0O0

(11.39)

The two-dimensional Fourier transform of ¢(z — ',y — ¢/, 20 — 2’) in
equation 11.39 poses no problem because we already know the Fourier
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transform of ¥(z, y, z); it is simply the Fourier transform of the anomaly
caused by a single dipole (equation 11.25). Using the shifting property
(Section 11.1.2) and equation 11.25, we get

[o cBENRe o]

]'-[AT]=27TCm6m6f|k|/ /M(:):’,y’)

— 00 — 00

22

e|k|(zo—z') e—i(kzm'+kyy’) d2 dx' dy,
21

= 27Cyy O, Oe/F1?0

The top and bottom surfaces of the magnetic layer are carried in
this equation by the bracketed exponentials. Parker [204] suggested re-
placing these exponential terms with their equivalent power series. The
double integral then is converted to a sum of two-dimensional Fourier
transforms, each taken with respect to z’,9y’ coordinates. Making these
modifications and collecting terms leads to the equation

M {6 |klz1 _ e |k|zz}e (ke +kyy)d(£ dy

8\8

F[AT]=21Cr, OO o F (MY (“f" (27 — 25)
n=0 :

zzncm@m@felklzoz( 'k’ FIM(r—23)].  (11.40)

n=1

Hence, the Fourier transform of the total-field anomaly caused by a
layer with uneven top and bottom surfaces is represented as a summa-
tion; each element of the summation includes a Fourier transform of
the magnetization weighted by a power of either the top or bottom sur-
face. After the summation is completed, the inverse Fourier transform
will provide the total-field anomaly. Notice that if z; and z; are both
constant, equation 11.40 reduces to equation 11.35. Parker [207] showed
that this summation converges most rapidly if the origin is selected so
that z = 0 midway between the minimum values of z; and 2.
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The gravitational equivalent of equation 11.40 is

_ |k|z0 - (_lkl)n_l n_ . n
Flg:] =2myell 37 —Flp(ef — 23)], (11.41)
n=1 :

where the mass is confined between surfaces z;(z,y) and z2(z,y) and is
described by density p(z,y).

Exercise 11.17 Derive equation 11.41 along the same lines as done for
equation 11.40.

The forward calculation of equation 11.40 has been particularly useful
in investigating magnetic anomalies over magnetic terrain or bathymetry
(e.g., Macdonald [170]; Grauch [101]; Blakely [22]; Blakely and Grauch
[28]; Hildenbrand, Rosenbaum, and Kauahikaua [128]). The gravitational
equivalent of equation 11.40 (equation 11.41) has been used in a variety
of applications, such as calculating isostatic residual gravity anomalies
(Simpson, Jachen, and Blakely [260]) and estimating the gravitational
effects of sedimentary basins (e.g., Jachens and Moring [137], Saltus
[250]). Subroutine B.23 in Appendix B is a Fortran implementation of
equation 11.40.

Equation 11.40 also provides a framework for the inverse problem;
that is, to calculate the magnetization M from measurements of AT
(Parker [204], Parker and Huestis [208]). This calculation requires that
the thickness of the layer ¢ = 25 — 21 remain uniform. If £ is a constant,
then equation 11.40 can be written

F[AT) = 27Ci Oy ©; e/*120 (l—e_lklt)z( |k| FMz}]. (11.42)
n=0

Isolating the n = 0 term of the summation on the left side of equa-
tion 11.42 yields

- T [AT] - |k| .
}—[M] - 27Cm O ©Os elklzo (]_ _ e—|k|t Z:l [le] . (1143)

Equation 11.43 can be solved iteratively by (1) making an initial guess
at the magnetization on the right side of equation 11.43, (2) solving the
equation for a revised magnetization, (3) moving this revised magneti-
zation to the right-hand side, and (4) repeating steps 2 and 3 until the
solution converges. As discussed earlier, step 2 involves a summation
that converges rapidly if the origin is midway between the topographic
extremes. The iterations, on the other hand, converge most rapidly if the
origin is at a different level, namely, at the minimum value of topography
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(Parker and Huestis [208]). The change in origin can be accommodated
through the exponential term containing zg.

The solution to equation 11.43 is susceptible to the same instabil-
ities discussed earlier in this and the previous chapter, and the higher
wavenumber components must be filtered at each iteration. Nevertheless,
this inverse method has proved useful in many applications, particularly
in the analysis of marine magnetic anomalies (e.g., Macdonald [170];
Macdonald et al. [171]) where the magnetic part of ocean crust can
sometimes be considered uniform in thickness.

Equation 11.43 can be used to find the annihilator for a particular
layer with constant thickness and a specified upper topographic surface
(Parker and Huestis [208]). Recall that the annihilator for a volume R
is the source distribution a(Q) that satisfies the equation

/ a(QU(P, Q) dv =
R

where ¢(P,Q) is the appropriate Green’s function. A magnetization
a(Q) that satisfies

" = §(k,)6(ky) (11.44)

will produce no anomaly when confined to the layer because substitut-
ing equation 11.44 into 11.42 causes the total-field anomaly to vanish.
This can be verified by comparing the preceding equations with equa-
tion 11.15. Hence, we rewrite equation 11.44 as

n=1

which can be solved iteratively for the annihilator a(z,y) as was done
earlier for magnetization M(x,y). The annihilator represents the non-
uniqueness of the solution for M. Any amount of the annihilator can be
added to the magnetization without affecting the calculated total-field
anomaly; that is, the anomaly caused by M(z,y) + aa(z, y) is indepen-
dent of a.

Exercise 11.18 Use equation 11.44 to show that the annihilator for an
infinite slab with flat top and flat bottom is a constant.
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11.3.2 General Sources

At this point, we return to equation 11.31 and derive general relation-
ships in the Fourier domain between a gravity or magnetic anomaly
measured on a horizontal surface and its causative source distribution
located entirely below the surface. As before, we assume that the field
is measured on a horizontal plane at height z = zg and rewrite equa-
tion 11.31 in a cartesian coordinate system with z positive down,

[e oluNe o} 0
f(a;)yazo) = / / / S(CU/,Z//az/)d’(x—xlay_y/,zo—z/) dm,dy/d’zl'
Zg =00 =00
It is assumed in this equation that s(z’,y’,2’) is zero outside of a re-
gion with finite dimensions and especially at all z < zg. Applying the
Fourier transform to both sides of the equation (and remembering that
the Fourier transform involves integration with respect to « and y, not
z’ and y'), we have

(o ol ol o0
Fif]= / / / sy, YF e —2',y — v, 20 — 2] da’ dy d2’ .
zZy —00 =00
The shifting property of Fourier transforms (Section 11.1.2) allows a
substitution for the Green’s function in the previous equation, that is,

Flplz -2,y —o)] = Fly(z,y)] e " F=r'+hv)

In the gravitational case, the anomaly f is the vertical attraction of
gravity g, the source distribution s is density p, and v is the field of a
monopole with Fourier transform given by equation 11.22. Making these
substitutions, we have

oo o0 oo
.7:[9] — 27r,ye|k]z0/ / / p(xl’y/’z/) e—lklz’ e—i(ka:(l,"—‘rkyy’) dz’' dy’ ds .

20 —O00 —OO

Now the two inner integrals are simply another two-dimensional Fourier
transform, in this case taken with respect to #’ and 7/, so

Flg) = 2myelkle /}'[p(z’)] e M dy (11.46)

20

where the term F [p(2')] represents the two-dimensional Fourier trans-
form of the density on one horizontal slice through the body at depth 2’
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In the same way, we can derive a similar relationship for the magnetic
case,

F[AT] = 27C 0,61 |k| l¥lz0 / F[M(z)) e * gz | (11.47)
Zo

where the term JF [M(z')] represents the Fourier transform of the mag-
netization on one horizontal slice through the body at depth z’.

Equations 11.46 and 11.47 provide general relationships in the Fourier
domain between arbitrary mass or magnetization distributions and the
anomalies that they produce. The integral terms in each equation essen-
tially consist of dividing the source into horizontal slices, Fourier trans-
forming the density or magnetization of each slice, weighting the Fourier
transform by an exponential term that depends on the depth of the slice,
and summing the results over all slices. We will have use for these rela-
tionships in Chapter 12. Notice that equations 11.46 and 11.47 reduce to
equations 11.34 and 11.35 if the source is confined to a horizontal layer
with top at depth 21, bottom at 23, and density or magnetization that
varies in only the horizontal directions.

11.4 Depth and Shape of Source

As we have seen, Fourier analysis under certain assumptions can greatly
facilitate solutions to the linear inverse problem. If the source material
is confined to a horizontal layer, for example, equation 11.36 provides a
direct calculation of magnetization or density from the potential field of
the layer, thus rendering the linear inverse problem for this particular
case quite easy, at least conceptually.

Fourier transforms also can assist in determining the shape and lo-
cation of potential-field sources. Oldenburg [200], for example, modified
the method of Parker [204] in order to estimate the shape of a causative
mass from its gravity anomaly. If the body has uniform density contrast
and a flat bottom at z = 0, then the right side of equation 11.41 reduces
to a summation of Fourier transforms of powers of the upper surface,
that is,

" gy,

o0
— |k|= (
Flo=] = 2myellpy 7
n=1
Isolating the first term of this summation, as was done for magnetiza-
tion in Section 11.3.1, leads to an iterative scheme to estimate the shape
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of the upper surface. The free parameters p and 2 in this equation, as
well as the requisite bandpass filtering at each iteration, characterize the
nonuniqueness of this inversion scheme; the solution for z; depends on
the values selected for these parameters (Oldenburg [200]). Pilkington
and Crossley [221, 222] described a similar technique for estimating the
shape of magnetic basement or crustal interfaces from magnetic anoma-
lies.

Hansen and Wang [114] simplified a Fourier-domain formulation, orig-
inally from Pedersen [216], that approximates potential-field sources by
polyhedrons, similar to the space-domain models described by Bott [36]
and Barnett [11]. The bodies are assumed to have uniform magnetization
or density. The potential field f(z,y) of a polyhedron can be expressed
in the Fourier domain as a summation over the N vertices of the poly-
hedron,

N
Ff] = ane themnthoyn)=lklzn (11.48)

n=1

where (Zn, Yn, 2n) are the coordinates of vertex n, and «, depends on
the orientation of each edge of each facet composing vertex n and, in the
magnetic case, on the direction of magnetization and regional field. The
coordinates of each vertex, therefore, are represented in the argument of
a specific exponential term in the summation, so the forward problem
is reasonably straightforward. Because the summation depends on the
vertex coordinates, the polyhedron does not need to be decomposed into
individual facets, as was done in Section 9.3.2 and in Subroutine B.10.

Wang and Hansen [288] showed how this formalism could be adapted
to the inverse problem for magnetic anomalies, that is to estimate the
locations in space of the vertices of a magnetic polyhedron from its mea-
sured anomaly. Here we use the total-field anomaly, but their discus-
sion applies to any component of the anomalous field. The exponential
in each term of summation 11.48 includes both an attenuation factor
related to the depth of one vertex and a phase factor related to the
horizontal position of the same vertex. The problem then is to analyze
F [AT] in order to resolve these various factors for each vertex. First let
F(kg,ky) = |k|? F [AT). We will show in the next chapter that F(ks, ky)
so defined is the Fourier transform of the second vertical derivative of
AT. Wang and Hansen [288] defined N complex parameters

kexi + kyy; .
6.7‘:1%4_2]" Jj=12,...,N,



300 Fourier-Domain Modeling

and showed that the first N inward derivatives of F(ks,k,) are related
by a summation,

N Fkx,k = 8”F km,k

where the various 7, are factors in a complex polynomial equation,

N-1
=Y er. (11.50)
n=0

The roots of equation 11.50 are the various &é;, and these as defined
previously are related to the vertex coordinates.

The algorithm of Wang and Hansen [288] essentially proceeds by com-
puting the first N inward derivatives of |k|2F [AT]; using these in equa-
tion 11.49 to solve for v,, n =0,1,2,..., N — 1, along rays of the k;, k,
plane; and finally solving for é;, j =1,2,..., N, in equation 11.50, also
along rays of the k., k, plane.

11.4.1 Statistical Models

The previous examples are applicable to potential fields caused by one
or a few causative bodies. In the remainder of this section, we will focus
on estimating the average depth of a large collection of gravity or mag-
netic sources from their statistical properties, an approach pioneered by
Spector and Grant [268] and Treitel, Clement, and Kaul [281]. Magnetic
fields are used here for illustration, but the discussion could easily be
adapted to gravity fields as well.

To see how the statistical approach works in a general way, consider
the total-field anomaly measured on a horizontal surface and caused
by a horizontal layer with top at depth d and thickness ¢. From equa-
tion 11.35,

F[AT] = F[M] {27Cp©nOge Fld(1 — e~ IFI)} | (11.51)

The total-field anomaly is measured at discrete locations, and F [AT]
and Of are easily calculated. If by some lucky happenstance we also
know the distribution of magnetization, then only the exponential terms
remain to be determined in equation 11.51. These could be transposed
to one side of the equation, and curve fitting could be used to estimate
d and t.
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It is unlikely that we would know M(z,y) in detail, but we may have
some idea about how magnetization behaves statistically. For example,
we might assume that the layer extends infinitely far in all horizontal
directions and that M (x,y) is a random function of z and y. In this case,
F [M] and F [AT] do not exist because inequality 11.3 is not satisfied.
Equation 11.51 should be written instead as

Sar(ks, ky) = Oar(ky, ky) - Fkg, ky), (11.52)

where ® A7 and Pps are power-density spectra of the total-field anomaly
and the magnetization, respectively, and

F(ky, ky) = 472C2 |0 2|0 |2e2H14(1 — e~ kIt)2

If the probabilistic behavior of M (z,y) is known or assumed, its power-
density spectrum can be analytically derived as described in Section
11.1.3. Moreover, although we only have measurements of AT(z, y) over
finite distances, a variety of ways are available to estimate power-density
spectra from finite segments of a random function. Hence, with a suit-
able probabilistic model for M(z,y), the remaining unknown function
F(ky, ky) can be analyzed in terms of d and ¢.

This analysis can be simplified greatly by noting that all terms, except
|©m|? and |©¢|?, in equation 11.52 are radially symmetric.} Moreover,
as discussed in Section 11.2.1, the radial averages of ©, and ©; are
constants. Hence, the radial average of ®ar is

Bar(kl) = A@ar([k]) 2k (1 — e=lklty2, (11.53)

where A is a constant that depends on the orientations of magneti-
zation and regional field. We now need a suitable statistical model for
M (z,y). For example, if M (z, y) is completely random and uncorrelated,
Dr(ky, ky) is a constant, and equation 11.53 becomes

Sar(|k]) = Be 2l (1 — e IHIt)2,
where B is a constant. Finally, taking the logarithm of both sides yields
log ®ar(|k|) = log B — 2|k|d + 2log(1 — e~ l¥lt) (11.54)

As shown by Figure 11.10, this equation at medium to high wavenumbers
(wavelengths less than about twice the thickness of the layer) is approxi-
mately that of a straight line with slope equal to —2d. We could estimate

1 We have assumed here that the probabilistic behavior of M(x,y) is isotropic, that
is, its statistical behavior is the same in all horizontal directions.
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Fig. 11.10. Power-density spectrum of the anomaly due to a randomly mag-
netized layer. (a) Total-field anomaly caused by magnetic layer with top at 3
km depth, thickness 1 km, and random magnetization. Magnetization is de-
scribed by uniform distribution ranging between +1 and —1 A/m. Directions
of magnetization and regional field are vertical. (b) Amplitude spectrum of the
anomaly; values smoothed for contouring. (¢) Log of radial power-density spec-
trum. Dots indicate average power within rings concentric about the origin.
Error bars indicate standard deviation of values within the ring, divided by
the square root of the number of values encountered. (d) Log of the theoretical
power-density spectrum.

d, therefore, by calculating the power-density spectrum of AT(z,vy), ra-
dially averaging the spectrum within rings concentric about |k| = 0, and
fitting a straight line through the high-wavenumber part of the radially
averaged spectrum. One-half the slope of the line is an estimate of d
(Figure 11.10).



11.4 Depth and Shape of Source 303

Exercise 11.19 Show that the same result is achieved if M(z,y) = Mp +
r(z,y), where My is a constant and r(z,y) is a random function of x and
y with zero mean. In other words, show that a slab, principally uniform
in magnetization but having a small random component, also satisfies
®pr = constant.

Ensemble Sources

In a landmark paper, Spector and Grant [268] framed the random de-
scription of the source distribution in a more complete context. In their
model, the anomaly is assumed to be produced by a large number of
blocks. The parameters describing any one block (e.g., depth, thickness,
width, length, magnetization) are assumed to obey probabilities common
to the entire set. Such a distribution of sources constitutes an ensemble.
Equation 11.12 showed that the expected value of a continuous random
variable r can be expressed as an ensemble average,

) = [ oP(p)d,

where P.(p) is the probability that r takes the value p. Similarly, if g is
a measurable function of various random variables a;, az, ..., then g has
an expected value given by

(g) = / ---/g(al,az,...)Pal,a%,,(al,ag,...)daldaz---,

where Py, 4, (01, 02,...) is the joint probability distribution for the
random variables of g.

Now consider the magnetic anomaly caused by an ensemble of sources,
where the parameters (depth, thickness, and so forth) describing each
element of the ensemble are each a random variable. We wish to frame
the power-density spectrum of the anomaly in terms of an ensemble
average, as shown by the previous equation. If Py, (6,7,...) is the
joint probability that depth d assumes the value 8, thickness ¢ assumes
the value 7, and so on, then the expected value of the power-density
spectrum is given by

oo oo

<(I)AT> = / /lf[AT]|2Pd,t,(6,7',)d§dT,

— 00 — 00
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where |F[AT]|? is the spectrum of the anomaly caused by just one
element of the ensemble having parameters §, 7, and so on. Presumably
the random parameters vary independently of one another, so the joint
probability can be factored, that is,

o0 o0

(PaT) = / ---/|.7-'[AT]|2Pd(6)Pt(T)---dédr---. (11.55)

— o0 — o0

Next we need an expression for |F [AT]|? in equation 11.55. Spector
and Grant [268] let each member of the ensemble be a rectangular par-
allelepiped. Equation 11.51 can provide the spectrum of the anomaly
caused by a rectangular parallelepiped if we let M(z,y) = 0 except
within a rectangular patch. Let the patch have dimensions 2a and 2b
in the  and y directions, respectively, and let M(z,y) = Mo, a con-
stant, within the patch. The parameters a, b, and My become additional
random variables in equation 11.55. From equation 11.51,

|F [AT])? = 47%C? |0, 12|02 MZe~2%14(1 — e 1¥11)262%(q b) | (11.56)

where

4sink,a sink,b
S(a,b) = — Y
xRy

is the “shape factor.”

Now we exploit a result that has recurred throughout this chapter. In
the Fourier domain, the potential field separates into multiplicative fac-
tors, where each factor is a function of just one of the random variables.
Substituting equation 11.56 into equation 11.55 yields

(®ar) = 472C2 / e~ 2k py(8) db /(l—e'|k’7)2Pt(T)dT...
= 47r20i_<; 2RIy (1 - e"’“'_t;>
(5%(a, b)) (Mg) {1Oml) (I64]?) - (11.57)

Hence, the expected value of the power-density spectrum is factored into
various ensemble averages, where each average involves just one of the
random variables.

Consider the first of these factors. Suppose that the depth to the top
of each element of the ensemble can lie with equal probability between
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depths d — Ad and d + Ad. Then

d+Ad
1
—2lkldy _ _ 1 ~2lklé gs
=280 | ©
d—Ad
_ b omdg 2klad _ —2ik|Ad
= 4|k|Ade (e e ).

If Ad is taken small compared to d, then

<e—2|k|d> e—2|k|J‘

Hence, we have the surprising result that the power-density spectrum
of an entire ensemble depends on depth in the same way that an “aver-
age” member of the ensemble depends on depth. It is easy to show that
(|®m|?) and (|©¢|?) do not depend on |k|, but that (S%(a, b)) will affect
the shape of the radially averaged spectrum depending on the values of
a and b.

To estimate d, therefore, we could proceed as before: From the mea-
sured anomaly, calculate the logarithm of the radially averaged power-
density spectrum; the slope of this function at medium to high wavenum-
bers is proportional to the depth of the ensemble. This implies, however,
that all other factors of the ensemble (i.e., (S%(a,b))) are accounted
for. In order to investigate how depth varies throughout a large region,
various authors (e.g., Connard, Couch, and Gemperle [63]; Okubo et
al. [198]; Phillips [220]; Blakely and Hassanzadeh [29]; Blakely [21]} have
divided magnetic surveys into overlapping cells (or segments of long pro-
files) and made calculations for each cell similar to those described here.

Fractal Source Distributions

The foregoing statistical models have assumed that magnetization (or
density) has no spatial correlation. The method of Spector and Grant
[268], for example, employs a model with infinitely many rectangular
prisms each with random dimensions; the magnetization of such a model
becomes spatially uncorrelated if the characteristic dimensions of the
prisms are assumed to be small. Similarly, the model of Blakely and
Hassanzadeh [29] assumes that the magnetization is an uncorrelated
random function of just one horizontal dimension. Such models imply
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that any two samples taken from the source distribution will be totally
independent of one another, regardless of their proximity.

There is mounting evidence from aeromagnetic data (Gregotski, Jen-
sen, and Arkani-Hamed [104]; Pilkington and Todoeschuck [226]), from
truck-mounted magnetometer surveys (Gettings, Bultman, and Fisher
[94, 95]; Bultman and Gettings [46]), and from density and suscepti-
bility logs (Pilkington and Todoeschuck [225, 226]) that magnetization
and density are not completely uncorrelated but rather have a degree of
self-similarity. These authors have argued that magnetization and den-
sity can be described as a form of fractal geometry, called scaling noise.
Such random processes have power-density spectra proportional to some
power of wavenumber. A one-dimensional process of this sort, for exam-
ple, has a power-density spectrum given by ®(k) = Ak“, where A and
« are constants, and k is wavenumber. If a = 0, the process is uncorre-
lated, as in the foregoing statistical models. If & < 0, on the other hand,
the process is correlated, and the degree of correlation is indicated by
the magnitude of «. The parameter « is called the fractal dimension; in a
sense, it describes the “roughness” of the random process. Gettings et al.
[94, 95] and Bultman and Gettings [46] have related «, determined from
truck-mounted magnetometer profiles, to near-surface lithologies. Vol-
canic terrain might possess a different fractal dimension than plutonic
terrain, for example, and determination of « along a magnetic profile
might help to distinguish between these two lithologies when concealed
beneath sediments.

Pilkington and Todoeschuk [226] compared magnetic anomalies over
three-dimensional fractal models. They confined the magnetization to a
layer and let the magnetization be fractal in both the horizontal and
vertical directions. A magnetization with & = —4 produces an anomaly
that is similar in appearance to typical observed anomalies and in this
sense is far superior to anomalies produced by an uncorrelated mag-
netization (a = 0). They further argued that the fractal behavior of
magnetization may not be isotropic; that is, the fractal dimension in the
horizontal directions may be different from that in the vertical direction.
These results have important implications for statistical models to es-
timate depth to source (Pilkington, Gregotski, and Todoeschuck [223]);
the often-used assumption in these models, that the power-density spec-
trum of magnetization is constant, may be inaccurate and may lead to
systematic errors in depth estimation.
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11.4.2 Depth to Bottom

The depth extent of magnetic sources can be of considerable geologic in-
terest. The limiting depth may be controlled, for example, by the Curie-
temperature isotherm. If the Curie temperature of crustal rocks in the
region of the magnetic survey is known from geologic and rock magnetic
considerations, then an estimate of the depth to the Curie-temperature
isotherm based on magnetic anomalies can help characterize the geother-
mal setting of the area. Unfortunately, this calculation ranks among the
most difficult in potential-field inversion. As can be seen from equa-
tion 11.35, e~l¥122 dominates e~ %21 throughout all wavelengths of the
spectrum; that is, the contribution of the bottom of the source is domi-
nated at all wavelengths by the contributions from shallower parts.

Several methods to estimate 23 in the Fourier domain have been de-
veloped in recent years and have shown encouraging results in spite of
the difficulties involved. Various workers (Connard et al. [63], Smith et
al. [265], Shuey et al. [257], Miyazaki [185], and Blakely [23]) have used
the shape of radially averaged spectra to estimate the depth extent of
magnetic sources. In particular, the position kyax of the maximum along
the |k| axis is related to the depth to the bottom of the layer according to
log zo — log 21

kmax =
22— 2

To estimate depths to the Curie-temperature isotherm in Oregon, for
example, Connard et al. [63] divided a magnetic survey into overlapping
cells and calculated for each cell a radially averaged power-density spec-
trum, as in Figure 11.10. From these spectra, they attempted to locate
kmax and, using the preceding equation, to estimate z2. Note that 2z in
this equation cannot be determined independently of 2;.

Bhattacharyya and Leu {18] determined depth to the bottom of in-
dividual sources by analyzing isolated anomalies. They calculated the
location of the centroid of isolated magnetic sources from the moments
of their respective anomalies. If the depth to the top of the source
is also known, perhaps determined with the method of Spector and
Grant [268], then the depth to the bottom of the source is easily cal-
culated. This method requires isolating individual anomalies from all
surrounding anomalies and regional fields, a challenging task in most
geologic environments.

Okubo et al. [198, 199] expanded on the method of Bhattacharyya and
Leu [18] by treating ensembles of sources. They reframed equation 11.57
into an expression dependent on the centroid of the ensemble average.
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By making calculations for various patches of the magnetic survey, they
were able to derive a map of the Curie-temperature isotherm for a part
of the Japanese arc.

Each of these methods has fundamental limitations. First, the de-
termination of the depth to the bottom of a source cannot be made
without knowledge of the depth to its top, which in itself is a difficult
inverse determination. Second, estimation of the bottom of potential-
field sources, by their nature, must focus on the lowest wavenumber
parts of the Fourier domain. This part of the spectrum is susceptible
to noise from various sources, particularly from poorly known regional
fields that may be unrelated to the bottom parts of the sources of con-
cern. Moreover, discrete Fourier analysis provides relatively little infor-
mation about the lowest wavenumbers of the power-density spectrum.
With conventional techniques, the smallest wavenumber at our disposal
is the fundamental wavenumber k& = 27 /L, where L is the dimension of
the magnetic survey. Connard et al. [63] reasoned that kmax should be at
least twice the fundamental wavenumber in order to be able to resolve
a peak in the spectrum. Thus,

47‘(’(22 — Zl)
T logzy —logz

A magnetic survey conducted 1 km above the tops of magnetic sources,
therefore, must have minimum dimensions on the order of 50 km in order
to resolve depth extents of 10 km; the survey dimensions must be at least
160 km for sources extending to 50 km.

Finally, the shape of the power-density spectrum and, hence, depth
determinations depend on the characteristic shapes of the magnetic bod-
ies, expressed by the factor 5%(a,b) in equation 11.57. At wavelengths
large compared to the body dimensions, the ensemble average is equiv-
alent to that of a random distribution of dipoles (Okubo et al. [198]).
In such cases, the low-wavenumber part of the spectrum is independent
of the exact model (blocks, cylinders, spheres, and the like) used for the
elements of the ensemble. The true dimensions of the source, however,
are not likely to be well understood in most geologic settings.

11.5 Problem Set

1. Consider a cartesian coordinate system with the z axis directed down,
and let ¢(z,y,z) be the potential of a source distribution located
entirely below the plane z = 2y. The Dirichlet integral relates the
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potential field observed on one plane z = z; to the potential observed
on another plane z = 2o, where 25 < 27 and 21 < 2¢:

oo 0o
71— 22 (@'Y, =1
¢(1‘,y,212) = or / / ( ,7”3 ) dz’ dyl> 22 < 2,

—00 —O0

where 7 = \/(z —2')2 + (y — ¥)2 + (21 — 22)2.
(a) Show for any z3 that

/°° /Oo¢(w,y,Z3)dwdy=A,

— 00 —0o0
where z3 < z, and A is a constant independent of 23.
(b) How does this result relate to Gauss’s law for both the gravita-
tional and magnetic potentials?
(c) Show that the total energy of the potential observed on a plane
above the source decreases with the plane’s distance from the
source; that is, show that

7 /Ood)?(x,y,zz) dr dy < 7 7¢2($,y,z1)dxdy

— 00 — 00 — 00 —00
for any 2z < 23.
. Let g, be the vertical gravitational attraction of a mass distribution

located below a horizontal plane, and let F [g,] be the Fourier trans-
form of g, observed on the plane.

(a) Show that the value of F [g.] at k = 0 is proportional to the total
mass of the distribution.
(b) More generally, show that the amplitude spectrum satisfies the
inequality
| F [g:]] < 2myM eIz,

where M is the total mass and zg is the depth to the top of the
source distribution.

. At the north magnetic pole, the total-field anomaly due to a given dis-
tribution of magnetization has a phase spectrum given by ¢(k,, ky).

(a) What is the phase spectrum of the same magnetization distri-
bution if it is relocated at the magnetic equator? Assume that
magnetization is entirely induced.

(b) What is the phase spectrum at the south magnetic pole?
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(c) What is the phase spectrum if the local field has an inclination
of 63° and a declination of 18°7

4. A total-field anomaly AT(z,y) is measured on a horizontal surface
at height zp above a uniformly magnetized, rectangular prism with
magnetization M, thickness T, and horizontal dimensions D. The
prism is at the north magnetic pole and has negligible Koenigsberger
ratio.

(a) Describe the amplitude spectrum of AT'(z,y) at all wavenumbers
(including k, = ky, = 0) in terms of 2o, T, D, and M. Hint: It
might be helpful to consider the prism as part of an infinite slab.

(b) Discuss the feasibility of determining 2o, T, D, and M from the
amplitude spectrum.
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Transformations

The third, or depth, dimension of geology is a major frontier at present.
(Jack Oliver)

A theory has only the alternative of being right or wrong. A model has
a third possibility: it may be right, but irrelevant.
(Paul R. Ehrlich)

Now we are ready to undertake the third category of potential field meth-
ods depicted in Figure 9.1, those methods that facilitate geologic inter-
pretations by transforming measured data into some new form. These
transformations, in general, do not directly define the distribution of
sources, but they often provide insights that help to build a general un-
derstanding of the nature of the sources. Upward continuation, for ex-
ample, is a method that transforms anomalies measured on one surface
into those that would have been measured on some higher surface. The
upward-continued anomalies do not provide direct information about
the source, but they can be instructive nonetheless. In particular, the
process of upward continuation tends to attenuate anomalies caused by
local, near-surface sources relative to anomalies caused by deeper, more
profound sources.

The aeromagnetic data shown in Figure 12.1 will serve to illustrate
some of the methods discussed subsequently. These data are from a re-
gion of the Basin and Range geologic province in north-central Nevada.
The mountain ranges in this area typically expose sedimentary rocks
of Paleozoic age and volcanic tuffs of Tertiary age. The linear mag-
netic anomaly that trends north-northwest across the entire map (Fig-
ure 12.1(a)), however, is associated with exposures of basaltic flows and
dikes of middle Miocene age, which are largely concealed. This associa-
tion between the linear anomaly and basaltic dikes and flows has been
interpreted as indicating a rift zone active during the middle Miocene

311
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Fig. 12.1. Aeromagnetic data and geology of north-central Nevada. (a) Aero-
magnetic compilation from Kucks and Hildenbrand [151]. Contour interval
100 nT. (b) Geologic map simplified from Stewart and Carlson [273]. Linear
magnetic anomaly with north-northwest trend is associated with exposures of
Tertiary basalt (solid black); isolated anomaly in southwest quadrant is caused
by Tertiary intrusive rocks (plus pattern).
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(Zoback and Thompson [295]). The isolated anomaly in the southwest-
ern quadrant of the map, on the other hand, apparently is associated
with an isolated granitic intrusion of Tertiary age (Grauch et al. [102]).

Some of the techniques discussed subsequently are accompanied by
computer subroutines in Appendix B. In some cases, more comprehen-
sive algorithms are available in the literature (e.g., Hildenbrand [127];
Blakely [20], Gibert and Galdeano [96]). Cordell et al. [73] have compiled
in a form suitable for IBM-compatible computers a variety of interpre-
tive programs, the most comprehensive, publicly available package of
programs to date.

12.1 Upward Continuation

Upward continuation transforms the potential field measured on one sur-
face to the field that would be measured on another surface farther from
all sources. As we shall see, this transformation attenuates anomalies
with respect to wavelength; the shorter the wavelength, the greater the
attenuation. In this sense, the process of upward continuation degrades
the measured data, and we might wonder why such a process would have
any application at all. Several useful examples come to mind. First, it is
sometimes necessary to compare or merge aerial surveys measured at dis-
parate altitudes, and upward continuation provides a way to transform
individual surveys onto a consistent surface. Second, upward continua-
tion tends to accentuate anomalies caused by deep sources at the expense
of anomalies caused by shallow sources. A magnetic survey over young
volcanic terrain, for example, may be dominated by short-wavelength
anomalies due to near-surface volcanic rocks; upward continuation can
be used to attenuate the shallow-source anomalies in order to emphasize
deeper, more profound sources, such as underlying plutonic rocks.

Green’s third identity (equation 2.9) shows why upward continuation
should be possible. If function U is harmonic, is continuous, and has
continuous derivatives throughout a regular region R, then it follows
from Green’s third identity that the value of U at any point P within R
(Figure 12.2) is given by equation 2.10,

1 10U 01
S

where S denotes the boundary of R, n the outward normal direction, and
r the distance from P to the point of integration on S. Equation 12.1
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Fig. 12.2. (a) A function harmonic throughout region R can be evaluated at
any point within R from its behavior on boundary S. Unit vector i is normal
to surface S. (b) Upward continuation from a horizontal surface. Potential
field is known on horizontal plane z = z¢ and desired at point P(z,y, z0 — Az)
(Az > 0). Surface S consists of the horizontal plane plus a hemispherical cap
of radius . Point P’ is the mirror image of P projected through the plane.
The point of integration @ is on surface S, and r and p denote distance from
Q to P and from Q to P’, respectively.

illustrates the essential principle of upward continuation: A potential
field can be calculated at any point within a region from the behavior
of the field on a surface enclosing the region. No knowledge is required
about the sources of the field, except that none may be located within
the region.
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12.1.1 Level Surface to Level Surface

The simplest form of continuation is for potential fields measured on a
level surface, and here we follow the classical derivation described by
Henderson [125, 124]. Using a cartesian coordinate system with z axis
directed downward, we assume that the potential field was measured on
a level surface at z = zo and that the field is desired at a single point
P(z,y, 7 — Az) above the level surface, where Az > 0. Surface S is
composed of both the level surface plus a hemisphere of radius «, as
shown in Figure 12.2. All sources lie at z > z9. As a becomes large, it
is easy to show that integration of equation 12.1 over the hemisphere
becomes small. Hence, as a — oo,

U(z,y,z0 — Az) =

1°°°°16Uzyz0) L
//( oy —U(I,y,ZO)a—— do' dy', (12.2)

— 00 —O0

where r = \/(z — /)2 + (y — y¥')? + (20 — Az — 2’)?, and where Az > 0.

Unfortunately, equation 12.2 requires not only values of U on the
surface but also values of the vertical gradient of U, a combination that
is unlikely to be available in most practical applications. Hence, we need
a way to eliminate the derivative term in equation 12.2, and as shown
in Section 2.3.2, Green’s second identity provides a way to do so. If V
is another function also harmonic throughout R, then Green’s second

identity yields
1 oU 8V
- / (V% o > dsS =20,
s

and adding this result to equation 12.1 provides

U(P):i/[(V—I—%)g—Z 8671 (V+1>] ds. (12.3)
S

To eliminate the first term of the integrand, a harmonic V is needed
such that V + % = 0 at each point of S. We construct P’, the mirror
image of P, at (z,y,20 + Az) and let V = —% where

p= V=P + (=) + (o + Az = 2P

Note that V' defined in this way satisfies the necessary requirements:
V+ % = 0 on the horizontal surface, V 4 % will vanish on the hemisphere
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as « becomes large, and V' is always harmonic because p never vanishes.
Hence, equation 12.3 becomes

-4 (D)% -0k -]

As the hemisphere becomes large, the first term vanishes at each point
of S, and the second term vanishes except on the horizontal surface,

1 77 a1 1
U(z,y,20 — Az) = _Zl;,/ /Ux ¥, z0) o [——;] dx’ dy’ .

Carrying out the derivative and letting z’ move to the horizontal surface
leads to

[>

U(z,y,20 — Az) =

[

% (/ / )
Z ,Y,2o rog
dx' d
7r,/,/ @—a)2+(y—y)2+Aa2pr ™ W
— 00 — OO0
Az>0. (12.4)

Equation 12.4 is the upward-continuation integral. 1t shows how to cal-
culate the value of a potential field at any point above a level, horizontal
surface from complete knowledge of the field on the surface. Some com-
promises will be required in practical applications, of course; we never
will know the potential field precisely at each point of an infinite plane.
It is particularly important to know the field well beyond the lateral
extent of all sources, a recommendation that is difficult to implement in
practice.

Fourier-Domain Representation

Equation 12.4 can be used to continue data measured on a level surface
to another surface, level or not. For each point of the new surface, the
two-dimensional integral must be evaluated, a computationally intensive
task. The procedure can be made more efficient and insightful, however,
if it is recast in the Fourier domain. In doing so, we will have to settle
for level-surface-to-level-surface applications.

Note that equation 12.4 is simply a two-dimensional convolution,

2

U(z,y, 70 — Az) = //U:c,y’,zowu(:c—x’,y—yﬂAz)dw’dy’,
—00 — 00
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where

Az 1
u(z,y, Az) = — . 12.5
,lp (x y Z) 27T (xg +y2 +AZ2)3/2 ( )

If the potential field U measured on surface z = 2o satisfies inequal-
ity 11.3, then it has a Fourier transform F [U]. The Fourier-domain rep-
resentation of equation 12.4 is found by transforming both sides of equa-
tion 12.4 to the Fourier domain and applying the Fourier-convolution
theorem (Section 11.1.5),

where F [U,] is the Fourier transform of the upward-continued field. All
that is needed is an analytical expression for F [¢y], which can be found
from the Fourier transform of equation 12.5. First note that

1 01
2 OAzT’
where r = /22 + 2 + Az2. With the help of equation 11.21, therefore,
the Fourier transform of equation 12.7 is given by

1 0 1
Flnl=-5 37 [;]

wu(xv y,Az) - - (127)

o e-lklAz
0Az |k

= e~ Azlkl Az>0. (12.8)

A level-to-level continuation can be achieved, therefore, by Fourier trans-
forming the measured data, multiplying by the exponential term of equa-
tion 12.8, and inverse Fourier transforming the product.

It is clear from equation 12.8 and shown by Figure 12.3 that (1)
the process of upward continuation attenuates all wavenumbers except
|k| = 0, (2) each wavenumber is attenuated to a greater degree than
all lower wavenumbers, and (3) the degree of attenuation increases with
increasing Az. Equation 12.8 is a real function, that is, it has no phase
component, and consequently imparts no phase changes to the upward-
continued field. As an example, Figure 12.4 shows the total-field anomaly
of central Nevada (Figure 12.1(a)) continued upward 5 km. Notice that
the shortest wavelengths of the original anomalies are essentially elim-
inated in Figure 12.4, whereas the fundamental anomalies remain in a
smoother form.
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Fig. 12.3. Fourier-domain representation of level-to-level upward continuation.
Each wavenumber is attenuated with respect to all lower wavenumbers. The
filter is a real function, that is, it imparts no phase changes to the original

anomaly.
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Fig. 12.4. The total-field anomaly of Figure 12.1(a) continued upward 5 km.
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The function U in the previous discussion can be any potential field;
that is, equations 12.4 and 12.6 apply to any component of a gravity
or magnetic field measured on a horizontal surface. It also applies to
the total-field magnetic anomaly, under the assumptions described in
Section 8.3. Subroutine B.24 in Appendix B is a Fortran implementation
of equations 12.6 and 12.8, appropriate for potential fields specified on
a rectangular grid.

It should be clear that equation 12.6 is strictly valid only for level-to-
level continuation, because U is specified on a level surface and Az is
constant. Cordell [67], however, adapted equation 12.6 for continuation
to uneven surfaces. In his method, equations 12.6 and 12.8 are used to
find the field on a series of level surfaces at successively higher elevations,
some above and some below the desired uneven surface. The field at any
point of the uneven surface can be found approximately by interpolating
in the vertical direction using corresponding values from the level-to-level
continuations. The method is called “chessboard” (because the stack of
gridded data brings to mind a three-dimensional chess game) and is
available as a Fortran algorithm (Cordell et al. [73]).

Downward Continuation

The foregoing discussion has assumed that all sources are located below
the observation surface and that all points of the continuation are above
the observation surface, that is, continuation is away from all sources. On
first consideration, it may seem legitimate to try continuing measured
data into regions closer to sources, so long as we are certain that no
sources actually exist in the region of continuation. This calculation,
called downward continuation, would be very useful in an interpretation
of gravity or magnetic data because it would tend to accentuate the
details of the source distribution, especially the shallowest components.
Downward continuation is, however, a risky proposition. Upward con-
tinuation is a smoothing operation. This is easily seen in equation 12.4
where U(z,y, 20 — Az) at any point is simply the weighted average of
all values of U(z,y, 29). Downward continuation, on the other hand, is
the calculation of U(z,y, 20) from U(x,y, z0 — Az), the inverse of equa-
tion 12.4. It is an “unsmoothing” operation, and as discussed in Sec-
tion 10.1, such calculations are unstable. Small changes to U(x,y, 20 —
Az) can cause large and unrealistic variations in the calculated U (z, y, 20).
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This problem is demonstrated by writing the inverse of equation 12.6,
FU)=F U] F~* [thu]
= F[U,] e*lFlA=,

In this case, F [U,] is the Fourier transform of the observed field, and
F[U] is the desired field continued downward a distance Az. Clearly
the shortest wavelengths of the measured data will be greatly amplified
by this procedure to a degree that depends on the value of Az and the
sample interval of the data. Any errors present and perhaps undetected
in the measured data may appear in the calculated field as large and
unrealistic variations. These complexities have obvious similarities with
the inverse problem, and the subject of downward continuation has been
treated formally as such (e.g., Huestis and Parker [133]; Courtillot, Dun-
cruix, and Le Mouél [77]). Downward continuation is often used in spite
of the potential peril. Indeed each of the upward-continuation methods
discussed subsequently has been formulated for downward continuation.

12.1.2 Uneven Surfaces

As demonstrated by equations 12.6 and 12.8, continuing potential fields
upward from one level surface to another level surface is a straightfor-
ward calculation. Continuing from a level surface to an uneven surface
can be achieved with equation 12.4, which requires the evaluation of a
two-dimensional integral at each desired point of the new surface, or it
might be estimated more efficiently with the chessboard technique of
Cordell [67].

The problem is more challenging, however, when the data are mea-
sured on an uneven surface. A variety of techniques have been described
in recent years. Several authors (Courtillot, Ducruix, and Le Mouél [77];
Ducruix, Le Mouél, and Courtillot [80]; Huestis and Parker [133]) have
treated the calculation as a formal inverse problem using the formalism
of Backus and Gilbert [8]. Parker and Klitgord [209] used the Schwarz—
Christoffel transformation to map magnetic measurements along an un-
even profile onto a horizontal line, a method applicable only to profile
data measured over assumed two-dimensional sources. Two other meth-
ods are outlined in the following sections.

Equivalent Source

If a source distribution could be found that generates an observed poten-
tial field, that distribution could be used to calculate the field anywhere
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Fig. 12.5. Equivalent source.

Source

above the original measurements. This two-step procedure, an inverse
problem followed by a forward calculation, would provide a way to con-
tinue potential fields from surface to surface. The calculated source in
all likelihood will not resemble the true source distribution in any way,
but this is of no importance in this application; Green’s third identity
(Chapter 2) assures us that alternate sources can cause the same po-
tential field in restricted regions. The source distribution must produce
a potential field that is harmonic in the area of interest, vanishes at
infinity, and reproduces the observed field. This is the essential logic
behind the equivalent-source technique (Dampney [79], Bhattacharyya
and Chan [17], Pedersen [218], Emilia [83], Nakatsuka [193], Hansen and
Miyazaki [111], Arkani-Hamed [5]).

As before, we desire the field at point P above the surface on which the
field has been measured (Figure 12.5). The observation surface is now
uneven, and its elevation can be represented as a function of horizontal
position z(z, y). In this example, we following Hansen and Miyazaki [111]
and assume that the potential at P is caused by a double distribution
m spread over a surface D,

U(P)=/m-VQ%dS
D

_ / (', y) "y dS, (12.9)
D

where Q(2',y’) is the point of integration and r is the vector of length
r directed from @ to P (Figure 12.5). The double distribution has the
same form as a spread of magnetic dipoles, but this does not limit its
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application to magnetic fields; U can represent a potential field of any
kind. The shape and location of surface D is yet to be determined, but it
should lie at or below the observation surface and above all true sources.
This source distribution will achieve our goals if U(P) is harmonic above
the observation surface, vanishes as z approaches —oo, and equals the
observed field whenever P lies on the observation surface. The first two
conditions are satisfied because equation 12.9 is essentially the potential
field of a dipole distribution (see Section 5.1). The third condition is
satisfied if we select m(z,y) so that

m-ft

ds. (12.10)

Uy 2(e,) = [ mia' )™
D

Because the left side of equation 12.10 is known, the problem reduces

to (1) selecting models for the unit vector ¥ (which is not necessarily

uniform) and surface D, (2) finding a solution for m(z, y), and (3) using

m(z,y) in equation 12.9 to find U(P), the upward-continued field.

If P is always above (or on) the observation surface, then D can be
placed at the observation surface, in which case equation 12.10 becomes
A m-t
U(z,y,2(z,y)) = 2rm(z,y)m- i+ / m(a:’,y’)? ds, (12.11)

where i is normal to the observation surface (Hansen and Miyazaki [111]).
Equation 12.11 can be solved for m(z,y) by the methods of succes-
sive approximations once a model is selected for m. Bhattacharyya and
Chan [17] oriented 1 normal to the observation surface, whereas Nakat-
suka [193] let 11 be vertical. In practice, the observed potential field usu-
ally is interpolated to a grid, so the surface integrals in equations 12.9
and 12.11 can be replaced with a double summation. The spread of
dipoles can be approximated by discrete dipoles at grid intersections
(e.g., Bhattacharyya and Chan [17]) or by rectangular facets with each
facet centered about a grid intersection and possessing uniform dipole
moment (Hansen and Miyazaki [111]).

Taylor’s-Series Approximation

A Taylor’s series uses derivatives of a function evaluated at one point to
extrapolate the function to nearby points. Taylor’s series was discussed
in Section 10.3.1 as a way to modify in an optimal way the shape of
causative bodies in order to solve the nonlinear inverse problem. Taylor’s
series also can be used to predict the value of a potential field at points
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away from the observation surface (Cordell and Grauch [70], Pilkington
and Roest [224]).

First consider the continuation of a potential field U(z, y, z9) measured
on a level surface (29 = constant) and desired on an uneven surface
z(x,y). The value of the potential field at one point (z,y, 2) of the new
surface is given by

a
U(l‘, yvz) = U(l‘, yyZO) + (Z - ZO)aU(mv yyZO)

(z — 20)* &
T@U(w,y,zo) +
_ > (z — zo)™ O™
—nZ:o n! aan(a:,y,zo). (12.12)

Cordell and Grauch [70] found empirically that convergence of equa-
tion 12.12 is most rapid if zp is placed at the mean of z(x,y), and this
can be achieved with a level-to-level continuation using equations 12.6
and 12.8. A solution to equation 12.12 requires vertical derivatives of the
measured field, and these can be found using the Fourier domain. We
will show in Section 12.2 that the Fourier transform of the nth vertical
derivative of a potential field is given by the Fourier transform of the
potential field times |k|™, that is,

an
F|=U| = k|"F[U]. 12.13
| 0| =t F o) (12.13
Using equation 12.13, the various vertical derivatives of the observed
field can be found, and these can be used in summation 12.12 to find the
field on surface z(z, y). Cordell and Grauch [70] found that the first three
terms of the summation are generally sufficient to achieve satisfactory
results.

Exercise 12.1 Show that if z(x, y) is a constant, equation 12.12 reduces to
equations 12.6 and 12.8. Hint: Equation 12.13 may be helpful.

Equation 12.12 is appropriate for continuation from a level surface to
an uneven surface. The more difficult case of continuation from an un-
even surface can be achieved by rearranging the terms of equation 12.12.
Isolating the first term of the summation on the left side of the equation
yields

e n Aan
Ulz,y,20) =Ul(z,y, 2) — Z (Z_—Zo)a—U(a:,y,zo). (12.14)

n! ozm
n=1
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The desired quantity U(z,y, z9) can be estimated by successive approx-
imations; that is, U(x, y, zo) determined at the ith iteration can be used
to find U(z,y, 20) at the (¢ + 1)th iteration,
. X (y— z) O .
Uy, 20) D = UG, ) = S Em22 L iy o))

n! ozn
n=1

An initial guess at U(z,y, z0) is needed. Cordell and Grauch [70] sug-
gested on empirical grounds that this initial guess can be found by as-
suming (erroneously) that U(z,y, z) is actually measured on a horizon-
tal surface and continuing it to the uneven surface z(z,y) using sum-
mation 12.12. As before, the vertical derivatives in equation 12.14 can
be estimated with equation 12.13, although this relationship does not
strictly apply to data measured on uneven surfaces.

Grauch [100] described a Fortran program implementing the Taylor’s
series method, and this program is available on diskette (Cordell et
al. [73)).

12.2 Directional Derivatives

Consider a smoothly varying scalar quantity ¢(z,y) measured on a
horizontal surface. The horizontal derivatives of ¢(z,y) are easily esti-
mated using simple finite-difference methods and discrete measurements
of ¢(z,y). For example, if the values ¢;;,4=1,2,...,j=1,2,..., rep-
resent discrete measurements of ¢(z,y) at uniform sample intervals Ax
and Ay, then the horizontal derivatives of ¢(z, y) at point i, j are given
approximately by

do(z,y) _ Pit1,5 — Pi-1
dx 2Azx ’

do(z,y) _ dij+1 — dij-1 ‘

dy 2Ay
Horizontal derivatives are easily done in the Fourier domain as well
(e.g., Pedersen [217]). According to the differentiation theorem (Sec-
tion 11.1.2), the horizontal derivatives of ¢(z,y) are given by

F [lex—¢] — (ko) 4], (12.15)
d*¢| ikyn
F [W] = (tky)" F[¢]. (12.16)
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Hence, (ik;)™ and (ik,)™ are filters that transform a function measured
on a horizontal surface into nth-order derivatives with respect to = or y,
respectively.

If ¢ is a potential, we also have the ability to calculate vertical gra-
dients. Indeed, the second vertical derivative is a direct consequence of
Laplace’s equation, for if ¢ is a potential, then V?¢ = 0 and

Po__0¢ 99 (12.17)
922 ox?  Oy?
If ¢ is measured on a horizontal surface, then Laplace’s equation can
be transformed to the Fourier domain with the help of equations 12.15
and 12.16, that is,

2
F |G| i F e+ i F 1

=|k|* Flg]. (12.18)

Hence, the second vertical derivative of a potential field measured on a
horizontal surface is framed as a three-step filtering operation: Fourier
transform the potential field, multiply by |k|?, and inverse Fourier trans-
form the product.

The second vertical derivative was an early mainstay of interpretation
techniques (Evjen [86], Henderson and Zietz [126]) because it helps to
resolve and accentuate shallow sources. To see why this should be the
case, consider two monopoles observed at point P, one at shallow depth
d; and the other at greater depth d;. The field of each monopole is
inversely proportional to the squared distance to P. Hence, as P moves
toward the monopoles, the field due to the shallow monopole will increase
more rapidly than the field of the deep monopole. It stands to reason
that the second vertical derivative will have the same effect. Similarly,
the second vertical derivative accentuates and helps to resolve edges
of magnetic or gravity sources. These characteristics are illustrated by
Figure 12.6, which shows the second vertical derivative of the total-field
anomaly of central Nevada.

These properties of the second vertical derivative also follow from
equation 12.18: Multiplying the potential field by |k|? clearly ampli-
fies short-wavelength components of the field at the expense of long-
wavelength components. Needless to say, all of the cautionary comments
made earlier concerning downward continuation are applicable to the
second vertical derivative as well.
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Fig. 12.6. The second vertical derivative of the total-field anomaly of Fig-
ure 12.1.

The second vertical derivative is a direct consequence of Laplace’s
equation. Indeed, vertical derivatives of any order are obtainable from a
potential field. This follows from the earlier discussion on upward con-
tinuation. Using the usual conventions that z increases downward and
that Az > 0, the vertical derivative of first order is given by

¢($, Y, Z) B Qb(.’E, Y,z — AZ)
0 Az ’

and transforming to the Fourier domain yields

]—'[%] Ly Flol— Flglerlkia:

Az—0 Az
. 1— e—l/c]Az
=dm TR T
= [k| F [¢].

In a similar fashion, we could show that the nth-order vertical gradient is
equal to the Fourier transform of the potential times |k|™, or in general,
"¢

F [ﬁ] = k" F[4]. (12.19)
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Subroutine B.25 in Appendix B is an implementation of the three steps
implied by equation 12.19; it Fourier transforms gridded potential-field
data, multiplies by |k|™, and inverse Fourier transforms the product.

Transformations from Field to Potential

Equations 12.15, 12.16, and 12.19 provide ways to calculate derivatives
in all three orthogonal directions from a potential field measured on a
horizontal surface. We can write these relationships more compactly as
a single equation,

F[Ve]=kF|[g], (12.20)

where k = (iky,iky, |k|), as shown by Pedersen [216] using a somewhat
different derivation.

A force field F is related to its potential ¢ according to F = V¢, and
equation 12.20 expresses this relationship in the Fourier domain. The
component of the force field in any direction f, therefore, is simply a
directional derivative of ¢, given in the Fourier domain by

F [f"-v(;s] = -k Flg]. (12.21)

The vertical attraction of gravity, for example, is given by g, = %U , OT
in the Fourier domain by

Flg.]l = |k| F[U]. (12.22)

Similarly, the total-field anomaly measured in an ambient field f is, to a
good approximation, given by AT = —f - VV| where V is the magnetic
potential of the anomalous body. In the Fourier domain this is expressed
by

FIAT]=—(f-k) F[V]

=—6¢|k| F[V], (12.23)
where ©¢ was defined in Section 11.2.1 as
@f = fz + Z%

Equations 12.22 and 12.23 express the vertical attraction of gravity and
the total-field anomaly in terms of their respective potentials. Rearrang-
ing terms provides

Flv)= Wﬂf{gz], k] #0, (12.24)
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1
F|V]=——=F[AT], |k] £ 0, (12.25)
Ot lk|
and these equations describe vertical gravity anomalies and total-field
magnetic anomalies measured on a horizontal surface in terms of their
respective potentials on that same surface.

12.3 Phase Transformations

The shape of a gravity anomaly naturally depends on the shape and
distribution of mass, as described by the density distribution p(z,y, z).
Magnetic anomalies have an added complexity: The anomaly depends
not only on the distribution of magnetization M (x,y,z), but also on
the direction of magnetization and on the direction in which the field
is measured.} For a total-field anomaly, of course, the component of
measurement is parallel to the ambient field.

This added complexity is easily described in the Fourier domain. Con-
sider a three-dimensional distribution of magnetization M(z,y,z) lo-
cated entirely below the plane of observation at zp. The distribution
will be defined as zero outside a finite region with horizontal dimensions
smaller than the dimensions of the survey, and we assume that the direc-
tion of magnetization (but not the intensity of magnetization) is uniform
throughout the body. The Fourier transform of the total-field anomaly
caused by M (z,y, z) is given by equation 11.47,

o0

F[AT] = 27C1n©0ms k] el¥120 / e E M, (12.26)

20

where F [M(z')] denotes the Fourier transform of the magnetization on
one horizontal slice through the body at depth z’. The parameters @,
and ©y in equation 12.26 are given by

@m = mz + Z—mzkz |—]:| myky )

O = fz + i—fwkw l—]:| Tuky ;

where th = (M, Ty, M) and f= (fw,fy,fz) are unit vectors in the

{ Of course, the shape of a gravity anomaly also depends on the direction in which
the field is measured, but conventional gravity meters measure the total gravity
field of the earth, which is always vertical.
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direction of the magnetization and in the direction of the ambient field,
respectively. The integral term in equation 12.26 carries all of the in-
formation concerning M(x,y, z), including the shape of the magnetic
body. This term certainly will contribute to the phase of the anomaly,
depending on how the magnetization is distributed, and this contribu-
tion will be difficult to assess without some a priori knowledge about
M (z,y, z). The functions ©y, and ©; also contribute to the phase of
the anomaly and contain all information regarding the directions of the
magnetization and of the component being measured.

Suppose that a different component of the magnetic field or the effect
of a different direction of magnetization is of interest. In either case,
only f and 1h are to be altered in equation 12.26; M(z,y,z) remains
unchanged. Denoting the new directions of magnetization and ambient
field as ' = (1hy,, 7y, ™) and £ =, fz/ﬁ f1), respectively, the trans-
formed anomaly will be

fﬁAﬂJ=2ncm@;@HmeWV{/eﬂﬂffqmuzndz, (12.27)
20
where
@'mﬁ+ﬁgiﬂ%@
m z l k |

Feka + fyky

k[
Combining equations 12.26 and 12.27 in order to eliminate the common
factors provides

Or=fl+i

F[ATy] = FAT| F [¢n], (12.28)
where
o o
fT¢w]==EfEEi- (12.29)

Equations 12.28 and 12.29 describe a filtering operation that transforms
a total-field anomaly with given directions of magnetization and ambient
field into a new anomaly caused by the same distribution of magneti-
zation but with new vector directions. No assumptions are necessary
concerning the shape of the body or the distribution of magnetization,
except that it should be sufficiently localized for the Fourier transform
to exist.
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The denominator in equation 12.29 can be zero in parts of the k., &y
plane for certain orientations of th and f, in which case F [¢] is not, de-
fined. If 11 and f are nearly parallel to these singular directions, F (1)
can reach high amplitudes in parts of the k;, k, plane, and the filtering
operation of equation 12.28 may be unstable. Some of these situations
will be discussed in Section 12.3.1. Moreover, the imaginary part of equa-
tion 12.29 is discontinuous through the origin of the k., k, plane, and
this discontinuity can affect the long-wavelength parts of AT (Kis [147]).

The steps involved in applying equation 12.28 are (1) Fourier trans-
form the measured AT, (2) multiply by F [¢4], and (3) inverse Fourier
transform the product. Subroutine B.26 in Appendix B shows the im-
plementation of this three-step procedure.

12.3.1 Reduction to the Pole

Positive gravity anomalies tend to be located over mass concentrations,
but the same is not necessarily true for magnetic anomalies when the
magnetization and ambient field are not both directed vertically. Un-
less 1 and f are both vertical, ©,, and ©; will contribute a phase to
the magnetic anomaly, which can shift the anomaly laterally, distort its
shape, and even change its sign (Figure 12.7).

Exercise 12.2 What directions for r and f cause the phase contribution
of ©,0¢ to be —17

In general terms, if the magnetization and ambient field are not verti-
cal, a symmetrical distribution of magnetization (such as a uniformly
magnetized sphere) will produce a “skewed” rather than a symmetrical
magnetic anomaly (see Figure 4.9 for several extreme examples).

This added complexity can be eliminated from a magnetic survey by
using equations 12.28 and 12.29. If we require m’ = f = (0,0,1) in

500 nT I |

Fig. 12.7. A magnetic anomaly before and after being reduced to the pole.
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equation 12.29, then equation 12.28 will transform a measured total-
field anomaly into the vertical component of the field caused by the same
source distribution magnetized in the vertical direction. The transformed
anomaly in the Fourier domain is given by

F[ATy] = F [:] F [AT], (12.30)

where

1
F [wr] = _®m@f

|&[?
B k| #£0, (1231
G RE T a2 £ agkek, iRk, +boky) 170 (1231

ay =1, f, — Mo fa,
ag =m, f, — myfya
az =~y fo — mzfya
by =1t fx + M fa,
by =1y fo + 12 fy.

The application of F [i] is called reduction to the pole (Baranov and
Naudy [10]) because AT is the anomaly that would be measured at the
north magnetic pole, where induced magnetization and ambient field
both would be directed vertically down (Figure 12.7). Reduction to the
pole removes one level of complexity from the interpretive process: It
shifts anomalies laterally to be located over their respective sources and
alters their shape so that symmetrical sources cause symmetrical anoma-
lies. The direction of magnetization and ambient field are required in
equation 12.31, but no other assumptions about the distribution of mag-
netization are necessary, except those concerning the lateral dimensions
of the sources described earlier.

Many of the comments concerning O, and Oz in Section 11.2.1 apply
to F [¢r]. The filter attains a constant value along any ray projected from
the origin of the k., k&, plane. Two rays directed in opposite directions
are complex conjugates of one another, so the imaginary part of F [1/;]
is discontinuous at the origin. Each ray, in general, differs in value from
neighboring rays, but the average of F [1;] around any circle concentric
about the origin is independent of the radius of the circle. Thus reduction
to the pole has no effect on the shape of the radially averaged spectrum.
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Fig. 12.8. The total-field anomaly of Figure 12.1 reduced to the pole.

Exercise 12.3 Demonstrate the validity of each of these points using equa-
tion 12.31.

Figure 12.8 shows the total-field anomaly from central Nevada (Fig-
ure 12.1(a)) reduced to the pole. Notice that the transformed anomalies
are generally more symmetric than their original counterparts. In partic-
ular, the isolated anomaly in the southwestern part of the map is more
centrally located over its apparent source, a Tertiary granitic pluton
(Figure 12.1(b)). Subroutine B.26 in Appendix B can be used for reduc-
tion to the pole by specifying vertical inclinations for magnetization and
ambient field.

Problems at Low Latitudes

Figure 12.9 shows two examples of the amplitude and phase of F [t,]:
Figure 12.9(a) assumes an inclination of 60° for both the ambient field
and magnetization, typical of a mid-latitude survey, whereas Figure
12.9(b) assumes an inclination of 10°, as might be found near the mag-
netic equator. Both amplitude spectra in Figure 12.9 vary smoothly
throughout the k,,k, plane (except at the origin), but the amplitude
spectrum in Figure 12.9(b) attains large values within narrow pie-shaped
segments. Moreover, these high-amplitude segments extend to the longest
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Fig. 12.9. Amplitude and phase spectra for two reduction-to-pole filters. (a)
Mid-latitude case, with inclination 60°, declination 30°; (b) low-latitude case,
with inclination 10°, declination —30°.

wavenumbers (shortest wavelengths) of the spectrum. This is a charac-
teristic of F [¢,] in low-latitude situations. In applying equation 12.30 in
such situations, the measured total-field anomaly, and any noise included
within the measurements, will experience this high, directionally selec-
tive amplification. The result can appear as short-wavelength artifacts
elongated in the direction of the declination.
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We can better understand the reason for this selective amplification
by converting equation 12.31 to polar coordinates,
1
‘7: [d’r] = 2 .2 . . . )
ay cos2 A + aosin® A + az cos Asin A + i(b) cos A + by sin A)
(12.32)

where X = arctan(k,/k;). Equation 12.32 can be calculated at all points
of the kz, k, plane (except at |[k| = 0) if the magnetization and ambient
field have nonzero inclinations, but F [¢;] is undefined for certain X if
the magnetization and ambient field are both horizontal. For example,
if m = f = (1,0,0), then
-1
F[wr] - m )

and in this case F [¢;] is not defined along the k, axis. If the inclinations
are shallow but nonzero, as they are in Figure 12.9(b), the amplitude
spectrum of F [1f,] will be defined at each point away from the origin
but will attain large values within narrow pie-shaped segments.

Several techniques have been developed to improve reduction to the
pole in low-latitude situations. One straightforward approach is to re-
duce low-latitude magnetic data to the magnetic equator rather than to
the pole (Leu [164], Gibert and Galdeano [96]). Although this procedure
will tend to center anomalies over their respective sources, the anoma-
lies will be stretched in the east—west direction relative to the horizontal
dimensions of the source (e.g., see Figure 4.9(b)).

Exercise 12.4 Derive an expression like equation 12.31 for reduction to the
equator.

Reduction to the pole can be achieved using an equivalent-source
scheme (Silva [258], Emilia [83], Bott and Ingles [40]), much in the same
way that upward continuation was treated in Section 12.1.2. Such meth-
ods consist of two steps: a solution to the inverse problem followed by
a forward calculation. First, the observed anomaly is used to find a hy-
pothetical source distribution that can produce the observed anomaly,
assuming an appropriate direction of magnetization for the survey site.
Second, the vertical component of the magnetic field is found assum-
ing that the equivalent source is vertically magnetized. The equivalent
source most likely will have no resemblance to the true source, but this
is of no importance so long as it produces the observed magnetic field.
Equivalent sources typically are modeled as a layer of discrete magnetic
sources, such as pairs of monopoles of opposite sign (Silva [258]), lines
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of dipoles (Emilia [83]), or uniformly magnetized blocks (Bott and In-
gles [40]). According to Silva [258], the equivalent-source technique is
largely free of the instabilities often associated with reduction to the
pole of low-latitude data. But this improvement comes at the expense of
significantly more computational effort as compared to the application
of equation 12.30.

Hansen and Pawlowski [112] and Pearson and Skinner [214] applied
Wiener filtering to the problem of low-latitude reduction to the pole.
Equation 12.30 can be considered to be the inverse of

F [AT] =F! [wr] F [ATr] .

This operation is always stable, as can be demonstrated with the recipro-
cal of equation 12.32. In real situations, an observed total-field anomaly
AT, will include a noise component N so that ATy = AT + N. The
Fourier transform of the observed anomaly is

}-[ATO] :f_l[wr]f[ATr]"'f[N]'

An operator « is then required such that |aF [ATy] — F[AT]? is a
minimum when averaged over all values. The filter « is a regulated ver-
sion of F [1),] suitable for noisy data. According to Wiener theory, o can
be written in terms of F 1], which can easily be calculated, and the
power spectra of N and AT. The spectra can be found by assuming the
statistical nature of the noise and the ideal spectral characteristics of
reduced-to-pole anomalies. Hansen and Pawlowski [112] reported signif-
icant improvement using this technique in low-latitude applications of
reduction to the pole.

Nonuniform Direction of Magnetization and Ambient Field

The foregoing has assumed that the magnetization and regional field are
uniform throughout the study area, often an appropriate assumption for
small-scale surveys where the direction of the geomagnetic field varies by
only small amounts over the limits of the survey. Over continental-scale
areas, however, the geomagnetic field varies to a considerable degree, and
algorithms that assume uniformly directed magnetization and regional
field may produce errors when applied to similarly sized compilations of
aeromagnetic data.

Arkani-Hamed [5] discussed a reduction-to-pole technique that per-
mits variable directions of magnetization and regional field while main-
taining the efficiency of the Fourier-domain methodology. His technique
employs an equivalent layer of magnetization; variations in the direction
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of magnetization and in the direction of the ambient field are described
by perturbations about uniform directions.
The magnetic potential observed at point P is given by

V(P) = C, /M(Q) - VQ% dv, (12.33)

where @ is the point of integration and r is the distance from Q to P.
Both the intensity and direction of magnetization are permitted to vary
in this case. We restrict P to a horizontal plane at z = 2o and model the
magnetic source as a vanishingly thin layer at depth d (d > zp), that is,
we let

M(Q) = M(z',y/) 6(z' — d).

Substituting this magnetization into equation 12.33 and integrating over
2’ reduces the triple integral to a two-dimensional convolution over
z’ and y’. Fourier transforming both sides and applying the Fourier-
convolution theorem leads to

elkl(zo—d)

FV]=—-2rCp———

k- F[M],
where k = (ikz, iky, |k|). Now we let the equivalent layer be located at
the plane of observation so that d — zg. We also resolve the direction of
magnetization into two components, a uniform vector mg and a small
perturbation Am about this uniform direction, that is, we let M(z, y) =
M(z,y)(m, + Am(zx,y)). Making these substitutions provides

FlV]= —%'E{k-mo}"[M] +k-F[MAm]}
and isolating F [M] on one side of the equation yields
F[M] =—{%C],|k|+k-f[MAm]}/(k-mo). (12.34)

Equation 12.34 can be solved recursively in order to derive M (z,y) from
V(z,y). An initial guess is made for M(z,y) (M(z,y) = 0, for example),
and equation 12.34 is used to obtain a second approximation for M(z, y).
This new solution is substituted back into equation 12.34 to get a third
approximation, and the procedure continues until the solution converges
appropriately.

Equation 12.34 requires the magnetic potential, and this can be ob-
tained from the observed total-field anomalies. Like the magnetization,
we describe the direction of the ambient field as the sum of a uniform
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vector fy plus a perturbation Af about fy, and the total-field anomaly
becomes

FIAT]=—F [? : vpv]
= —fy- F[VpV] - F[Af-VpV].

As shown in Section 12.2, the gradient of a potential observed on a
horizontal plane has a Fourier transform given by

FIVRV] =KkF[V],
and making this substitution in the previous equation leads to
FV]=—AF[AT)|+ F[Af-VpV]}/(k-fp). (12.35)

Like equation 12.34, equation 12.35 can be solved iteratively in order to
derive the magnetic potential from the observed anomaly, which in turn
can be used in equation 12.34 to find the magnetization of the equivalent
layer. It is then a simple matter to transform the magnetization into
the reduced-to-pole anomaly; that is, we let Am = Af = 0 and let
myg = fy = (0,0,1) in equations 12.34 and 12.35 to get

F [ATp] = 27Cinlk| F [M(z,y)]. (12.36)

Thus reduction to the pole is a three-step procedure: A total-field
anomaly can be transformed to an equivalent layer at zero depth using
the recursive relation 12.34, the potential of the equivalent layer can
be found using the recursive relation 12.35, and the potential can be
converted to a reduced-to-pole anomaly using equation 12.36 (Arkani-
Hamed [5]). The method requires knowledge over the entire survey of the
ambient field direction and the direction of magnetization. The first of
these can be obtained from a suitable field model, such as the IGRF, but
the magnetization direction is more problematic unless purely induced
magnetization is assumed.

Two-Dimensional Sources

Consider the total-field anomaly AT (z) measured along a line over and
perpendicular to a two-dimensional body. We use the convention shown
in Figure 9.6, that is, the long axis of the body is parallel to the y axis,
and the profile is in the direction of the x axis. As discussed in previous
chapters, the y component of magnetization for a two-dimensional body
contributes nothing to the magnetic field, and the y component of the
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magnetic field is zero. The z and z components of magnetization and
ambient field are given by

My = cos Iy, cos(Dy, — ),
m, =sin Iy,
fz = cos It cos( Dy, — a),
f.=sinl,

where I, and Dy, are the inclination and declination of the magnetiza-
tion, It and Dy are the inclination and declination of the ambient field,
and « is the azimuth of the z axis (i.e., the azimuth of the profile). Be-
cause the y components of 1 and f are irrelevant in the two-dimensional
case, it is useful to consider the projections of th and f onto the plane
normal to the two-dimensional body. The inclinations of these projected
vectors are called the effective inclinations (Schouten[252]) and are given
by

m
" z
I, =arctan —
T

tan I,
= _ 12.
arctan cos(D — ) (12.37)

~

I{ = arctan ==,
x

tan I,
=arctan cos(D—a) (12.38)
The effective inclinations are always equal to or steeper than the true
inclinations, and they are vertical when the long axis of the body lies
parallel to the declination.

First we need the Fourier transform of an anomaly due to a two-
dimensional body of arbitrary cross section. One element of such a body
is a line of dipoles, and the Fourier transform of the anomaly caused by
a line of dipoles is given by equation 11.29, where m’ = m'th is dipole
moment per unit length. Fourier transforms are one dimensional in this
case, that is, they are functions of a single variable, namely, wavenumber
k. We replace m’ in equation 11.29 with a single element M (z, 2') dz dz’
of the two-dimensional body. As before, M (z, z) will be understood to
be nonzero only for z > 0 and within a finite part of the x,z plane.
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Integrating over x and z provides the Fourier transform of the anomaly
caused by an arbitrary two-dimensional body

F[AT] = 27C s |K| / e~ FM(z,2')) d2' (12.39)

where

O =, + i, sgnk,
O¢=f, +ifosgnk.

Rearranging terms, we can show that the amplitude and phase of ¥,
are

sin I, sin It
|T9m19f| T
sin I}, sin I}

phase 9 = (7 — I, — I{)sgnk . (12.40)

According to equation 12.39, the phase of F [AT] originates from two
aspects of the source: The integral term, depending on the distribution
of magnetization M(z, z), and the factors 9, and ¥, which depend
exclusively on the directions of magnetization and ambient field. Equa-
tion 12.40 shows that the phase originating from ¥, and V¢ is related
very simply to the effective inclinations I/, and I{. Figure 12.10 shows
various total-field anomalies over the same distribution of magnetization,
each with a different value of ¥.,.

At the north magnetic pole, ¥,, = 9; = 1, and equation 12.39 becomes

F[AT,] = 27C || / e B FIM(x, 2)] dz' .

Combining this equation with equation 12.39 in order to eliminate the
common terms yields

F AT, = FAT] F [¢], (12.41)
where
1
Flih] = 90
_ sin Irln sin Ifl ei(Ix'n+If—7r) sgnk . (1242)

sin Iy, sin I¢
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Fig. 12.10. Various total-field anomaly profiles caused by the same distribu-
tion of magnetization but with various effective inclinations. The source is a
horizontal layer, 1km thick and 3 km below the level of measurement. The
layer is uniformly magnetized in the vertical direction so M(x,z) = M(x).
At the north magnetic pole, both the magnetization and regional field are
directed vertically down so m — I}, — I} = 0. At the magnetic equator, both
vectors are horizontal, and m — I, — I} = 180°. At the south pole, both vectors
are directed vertically up, and 7 — I}, — I} = 360°.

The function F [¢);] is the reduction-to-pole filter for the two-dimen-
sional case. It has constant amplitude for all k£ given by

sin I, sin I}
sin I, sin Iy

|F [yx]| =

Hence, the instabilities that accompany reduction to the pole of anoma-
lies caused by three-dimensional sources at low latitudes are not a con-
cern for the two-dimensional case. It should be clear, however, that the
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long axis of the two-dimensional body should not be parallel to the dec-
lination for bodies near the equator.

The reduction-to-pole filter has constant phase for all £ > 0 and all
k<0,

phase F [tp,] = sgnk (r — I/, — I}) .

Notice that the phase of F [¢;] is simply the negative of the phase of
UmVy; that is, when F [AT] is multiplied by F [¢;] in equation 12.41, the
phases add to zero. Hence, just as for the three-dimensional case, reduc-
tion to the pole of anomalies caused by two-dimensional sources removes
one element of complexity from the anomalies. It shifts anomalies later-
ally, tending to place them over their respective sources, and it distorts
the shapes of anomalies so that symmetric sources produce symmetric
anomalies. For example, it could be argued that the topmost profile in
Figure 12.10, the profile that would be observed at the north magnetic
pole, is more easily interpreted in terms of M (z) than its phase-shifted
counterparts; in particular, its positive anomalies lie over positive parts
of M(z).

Two applications related to reduction to the pole are worth mention.
First, reduction to the pole can help in comparing anomalies from widely
separated areas, in the special case where the distribution of magnetiza-
tion is expected to be similar at the two locations. Consider, for example,
two sets of magnetic anomalies from widely separated ocean basins but
measured over ocean crust of the same geologic age. The two regions
of ocean crust may have recorded the same sequence of geomagnetic
reversals so the distributions of magnetization at the two sites are sim-
ilar. But comparison of the anomalies may be hampered because the
two sites have different directions of magnetization and ambient field.
Such comparisons are more easily achieved if both sets of anomalies have
been reduced to the pole (Schouten [252], Schouten and McCamy [253],
Blakely and Cox [27, 26]).

Second, phase shifting of anomalies may help in estimating the true
direction of magnetization, in the special case where the distribution of
magnetization is known in advance (Schouten and Cande [254]; Cande
[51]). The distribution of magnetization recorded by seafloor spreading,
for example, can be modeled to a first approximation as a square wave
(e.g., M(x) at the bottom of Figure 12.10). Such magnetizations pro-
duce anomalies at the magnetic pole with a characteristic form (e.g., the
top profile in Figure 12.10). A measured magnetic profile can be phase
shifted by varying amounts until it assumes this characteristic form, and
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the total phase shift will be an estimate of I/, + I] — . Because I{ pre-
sumably is known at the survey site, the total phase shifting provides a
direct measure of the effective inclination of magnetization I}.

The effective inclination in turn provides a means of estimating the
virtual geomagnetic pole for the oceanic plate, under the assumption
that the direction of magnetization is parallel to the paleomagnetic field.
Although a virtual geomagnetic pole can be calculated uniquely from
the paleomagnetic inclination and declination observed at a single site
(e.g., Butler [47, pp. 157—60]), here we only have an effective inclination,
and according to equation 12.37, an effective inclination has an infinite
variety of compatible inclination—declination pairs. Because of this am-
biguity, a single effective inclination is compatible with an infinite set
of permissible paleomagnetic poles all lying along a semi-great circle,
which is not a particularly instructive result. However, a second set of
anomalies of the same age and on the same rigid plate could be analyzed
in the same way in order to produce a second great circle of permissi-
ble pole positions. The intersection of the two great circles provides an
estimate of the single paleomagnetic pole compatible with both sites
and for the rigid plate over which both sets of anomalies are measured
(Schouten and Cande [252], Cande [51]). Systematic discrepancies in the
intersection of more than two great circles, called anomalous skewness,
indicate that one or more of the underlying assumptions are in error;
such discrepancies may reflect complexities in the behavior of the paleo-
magnetic field or in the way reversals are recorded at spreading centers
(Cande [51], Cande and Kent [52]).

12.3.2 Calculation of Vector Components

Equations 12.28 and 12.29 also can be used to transform a total-field
anomaly into some other component of the magnetic field. For example,
the vertical component B, of the magnetic field can be calculated from
a total-field anomaly by letting ©7, = Oy and ©f = 1 in equation 12.29,
that is,

]:[Bz] =f[AT]f[¢z],
where
1
F [wz] = @_f
_ IkIA _
|| f. + i(ko fo + ky )

k] #0.
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Knowing the direction of the ambient field, therefore, is sufficient to
transform a total-field anomaly into the vertical component of the mag-
netic field.

It should be clear that such transformations will be limited for certain
ambient-field directions in the same way that reduction to the pole is
limited at low latitudes. Consider, for example, a total-field anomaly
measured near the magnetic equator and caused by a body with purely
induced magnetization. Both f and r will have shallow inclinations
in this case, and transforming the total-field anomaly into the vertical
component of the magnetic field can be expected to be an unstable
operation. Any noise within the measurements will generate artifacts,
typically short in wavelength and elongated parallel to the declination.

Exercise 12.5 Derive Fourier-domain filters that will transform a total-field
anomaly into the horizontal-north component and the horizontal-east
component of the magnetic field. Discuss the conditions under which
these filters are expected to be unstable.

12.4 Pseudogravity Transformation

Poisson’s relation was discussed at some length in Section 5.4, where it
was shown that the magnetic potential V and gravitational potential U
caused by a uniformly dense and uniformly magnetized body are related
by a directional derivative, that is,

Ve-"0"1n.VpU
Y op

Cum M
Z_ijgm, (12.43)

where p is the density, M is the intensity of magnetization, m is the
direction of magnetization, and g,, is the component of the gravity field
in the direction of magnetization m. In deriving Poisson’s relation, we
assumed that M and p are constant. However, we can consider a variable
distribution of magnetization or density to be composed of arbitrarily
small regions of uniform magnetization or density; equation 12.43 is ap-
propriate for each of these small regions and, invoking the superposition
principle, must be appropriate for variable distributions of density and
magnetization.

Baranov [9] described an application of Poisson’s relation in which the
total-field magnetic anomaly is converted into the gravity anomaly that
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Fig. 12.11. A magnetic anomaly and its pseudogravity transform.

would be observed if the magnetization distribution were to be replaced
with an identical density distribution (i.e., %{ is a constant throughout
the source). He called the resulting quantity a pseudogravity anomaly,
and the transformation itself is generally referred to as a pseudograv-
ity transformation (Figure 12.11). These are perhaps unfortunate names
since mass is not involved in any way. As we shall see shortly, the trans-
formation may more appropriately be considered to be a conversion from
magnetic field to magnetic potential. Nevertheless, we will use the con-
ventional term, pseudogravity, in the following discussion.

The pseudogravity transformation has several important applications.
Some geologic units may be both highly magnetic and anomalously
dense. A mafic pluton surrounded by sedimentary rocks, for example,
may produce both a gravity and magnetic anomaly. A pseudogravity
anomaly, calculated from the measured magnetic field, can be compared
directly with measurements of the gravity field. Such comparisons might
help to build an interpretation of the shape and size of the source, or at
least permit an investigation of the ratio M/p and how it varies within
the source (e.g., Kanasewich and Agarwal [145], Bott and Ingles [40],
Cordell and Taylor [74], Chandler and Malek [55]).

A pseudogravity transformation might be a useful strategy in inter-
preting magnetic anomalies, not because we believe that a mass distri-
bution actually corresponds to the magnetic distribution beneath the
magnetic survey, but because gravity anomalies are in some ways more
instructive and easier to interpret and quantify than magnetic anoma-
lies. Gravity anomalies over tabular bodies have steepest horizontal gra-
dients approximately over the edges of the bodies, and this property can
be exploited in a magnetic interpretation by transforming the magnetic
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anomaly to a pseudogravity anomaly and searching the pseudogravity
anomaly for maximum horizontal gradients. This application of the pseu-
dogravity transform will be discussed in more detail in the next section.

The pseudogravity transform is more easily understood and more eas-
ily undertaken in the Fourier domain. Assuming that the ratio p/M is a

constant at each point, the Fourier transform of equation 12.43 is given
by
TP
F =—-—— —F|V], 12.44
(90) = 5= 2 F V] (12.44)
and combining with equation 12.25 provides
TP
F = ——— — F[AT].
This equation relates the total-field anomaly to one component of the
gravity field, the component parallel to the magnetization. We are more
interested in the vertical component of the gravity anomaly, however,
and this can be found by dividing both sides by ©p,. Hence, denoting
the pseudogravity anomaly as AT, we get

}—[ATPSg] = }—[AT] }—[wpsg] 3 (1245)
where
_ gl p
F [Wpsg] = CoThOm6; M k| #0, (12.46)

and p/M is a constant. The function F [ps] is a filter that transforms
a total-field anomaly measured on a horizontal surface into the pseudo-
gravity anomaly. As we have seen in previous sections of this chapter,
the transformation amounts to a three-step procedure: Fourier transform
the total-field anomaly, multiply by F [¢psg], and inverse Fourier trans-
form the product. Subroutine B.27 in Appendix B is an implementation
of this three-step transformation.

Notice the similarities between F [1)psg] and the reduction-to-pole filter
F [¢r]- In particular, the two filters are related by

fmg=%fML

where A is a constant. Thus the two filters have certain spectral prop-
erties in common. Indeed, the phase spectrum of F [tps,] is identical to
that of F [¢;] (Figure 12.9), and we can expect the pseudogravity trans-
formation to have limitations when the magnetization and ambient field
have shallow inclinations, as might be expected at low latitudes. The am-
plitude spectrum of F [¢)psg] is proportional to the amplitude spectrum
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of F [¢] (Figure 12.9) weighted by 1/|k|. Hence, the radial amplitude
spectrum is proportional to 1/|k|; that is, the pseudogravity transfor-
mation amplifies low wavenumbers (long wavelengths) and attenuates
high wavenumbers (short wavelengths). The low-wavenumber amplifi-
cation is cause for some concern; any long-wavelength noise contained
in the measured total-field data will be amplified along with authentic
anomalies.

Also note the relationship between pseudogravity and magnetic po-
tential,

F el = 5= F V1,

where B is a constant. In particular, the pseudogravity anomaly of a
magnetic source is proportional to the magnetic potential of the same
source with vertical magnetization.

Figure 12.12 shows the pseudogravity transform of the total-field
anomaly from central Nevada. Note its similarities with the upward-
continued field (Figure 12.4). In particular, long-wavelength features of
the original map have been amplified at the expense of short-wavelength
anomalies.

116°30 116°15'

40°15"

"Pseudo mGal"

40°00'

5 10 15 20 km

Fig. 12.12. The pseudogravity anomaly transformed from the total-field
anomaly of Figure 12.1.
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12.4.1 Pseudomagnetic Calculation

The inverse of equation 12.45 can be used to transform a measured
gravity anomaly into the magnetic anomaly that would be observed if
the density distribution were replaced by a magnetic distribution in one-
to-one proportion. Rearranging equation 12.45 yields

F gpsm] = F [9]F [¥psm], (12.47)
where gpsm denotes the transformed anomaly and
Cnlk|®Om©r M
F [Ypsm] = %7 : (12.48)

This operation, called a pseudomagnetic transformation, does not suffer
from the low-latitude limitations of its pseudogravity counterpart, but it
clearly can suffer from instabilities. In particular, short-wavelength com-
ponents of g, are amplified; the shorter the wavelength, the greater will
be the amplification. Any noise present at these wavelengths will be sim-
ilarly amplified, and this can lead to high-amplitude, short-wavelength
artifacts in the transformed result.

12.5 Horizontal Gradients and Boundary Analysis

The steepest horizontal gradient of a gravity anomaly g,(z,y) (or of a
pseudogravity anomaly) caused by a tabular body tends to overlie the
edges of the body. Indeed, the steepest gradient will be located directly
over the edge of the body if the edge is vertical and far removed from
all other edges or sources.

Exercise 12.6 Consider a uniform, horizontal, semi-infinite slab with ver-
tical face (i.e., the slab occupies the region 0 < z < 00, —00 < y < 00,
21 < z < 2z3), like that shown in Figures 9.15(a) and 9.15(b). Show from
equation 9.2.2 that a gravity profile over the edge of the slab measured
in the x direction will have its maximum gradient over the edge of the
slab.

We can exploit this characteristic of gravity anomalies in order to locate
abrupt lateral changes in density directly from gravity measurements
(Cordell [66]). Moreover, the same technique could be applied to mag-
netic measurements by first transforming them to pseudogravity anoma-
lies, in which case the steepest horizontal gradients would reflect abrupt
lateral changes in magnetization (Cordell and Grauch [68, 70]).

The magnitude of the horizontal gradient of the gravity or pseudo-
gravity anomaly, loosely referred to here as the horizontal gradient, is
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given by

h(z,y) = [(d—g—%ﬂf + (@%;ﬁ)zr (12.49)

and is easily calculated using simple finite-difference relationships, as
shown in Subroutine B.28 in Appendix B. The horizontal gradient tends
to have maxima, located over edges of gravity (or pseudogravity) sources,
as shown for a magnetic profile in Figure 12.13. When applied to two-
dimensional surveys, the horizontal gradient tends to place narrow ridges
over abrupt changes in magnetization or density. Locating maxima in the
horizontal gradient can be done by simple inspection, but Blakely and
Simpson [33] automated the procedure with an algorithm that scans the
rows and columns of gridded data and records the locations of maxima
in a file for later analysis and plotting.

Figure 12.14 shows an application to the total-field anomaly of cen-
tral Nevada. The gridded magnetic data of Figure 12.1 first were trans-
formed to pseudogravity anomalies (Figure 12.12) and then converted to
horizontal gradients. The two parallel ridges in Figure 12.14, trending
north-northwest through the center of the map, indicate the edges of
a roughly two-dimensional source causing the north-northwest trending
anomaly in Figure 12.1. The positions of these two parallel ridges pre-
sumably mark the lateral extent of a mid-Miocene rift zone in this area
(Zoback and Thompson [295]).

Interpreting the horizontal gradient in terms of density or magne-
tization contrasts, and ultimately in terms of geology, requires several

Pseudogravity
Maenetic ) i L = \/ —— Annmuly
omaly . N ,
Anomaly g7 A — Horizontal
N 2 Gradie
AR radient

Fig. 12.13. The magnetic anomaly, pseudogravity anomaly, and magnitude of
the horizontal gradient over a tabular body.
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Fig. 12.14. Magnetic boundaries of central Nevada. (a) Total-field anomalies
of Figure 12.1 were transformed to pseudogravity anomalies, then converted
to horizontal gradients. (b) Dots show maxima in the horizontal gradient au-
tomatically located by the method of Blakely and Simpson [33]. Diagonal
hatching represents interpreted basaltic rocks associated with a mid-Miocene

rift event; vertical hatching shows the location of a granitic pluton of Ter-
tiary age.
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underlying assumptions. In particular, we have assumed that contrasts in
physical properties occur across vertical and abrupt boundaries isolated
from other sources. Geology, unfortunately, is not so simple. Magnetiza-
tion and density can vary in all directions within a geologic unit, and con-
tacts between units are not generally vertical. Grauch and Cordell [103]
have quantified some of the errors that can occur when these underly-
ing assumptions are violated, but in spite of these potential pitfalls, the
technique has proven effective in interpretation of regional-scale data
bases.

12.5.1 Terracing

Cordell and McCaflerty [72] described a related technique to produce a
kind of equivalent source from measured gravity or magnetic anomalies.
The guiding principle behind their technique is that density or magneti-
zation within the equivalent layer should remain constant except across
abrupt boundaries. The resulting patchwork of density or magnetization
values brings to mind a terraced landscape, where the “hills and val-
leys” of the potential field are transformed into horizontal surfaces with
abrupt edges. Consequently, the technique is referred to as ferracing.
Maps of terraced physical properties have the general appearance of a
geology map, where lithologies are depicted as uniform bodies except
across contacts.

Terracing is not an inverse scheme in the usual sense. No inverse cal-
culations are made, but rather the values of the gravity or pseudogravity
field are iteratively increased or decreased in order to approach the ter-
raced form. Specifically, the value at each point of the grid is revised
upward or downward based on the algebraic sign of the curvature (i.e.,
the second vertical derivative) at that point. Repeated adjustments are
made until the terraced effect is achieved. The resulting terraces do not
directly reflect density or magnetization but can be scaled in order to
do so. For example, the magnetization or density of each terrace can be
treated as one unknown in an over-determined system of linear equa-
tions. Assuming top and bottom surfaces for the layer, least-squares
techniques can be used to solve for the best single value of magnetiza-
tion or density for each terrace.

12.6 Analytic Signal

The analytic signal is formed through a combination of the horizontal
and vertical gradients of a magnetic anomaly. The analytic signal has a
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form over causative bodies that depends on the locations of the bodies
but not on their directions of magnetization. The application of analytic
signals to magnetic interpretation was pioneered by Nabighian [190, 191]
for the two-dimensional case, primarily as a tool to estimate depth and
position of sources. More recently, the method has been expanded to
three-dimensional problems (Nabighian [192]; Roest, Verhoef, and Pilk-
ington [247]) as a mapping and depth-to-source technique and as a way
to learn about the nature of the causative magnetization (Roest, Arkani-
Hamed, and Verhoef [245]; Roest and Pilkington [246]).

12.6.1 Hilbert Transforms

The Hilbert transform plays an important role in the analytic signal,
and we begin the discussion with a very brief review thereof. The inter-
ested reader is referred to texts by Bracewell [42] and Papoulis [202] for
additional information.

The Hilbert transform of f(x) is given by

1 [ f&)

Fi(z) =— - dz’ (12.50)
T T —
and its inverse by
f@) = l/ Fi(®@) 4. (12.51)
T oo —

Equation 12.50 amounts to the convolution of f(z) with —1/7z. It
has, therefore, a one-dimensional Fourier transform given by the Fourier
transform of f(z) times the Fourier transform of —1/7z, namely,

F [Fr] =isgnk F|[f]. (12.52)

The Hilbert transform has a curious effect on f(z), as demonstrated by
equation 12.52: It leaves the amplitude of f(z) unchanged but shifts the
phase of f(z) by /2 for ¥ > 0 and by —7/2 for k < 0.

The analytic signal of f(z) is defined as

a(z) = f(z) — i F1(z) (12.53)

(Bracewell [42]). With equation 12.52 it is easy to derive the Fourier
transform of the analytic signal,

Fla]=F[fl(1+ sgnk). (12.54)
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Hence, the spectrum of the analytic signal of f(z) is twice the Fourier
transform of f(z) at & > 0 and zero for £ < 0. It follows that the
analytic signal of f(z) could be found in either of two ways: (1) by
directly calculating the Hilbert transform of f(z), as in equation 12.50,
and then adding this transform to f(z), as in equation 12.53; or (2) by
Fourier transforming f(z), setting to zero all values at k& < 0, doubling
all values at k > 0, and inverse Fourier transforming the result.

Exercise 12.7 Find the analytic signal for f(z) = cosaz.

12.6.2 Application to Potential Fields

In Section 12.2, we found simple relationships, expressed by equation
12.20, between a potential field measured on a horizontal surface and
its derivatives with respect to any direction. Now consider a potential
field ¢(x, z) measured along the x axis and caused by a two-dimensional
source aligned parallel to the y axis, as in Figure 9.6. In the two-
dimensional case, equation 12.20 can be expressed as

F [Z_ﬂ —ikF g, (12.55)
F [Z—f] = k| F [¢]. (12.56)

From these relationships, it is easily shown that g% and g—f are a Hilbert
transform pair. In particular, equation 12.52 is satisfied if we let f(z) =
%:1 and Fy(z) = —g—f, and we form the analytic signal from equa-

tion 12.53 as

a(z,z) = %:i +i %‘zf. (12.57)

This version of a(z, z) satisfies the Cauchy—Riemann conditions (Sec-
tion 1.3.3), the proof of which is left to the problem set at the end of
this chapter, hence, a(z, z) is analytic at each point of the z axis. In
Section 1.3.3 it was shown that if a(z,z) is analytic in a domain, then
the real part of a(z, z) must be harmonic; that is, in the present case,

200 _ 0
or Ox
=0,

\Y \VE)
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(@) (b)

Fig. 12.15. Uniformly magnetized, two-dimensional polygon. The n-sided
polygon can be replaced with 2n semi-infinite sheets, two sheets per corner,
without affecting the magnetic anomaly.

which is consistent with our starting assumption that ¢ is a potential.

Nabighian [190, 191, 192] showed how the analytical signal can be ap-
plied to the interpretation of total-field magnetic anomalies. Consider a
two-dimensional body with uniform magnetization M and with polyg-
onal cross section, as shown in Figure 12.15. The ambient field is in
the direction f and the total-field anomaly is measured along the z
axis. All corners of the body have z coordinates greater than zero. The
anomaly caused by one side of the n-sided prism, extending from (zy, 21)
to (z2, 22), is given by equations 9.27 and 9.28,

AT(z,z) = alog ;—2 + (62— 0,1), (12.58)
1
where 71, 132, 01, and 8, are defined as shown in Figure 12.15, and where
a=—-2Cx(M - d)(f -8),
B=—2Cn(M-a)(f x 3).

The horizontal and vertical derivatives of the anomaly caused by this
one side are

%) Calz )+ Bz ) alr—x)+B(z—2)
50T (@, 2) = 3 _ : |
EAT(Q;, 2) = B(x — z2) _ a(z—z2) Blx—z)—o(z—=2) |

)
Oz r3 ri
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We now replace each side of the polygon with two semi-infinite sheets
arranged so that the sheets do not cross the x axis, as shown in Fig-
ure 12.15. It should be clear from Figure 12.15 that this trick will not
affect the magnetic anomaly in any way. Now the polygon side extending
from (z1,21) to (x2,22) is replaced with two semi-infinite sheets, with
opposite sign but identical a and 3, one extending away from (z,2;)
and the other from (z3, 22).

Consider just the semi-infinite sheet extending from (z2,z2). The
derivative of the total-field anomaly caused by this sheet can be found
by letting 71 — oo in the previous equations. Parameters a and 3 do
not change, but the second term of each equation vanishes. The analytic
signal of this one sheet then is given by
a+if

alz,2) = r—x2 —i(z—22)

(12.59)

It can be shown that this equation satisfies the Cauchy-Riemann condi-
tions for the complex variable w = z—iz, so a(z, z) is analytic. Moreover,
it has a Fourier transform given by

Fla] = —mi(a +if)e~FIZz2=2gmikz2(1 L son k) 2 < 2y,

which satisfies the requirement that F [a] = 0 for k£ < 0.
The analytic signal expressed by equation 12.59 is of special interest.
It is a function of a complex variable w = £ — iz and can be written

a(w) = o+ i

w — w2

where we = 3 — iz2. The numerator depends strictly on the orientation
of the sheet (as defined by h and 8) with respect to M and f. The
denominator, on the other hand, depends exclusively on the location at
which the sheet terminates, that is, (22, 22). The point ws is an isolated
singular point of the complex plane, meaning that a(w) has a simple
pole at that location.

Nabighian [190, 191] showed how a(z, z) can be used to locate the end
of the sheet. The amplitude of a(z, 2) is given by

a2 +,82 2
(x —22)2 4+ (2 — 22)?
Thus |a(z, )| as measured along the z axis has the form of a symmetric,
bell-shaped curve centered about = = z2, and the width of the curve is
related to zz. Specifically, the width of the curve at half its maximum
height is 2|z — 22|. Hence, the horizontal position and depth of the end

|a(a3’ Z)l =




12.6 Analytic Signal 355

of the sheet (z2,22) can be estimated through simple examination of
a(z, z) along the z axis.

Now we return to the n-sided polygon. The polygon is equivalent to 2n
sheets, each sheet terminating at a polygon corner. Hence, the analytic
signal constructed from the total-field anomaly of the prism will have a
peak centered over each corner of the polygon, and the width of each
peak will be related to the depth of its respective corner. An analysis of
AT(z, z) as measured along the = axis might involve the following steps:

1. Differentiate AT (x, z) with respect to z.
2. Find the analytic signal by

(a) Fourier transforming %AT(w, 2),
(b) doubling values at k > 0 and canceling values at k < 0, and
(c) inverse Fourier transforming.

3. Calculate and interpret |a(z, 2)|.

The difficulty comes in resolving the various bell-shaped curves of a(z, z).
The various curves superimpose and coalesce when polygon corners are
close together or lie above one another.

For the three-dimensional case, the analytic signal is given by

OAT: OAT; AT ~
Alz,y,2) = —- i+66y j”aaz k, (12.60)

(Roest et al. [247]), where i, j, and k are unit vectors in the z, y, and 2
directions, respectively, and where now AT(z,v, z) is measured on the
z, y plane. This function possesses the necessary property of analytic sig-
nals, that is, its real and imaginary parts form a Hilbert transform pair.
Roest et al. [247] described how this function could be used in the in-
terpretation of gridded data in terms of three-dimensional sources. One
strategy would be to (1) form |A(z,y, 2)| from the partial derivatives of
the magnetic anomaly; (2) locate the maxima of this function, perhaps
with the technique of Blakely and Simpson [33]; (3) automatically calcu-
late the half-width at each maximum in the direction perpendicular to
the strike of the maximum; and (4) plot the maxima in a map projection
with a symbol that indicates depth to source.

Analytic Signal and Direction of Magnetization

It is clear from equation 12.59 that the magnitude of the analytic signal
is independent of the direction of magnetization for the two-dimensional
case, and this can similarly be shown to be true for the three-dimensional



356 Transformations

case. This fact can be used to investigate the nature of the magnetization
of causative bodies. Roest and Pilkington [246] described a method that
involves computing from measured total-field anomalies both |A(z, y, z)|
and the horizontal gradient of the pseudogravity anomaly. The pseudo-
gravity calculation implicitly requires an assumption about the direc-
tion of magnetization. If this direction is selected properly, the hori-
zontal gradient of the pseudogravity anomaly will have a form similar
to |A(z,y, z)|. Hence, the appropriate magnetization can be estimated
by repeated adjustment of the direction of magnetization, calculation
of the horizontal gradient of the pseudogravity anomaly, and compari-
son with |A(z,y, z)|. Roest et al. [245] quantified this comparison using
cross-correlation methods and thereby applied the method to investigate
anomalous skewness in marine magnetic anomalies (see Section 12.3.1).

12.7 Problem Set

1. Consider a marine magnetic profile AT(x) measured over an ocean
basin of given age. Assume that the source of AT (z) is a flat-lying
crustal layer and approximate the crust as a horizontal slab with
top and bottom at depths z; and 2, respectively. Let the magne-
tization of the slab be uniform in both the y and z directions so
M(z,y,z) = M(z). Assume that M(z) is a precise recording of the
paleomagnetic field as the crust evolved at an ancient spreading cen-
ter with spreading rate V.

(a) Design a filter that will transform AT(z) into the profile that
would be observed over a different ocean basin of the same age
but created with a faster spreading rate Vo (Vo > V). Describe
the stability of the filter.

(b) What happens to the stability of the filter if Vo < V7

2. Consider a potential field measured on a horizontal surface. Discuss
the amplification that would occur at Nyquist wavenumbers if the
potential field were downward continued a distance Az. Express the
amplification in terms of Az and the sample intervals Az and Ay.
Do the same for the pseudogravity transform and the second vertical
derivative.

3. Consider the total-field anomaly over a two-dimensional body located
at the magnetic equator and lying parallel to the magnetic decli-
nation. If the magnetization is entirely induced, what happens to
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the effective inclinations? Discuss the implications for the total-field
anomaly and the reduction-to-the-pole filter.
. A measured total-field anomaly has the unusual form

AT(z,y) = Ay sin B + Agsin 2y .
A1 A2
Assume that the anomaly continues in this periodic way outside of the
limits of the survey. Derive an expression for the total-field anomaly
measured on a surface that is Az higher than the original survey.
Express the result in terms of Ay, As, A1, Ao, and Az. Hints:

F[sinaz] = in[6(k + a) — 6(k — a)),

f(@)é(z —a) = fla)6(z —a).
. Prove the following theorems:

(a) The Fourier transform of the gradient of a scalar is the Fourier
transform of the scalar times a vector; that is,

F[Vg| = (ikz,iky, %) F 9]

(b) If ¢ represents any potential measured on a horizontal surface,
then

F | 39| = 5.7 101 = WiF Lol

. Consider a vertical gravity anomaly g,(z,y) measured on a horizon-
tal surface and caused by a density distribution entirely below the
surface.

(a) Use the Fourier domain to find an equivalent density distribution
that causes g,(x,y) but that is spread over a vanishingly thin
layer at depth d below the level of observation, that is, the density
is described by p(z,v,2) = p(z,y) §(z — d).

(b) Show that p(zx,y) is proportional to g.(z,y) if d — 0.

(c) Repeat (a) for a total-field anomaly; that is, given a total-field
anomaly AT(z,y), find an equivalent magnetization M(z,y) on
a vanishingly thin layer at depth d.

(d) Show that the distribution of magnetization M(xz,y) is propor-
tional to the pseudogravity anomaly if d — 0. In other words,
prove that an equivalent layer at the elevation of a total-field
anomaly is proportional to the pseudogravity anomaly.
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7. Let ¢(z, z) be a potential field caused by two-dimensional sources and
observed along the horizontal « axis over and perpendicular to the
sources. Show that

5] .0
a(z,z) = 8—x¢>+z&¢

is analytic along the line. In particular, show that this equation sat-
isfies the Cauchy-Riemann conditions of Section 1.3.3. Caution: The
coordinate system in Section 1.3.3 was different than in the present
chapter.

8. Find the analytic signal a(z, z) for the total field anomaly over and
perpendicular to a single line of dipoles. Express a(z, z) in terms of
the depth and position of the line of dipoles.

(a) Show that this a(z, z) satisfies the Cauchy—Riemann conditions.
(b) Show that F [a] is zero for k < 0.

(c) Describe how a(z,z) could be used to estimate the depth and
lateral position of the line source.



Appendix A

Review of Vector Calculus

For everything works through innate forces shown by lines, angles and
figures.
(Roger Bacon)

Many standard texts on advanced calculus and vector analysis provide
thorough treatments of vector calculus. The purpose here is not to re-
produce those treatments in detail, but rather to introduce the vector
notation used in this text and to provide a reference for the important
differential operations (gradient, divergence, and so forth) used herein.
Readers wanting a more extensive review are referred to Marion [173,
pp. 1-55].

A.1 Vector Representations

The geometric vector is a mathematical quantity with both direction and
magnitude. Vectors in this text are represented by boldface characters
(e.g., A), whereas scalar quantities are not so emphasized (e.g., 9). The
magnitude of a vector is written as either A or |A|. Vectors of equal
magnitude and having the same direction are said to be equal. Two
vectors pointing in opposite directions are negatives of one another, that
is, — A is directed opposite to A. Multiplying a vector with a scalar leaves
the direction unchanged but increases the magnitude by a factor equal
to the scalar, that is, the vector B = 1A has the same direction as A
but magnitude |A|. Unit vectors are vectors with unit magnitude and
are represented by boldface characters topped with a circumflex (e.g.,

-~

A). The unit vector directed parallel to vector A is given by

A

A=
Al

359
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Vectors can be combined by addition, for example, C = A +B. Vector
addition is commutative,

A+B=B+A,
associative,
(A+B)+C=A+B+0C),
and distributive,

¥(A +B) = YA +yB.

A geometric vector can be expanded along a complete set of linearly
independent basis vectors. A set of basis vectors is complete if any arbi-
trary vector can be expanded in terms of its projections along the basis
vectors. Here we are concerned either with three-dimensional or two-
dimensional orthogonal spaces. In such cases, vectors can be expanded
in terms of two (in two-dimensional cases) or three (in three-dimensional
cases) orthogonal unit vectors, with each unit vector weighted by the
projection of the vector parallel to the direction of the basis vector. For
example, if X1, X9, and X3 represent three orthogonal unit vectors, then
vector A can be expanded into

A =A% + Ak + AsXs,

where A, Ay, and A3 are the projections of A parallel to %;, X2, and
X3, respectively.

This text deals with only three coordinate systems: the cartesian,
cylindrical, and spherical systems. The notation for each of these is de-
scribed briefly in the following sections.

Cartesian Coordinates

The cartesian coordinate system is represented in this text with orthog-
onal axes x, y, and z, as shown in Figure A.l. Unit vectors i, j, and k
are directed parallel to the x, ¥, and z axes, respectively, so vector A
can be represented as

A=Ai+AJ+Ak,

where A;, Ay, and A, are components of A found by projecting A onto
the x, y, and z axes, respectively. The magnitude of A is given by

|A| = (A2 + A2 + A2)*.
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“' it

dv=dx dy dz

=

Fig. A.1. Cartesian coordinate system.

The unit vector in the direction of A is given by
A=Ai+A5+ Ak,

where

S
]
Il

A,

Il

N
<
I
S S El S e

It is obvious from this definition that |A| = 1. An element of volume in
the cartesian system is dv = dz dy d=.

Cylindrical Coordinates

In cylindrical coordinates, vector A is denoted by
A=AF+ A0+ A2,

where T, @, and Z are unit vectors in the direction of increasing r, 0,
and z, respectively, as shown in Figure A.2. Note that the three unit
vectors so defined are always orthogonal to each other. Magnitudes and
unit vectors in the cylindrical system are written analogously to those in
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Fig. A.2. Cylindrical coordinate system.

the cartesian system. An element of volume in the cylindrical coordinate
system is given by dv = rdr df dz.

Spherical Coordinates

Vector A is represented in the spherical coordinate system by
A=A i+ A0+ Asd.

Unit vectors #, ©, and & are always orthogonal and directed in the
direction of increasing r, 6, and ¢, respectively. Vector magnitudes and
unit vectors are analogous to those in the cartesian system. An element
of volume is given by dv = 72 sin@dr df d¢. Figure A.3 shows these
relationships and an element of volume in spherical coordinates.

A.2 Vector Multiplication
A.2.1 Scalar Product

The scalar product, or dot product, of two vectors equals the product
of the magnitudes of the two vectors scaled by the cosine of the angle
formed by their unit vectors, that is,

A -B = ABcosf.

It follows that the scalar product is largest when A and B are paral-
lel and vanishes if A and B are perpendicular. The scalar product of a
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rdo
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da=r’sin 0d0d¢
dv=r-’sin Odr dB do

Fig. A.3. Spherical coordinate system.

vector A and a unit vector B is equal to the component of A in the di-
rection of B. Scalar products in the three coordinate systems are written
as follows:

Cartesian coordinates:

A-B=A4,B,+A,B, + A.B,.

Cylindrical coordinates:

A -B=A.B,+ AyBg+ A,B..

Spherical coordinates:

A-B=AB,+ A9Bg + A¢B¢,.

A.2.2 Vector Product

The wvector product, or cross product, of two vectors is represented by
A x B. The vector product produces a new vector with direction normal
to both original vectors. For example, vector C = A x B has a direction
perpendicular to both A and B and is in the direction of advance of
a right-handed screw rotated from A to B. The magnitude of C is the
area of a parallelogram defined by vectors A and B, as in Figure A.4.
Note that A x B = —-B x A.

The following equations show the vector product in the three coordi-
nate systems, where determinants are used as a shorthand notation:
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C=AXxB
=|AlIBIl sin 6

Area = |Cl|

Fig. A.4. Cross product in cartesian coordinate system.

Cartesian coordinates:

b—io)

AxB=|A,
B,
Cylindrical coordinates:
iy
AxB=|A,
B,
Spherical coordinates:
Iy
AxB=|A,
B,

<

@

By

)
A
By

& N>

& >

A

& o=

A.3 Differential Operations

Scalar functions of position, such as the temperature distribution within
a volume of material, are called scalar fields. Vector quantities likewise
can be functions of spatial coordinates, with both direction and magni-
tude varying from point to point. Heat flow J(z,y, z) within a material,
for example, is a function of coordinates x, y, z. Such quantities are called

vector fields.
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Fig. A.5. Contour map of scalar quantity . The gradient at any point is
normal to the contours and in the direction of maximum increase in v at that
point.

A.3.1 Gradient of Scalar

The gradient of a scalar field v, designated by V1), represents the direc-
tion and rate of change of the field. The gradient of v is itself a vector
directed normal to lines of constant ¥ and, consequently, in the direc-
tion of the maximum change in . On a contour map showing equal
values of 9, for example, the gradient Vi will be a vector that points
“uphill” and is everywhere perpendicular to the contours (Figure A.5).
Note that V- A is the derivative of 1 in the direction of A. The gradient
is represented in the three coordinate systems as follows:

Cartesian coordinates:

O L0y SO
Vo =igh +ig vkl

Cylindrical coordinates:

Loy 10y 0y
vd}ﬁr@r +®r 00 —i—z&.

Spherical coordinates:

G PSP Y
v¢_r6r+8rb—5+q’rsin08¢'

A.3.2 Divergence of a Vector

The divergence of a vector A, designated by V - A, is a scalar that
represents the three-dimensional spatial derivative of a vector field. For
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example, if A(z,y, z) describes fluid flow at point (z,y, z), then V- A is
the net outward flow per unit volume from a small volume surrounding
point (z,y, ). If the flux of A entering the volume equals the flux leaving
the volume, then V- A = 0, and A is said to be a divergenceless or
solenoidal vector. In the three coordinate systems we have the following
representations for divergence:

Cartesian coordinates:

v AL 04 04, 04,

Ox Oy 0z
Cylindrical coordinates:
190 104  0A,
VA= oA+ g
Spherical coordinates:
VA= T—QE(T T) 'rsin0%(sme Ae) + rsind 0¢

A.3.3 Curl of a Vector

The curl of a vector A is represented by B = V x A.. Like the divergence,
the curl also represents the spatial derivative of a vector field but in a
different way: It is a vector (rather than a scalar) that measures the
circulation of the field. One way to visualize the curl of a vector is to
imagine a paddle wheel placed in a fluid that flows in accordance with the
vector. The paddle wheel will rotate if the curl of the vector is nonzero.
The curl of a vector is sometimes called the wvorticity of the vector. A
vector field with nonzero curl is called a rotational or vortex field. If the
curl is zero, the vector is said to be irrotational or conservative. The curl
is represented in the three coordinate systems as follows:

Cartesian coordinates:

i ] k
— |2 5] ¢}
Ay Ay, A,

Cylindrical coordinates:

10A, O0Ay ~(0A, 0A,\ .[(10 1 0A,
o) oo ) e e )

V><A=f'(
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Spherical coordinates:

.1 0, . 0Ay
VA ~rsing (-(9_0(Sln0A¢) - %)
~ 1 /(0A, 0
+®7‘sin0( ¢ Smea (TA(ﬁ))
-1/,0 0A,
+2 (5, (r40) — 5 )-

A.3.4 Laplacian of a Scalar

Laplace’s equation V21 = 0 is a second-order differential equation of
particular importance to this text. The V2 operator, sometimes referred
to as the Laplacian, is equivalent to the divergence of a gradient, that
is, V21 = V - (V). It has the following forms in the three orthogonal
coordinate systems.

Cartesian coordinates:

a?w 8%y 8%y
2 —_
VY=g ozt o

Cylindrical coordinates:

‘a (Zf)J“iaQ_w*aQ_w'

2
VY= rZ 902 = 922

Spherical coordinates:

2, 107,00 1 9 N 1 9%
v¢_r23r( 3r)+r251n030(81 eae)J’rzsin?eaqs?‘

A.4 Vector Identities

In the following, U and V will be scalar quantities and A and B will be
vectors. The following relations hold at points where the functions are
defined.

1. V(UV) =UVV +VVU.

2. V(A-B)=(A-V)B+(B-V)A+A x (VxB)+Bx (VxA).

3. Vx (VU) =

4. V- (VxA)=0.
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VxVxA=V(V-A)-V2A.
V- (UA)=UV-A+(A-V)U.
V- (AxB)=B-(VxA)-A-(VxB).
V x (UA) =U(V x A) + (VU) x A.
Vx(AxB)=A(V-B)-B(V-A)+(B-V)A—-(A-V)B.
10. fA-AdS= [V -Adv (Divergence theorem).

5 v

© N

11. fA-dl=[(V xA)-AdS (Stokes’s theorem).
s

12. [URdS = [ VU dv.
S v

13. f(Ax A)dS = [(V x A)dv.
14. §(A-B)dl=[(V(A B)) x ads.
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Subroutines

Computers are useless. They can only give you answers.
(Pablo Picasso)

The following pages provide listings of all subroutines referred to in
various parts of the text. They appear in the order in which they were
referenced. Table B.1 lists them alphabetically and summarizes their
functions.

All subroutines are written in ANSI-standard Fortran 77. They have
been compiled on a Sun SPARCstation running SunOS 4.13 and Sun
Fortran version 1.3, and therefore should compile under any standard
Fortran 77 compiler. Each subroutine has been tested in simple applica-
tions, but users should be prepared for unknown bugs. All input and out-
put parameters are passed as subroutine arguments rather than through
common blocks. Single precision is used throughout (except in subrou-
tine FOURN); users may find it advisable to switch to double precision
in some applications.

These subroutines are designed to instruct rather than to be efficient.
For example, several of the algorithms require the computation of radial

wavenumber
k| = \/k2 + k2

at grid intersections throughout the ks, k, plane. This is done here by
calculating |k| explicitly at each grid intersection, so that the reader can
easily see the logic involved. A clever programmer, however, could apply
some simple tricks in order to exploit the symmetry of |k| in the k;, &,
plane and thereby greatly speed these computations.

Several of the subroutines (GLAYER, MLAYER, MTOPO, CONTIN,
VERDER, NEWVEC, and PSEUDO) make use of the two-dimensional
Fourier transform and its inverse. As discussed in Appendix C, the
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Subroutines

Table B.1. List of subroutines by function.®

Name Function Number
contin Continue gridded potential fields from one

level to another B.24
cross * Calculate vector products B.13
cylind Calculate gravitational attraction of a cylinder B.2
dipole Calculate magnetic induction of a dipole B.3
dircos * Calculate direction cosines B.9
expand Add tapered rows and columns to a grid B.29
fac * Calculate factorials B.5
facmag Calculate magnetic induction of a polygonal face B.10
fork Calculate one-dimensional Fourier transform

and inverse B.16
fourn * Calculate n-dimensional Fourier transform

and inverse B.17
gbox Calculate gravitational attraction of

rectangular prism B.6
gfilt * Calculate earth filter (gravity case) for

horizontal layer B.21
glayer Calculate gravitational attraction of flat,

horizontal layer B.18
gpoly Calculate gravitational attraction of a

polygonal prism B.7
hgrad Calculate maximum horizontal gradient from

gridded data B.28
kvalue * Calculate wavenumber coordinates B.20
line * Calculate intersection of two lines B.12
mbox Calculate the total-field anomaly of a

rectangular prism B.8
mfilt * Calculate earth filter (magnetic case) for

horizontal layer B.22
mlayer Calculate total-field anomaly of flat,

horizontal layer B.19
mtopo Calculate total-field anomaly of layer with

uneven topography B.23
newvec Transform vector directions in gridded

magnetic anomalies B.26
plane * Calculate intersection of a plane and a

perpendicular line B.11
pseudo Transform gridded magnetic anomaly into

pseudogravity anomaly B.27
ribbon Calculate magnetic induction of a ribbon of

magnetic charge B.15
rot * Find sense of rotation of one vector with respect

to another B.14
schmit Calculate normalized associated Legendre

polynomials B.4
sphere Calculate gravitational attraction of a sphere B.1
verder Calculate vertical derivatives of gridded

potential fields B.25

*Note: Asterisks indicate those subroutines required by other subroutines.
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discrete Fourier transform inherently assumes that a rectangular grid
is periodic, in effect repeating itself infinitely many times in all hori-
zontal directions, like a vast checkerboard. This can cause undesirable
“edge effects” if the edges of the data grid do not meet smoothly with
their repetitive neighbors. It is strongly recommended, therefore, that
grids be adjusted in some way prior to calling these subroutines in order
to eliminate abrupt discontinuities at the edges. One way to do this is
to add artificial rows and columns to the data grid in such a way as to
produce smooth transitions to neighboring grids. These extra rows and
columns can be eliminated from the output grid after the subroutine has
executed. Subroutine EXPAND provides a simple algorithm to expand
grids in this way.
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subroutine sphere(xq,yq,zq,a,rho,xp,yp,2p,gx,Lgy,g2)

c
¢ Subroutine SPHERE calculates the three components of gravitational
¢ attraction at a single point due to a uniform sphere.
c
¢ Input parameters:
c Observation point is (xp,yp,2zp), and center of sphere is at
c (xq,y9,29) . Radius of sphere is a and density is rho. Density
c in units of kg/(m**3). All distance parameters in units of km.
c
¢ Output parameters:
c Gravitational components (gx,gy,gz) in units of mGal.
c
real km2m
data gamma/6.67e-11/,si2mg/1.e5/,pi/3.14159265/,km2m/1.e3/
ierror=0
rX=Xp-xq
ry=yp-yq
rz=zp-zq

r=sqQrt (rX**x2+ry**2+rz**2)
if(r.eq.0.)pause ’SPHERE: Bad argument detected.’
r3=r**3
tmass=4.*pi*rho*(a**3)/3.
gx=—-gamma*tmass*rx/r3
gy=—gamma*tmass*ry/r3
gz=-gamma*tmass*rz/r3
gx=gx*si2mg*km2m
gy=gy*si2mg*km2m
gz=gz*si2mg*km2m

return

end

Subroutine B.1. Subroutine to calculate the three components of gravitational
attraction due to a sphere of homogeneous density.
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subroutine cylind(xq,zq,a,rho,xp,zp,gx,gz)

c
c Subroutine CYLINDer calculates x and z components of gravitational
¢ attraction due to cylinder lying parallel to y axis.
c
¢ Input parameters:
c Point of observation is (xp,zp). Axis of cylinder penetrates
c x,z plane at (xq,zq). Radius of cylinder is a and density is
c rho. Density in kg/(m**3). All distance parameters in km.
c
¢ Output parameters:
c Components of gravitational attraction (gx,gz) in mGal.
c
real km2m
data gamma/6.67e-11/,si2mg/1.e5/,pi/3.14159265/ ,km2m/1.e3/
IX=Xp-Xq
rz=zp-zq

r2=rx**2+rz%*2

if(r2.eq.0.)pause *CYLIND: Bad argument detected.’
tmass=pix (ax*2)*rho

gx=-2.*gamma*tmass*rx/r2

gz=-2.*gamma*tmass*rz/r2

gx=gx*si2mg*km2m

gz=gz*si2mg*km2m

return

end

Subroutine B.2. Subroutine to calculate the gravitational attraction perpen-
dicular to an infinitely extended cylinder. The cylinder lies parallel to the y
axis, and x and z components of gravitational attraction are returned.
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subroutine dipole(xq,yq,2q,a,mi,md,m,xp,yp,zp,bx,by,bz)

Subroutine DIPOLE computes the three components of magnetic
induction caused by a uniformly magnetized sphere. x axis
is north, z axis is down.

Input parameters:
Observation point located at (xp,yp,zp). Sphere centered
at (xq,yq,zq). Magnetization of sphere defined by
intensity m, inclination mi, and declination md. Units
of distance irrelevant but must be consistent. All angles
in degrees. Intensity of magnetization in A/m. Requires
subroutine DIRCOS.

Output parameters:
The three components of magnetic induction (bx,by,bz) in
units of nT.

O0O0O00000000000000

real mi,md,m,mx,my,mz,noment

data pi/3.14159265/,t2nt/1.e9/,cm/1.e-7/
call dircos(mi,md,0.,mx,my,mz)

IX=Xp-xq

ry=yp-yq

rz=2zp-2q

T2SrX**2+ry*k2+rz**2

r=sqrt(r2)

if(r.eq.0.)pause ’DIPOLE: Bad argument detected.’
r5=r**x5

dot=rx*mx+ry*my+rz*mz
moment=4.*pix(a**3)*m/3
bx=cm*moment* (3. *dot*rx-r2*mx) /r5
by=cm*moment * (3. *dot*ry-r2*my)/r5
bz=cm*moment* (3. *dot*rz-r2*mz) /r5
bx=bx*t2nt

by=by*t2nt

bz=bz*t2nt

return

end

Subroutine B.3. Subroutine to calculate the three components of magnetic
induction due to a uniformly magnetized sphere (equivalent to the magnetic
induction of a dipole). Coordinate system is arranged so that z is down and
z is north. Requires subroutine DIRCOS.



Subroutines 375

function schmit(n,m,theta)

Returns Schmidt normalized associated Legendre polynomial.
Requires function fac. Modified from Press et al. (1986).

Input parameters:
Argument of polynomial is theta, in degrees. Degree and
order of polynomial are n and m, respectively. Parameter n
must be greater than zero, and m must be greater than or
equal to n.

O00000000O0

data d2rad/.017453293/
x=cos(theta*d2rad)
if(m.1t.0.or.m.gt.n)pause ’ SCHMIT: Bad argument detected’
pmm=1.
if(m.gt.0)then
somx2=sqrt ((1.-x)*(1.+4x))
fact=1.
do 10 i=1,m
pum=-pmm*fact*somx2
fact=fact+2.
10 continue
end if
if(n.eq.m)then
schmit=pmm
else
pompl=x*(2*m+1)*pmm
if(n.eq.m+1)then
schmit=pmmp1l
else
do 11 nn=m+2,n
pon=(x*(2*nn-1)*pmmp1- (nn+m-1) *pmm) / (nn-m)
pmm=pmmp1
pmmpl=pnn
11 continue
schmit=pnn
end if
end if
if (m.ne.0)then
xnorm=sqrt (2*fac(n-m)/fac(n+m))
schmit=xnorm*schmit
end if
return
end

Subroutine B.4. Function to calculate the value of a Schmidt normalized
associated Legendre polynomial P;*(6). Modified from Press et al. [233).
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function fac(n)

Function FAC calculates n!

O

if(n.1t.0)pause ’ FAC: Bad argument detected’
if(n.eq.0.0r.n.eq.1)then
fac=1
else
fac=n
fac2=fac
30 fac2=fac2-1.
fac=fac*fac2
if (fac2.gt.2)go to 30
end if
return
end

Subroutine B.5. Function to calculate the factorial of n.
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Subroutine B.6.

rectangular prism.
and z axis is vertical down.

Subroutines

subroutine gbox(x0,y0,20,x1,y1,21,x2,y2,22,rho,g)

Subroutine GBOX computes the vertical attraction of a
Sides of prism are parallel to x,y,z axes,

Input parameters:
Observation point is (x0,y0,z0).
to x2, from y1 to y2, and from z1 to 22 in the x, y, and z
directions, respectively. Density of prism is rho. All
distance parameters in units of km; rho in units of

Output parameters:
Vertical attraction of gravity g, in mGal.

dimension x(2),y(2),2(2),isign(2)
data isign/-1,1/,gamma/6.670e-11/,twopi/6.2831853/,
si2mg/1.e5/,km2m/1.e3/

x(1)=x0-x1

y(1)=y0-y1

z(1)=20-z1

x(2)=x0-x2

y(2)=y0-y2

z(2)=20-22

do 1 i=1,2
do 1 j=1,2
do 1 k=1,2

rijk=sqrt (x(i)**2+y () **2+2 (k) **2)
ijk=isign(i)*isign(j)*isign (k)
argl=atan2((x(i)*y(j)), (z(k)*rijk))
if(argl.1t.0.)argl=argl+twopi

arg2=rijk+y(j)

arg3=rijk+x(i)

if (arg2.le.0.)pause ’GBOX: Bad field point’
if (arg3.le.0.)pause ’GBOX: Bad field point’
arg2=alog(arg?2)

arg3=alog(arg3)
sum=sum+ijk*(z (k) *argl-x(i)*arg2-y(j) *arg3)
continue

=rho*gamma*sum*si2mg*km2m

Subroutine to calculate the vertical attraction of gravity

due to a rectangular prism.

The prism extends from x1
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Subroutines

subroutine gpoly(xO,zO,xcorn,zcorn,ncorn,rho,g)

Subroutine GPOLY computes the vertical attraction of a two-

di
ri
of

mensional body with polygonal cross section. Axes are
ght-handed system with y axis parallel to long direction
body and z axis vertical down.

Input parameters:

Observation point is (x0,z0). Arrays xcorn and zcorn (each
of length ncorn) contain the coordinates of the polygon
corners, arranged in clockwise order when viewed with x axis
to right. Density of body is rho. All distance parameters
in units of km; rho in units of kg/(m**3).

Output parameters:

1

Vertical attraction of gravity g, in mGal.

real km2m
dimension xcorn(ncorn) ,zcorn(ncorn)
data gamma/6.670e-11/,si2mg/1.e5/,km2m/1.e3/
sum=0.
do 1 n=1,ncorn
if(n.eq.ncorn)then
n2=1
else
n2=n+1
end if
x1=xcorn(n)-x0
zl=zcorn(n)-z0
x2=xcorn(n2)-x0
z2=zcorn(n2)-z0
risq=x1**2+z1%%2
T2sq=xX2%*2+z2%%2
if(risq.eq.0.)pause *GPOLY: Field point on cormer’
if(r2sq.eq.0.)pause *GPOLY: Field point on cormer’
denom=z2-z1
if (denom.eq.0.)denom=1.e-6
alpha=(x2-x1)/denom
beta=(x1%z2-x2%z1)/denom
factor=beta/(1.+alpha**2)
term1=0.5* (alog(r2sq)-alog(risq))
term2=atan2(z2,x2)-atan2(z1,x1)
sum=sum+factor* (terml-alpha*term2)
continue
g=2.*rho*gamma*sum*si2mgxkm2m
return
end

Subroutine B.7. Subroutine to calculate the vertical gravitational attraction
due to a two-dimensional prism of polygonal cross section. Axis of prism lies

parallel to y axis; z axis is down. Polygon corners are contained within arrays

xcorn and zcorn in clockwise order as viewed with the x axis to the right.
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subroutine mbox(x0,y0,20,x1,y1,21,x2,y2,mi,md,fi,fd,m,theta,t)

Subroutine MBOX computes the total-field anomaly of an infinitely
extended rectangular prism. Sides of prism are parallel to x,y,2
axes, and z is vertical down. Bottom of prism extends to infinity.
Two calls to mbox can provide the anomaly of a prism with finite
thickness; e.g.,

call mbox(x0,y0,20,x1,y1,z1,x2,y2,mi,md,fi,fd,m,theta,tl)
call mbox(x0,y0,20,x1,y1,z1,x2,y2,mi,md,fi,fd,m,theta,t2)
t=t1-t2

Requires subroutine DIRCOS. Method from Bhattacharyya (1964).

Input parameters:
Observation point is (x0,y0,z0). Prism extends from x1 to
x2, yl1 to y2, and zl to infinity in x, y, and z directiomns,
respectively. Magnetization defined by inclination mi,
declination md, intensity m. Ambient field defined by
inclination fi and declination fd. x axis has declination
theta. Distance units are irrelevant but must be consistent.
Angles are in degrees, with inclinations positive below
horizontal and declinations positive east of true north.
Magnetization in A/m.

Output parameters:
Total-field anomaly t, in nT.

OO0OO0OO0O00000000000000000000000

real alpha(2),beta(2),mi,md,m,ma,mb,mc
data cm/1.e-7/,t2nt/1.e9/

call dircos(mi,md,theta,ma,mb,mc)
call dircos(fi,fd,theta,fa,fb,fc)
fml=ma*fb+mb*fa

fm2=ma*fc+mc*fa

fm3=mb*fc+mc*fb

fmd=max*xfa

fmb=mb*£fb

fmb6=mc*fc

alpha(1)=x1-x0

alpha(2)=x2-x0

beta(1)=yl-y0

beta(2)=y2-y0

h=z1-20
t=0.
hsq=h**2

Subroutine B.8.  Subroutine to calculate the total-field anomaly due to a
rectangular prism with infinite depth extent. The anomaly of a prism with
finite thickness can be found by calling MBOX twice, once with z1 equal to
the top of the prism and once with z1 equal to the bottom, and subtracting
the second result from the first. Subroutine DIRCOS also required.
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do 1 i=1,2
alphasqg=alpha (i) **2
do 1 j=1,2
sign=1.

&

&
&

if(i.ne.j)sign=-1.
rOsq=alphasq+beta(j)**2+hsq
r0=sqrt (r0sq)
rOh=rO*h
alphabeta=alpha(i)*beta(j)
argl=(rO-alpha(i))/(rO+alpha(i))
arg2=(r0-beta(j))/(rO+beta(j))
arg3=alphasq+rOh+hsq
argd4=rOsq+rOh-alphasq
tlog=fm3*alog(argl) /2.+fm2*alog(arg2) /2.
-fmi*alog(rO+h)
tatan=-fm4*atan2(alphabeta,arg3)
-fmb*atan2(alphabeta, arg4)
+fm6*atan2(alphabeta,rOh)

1 t=t+sign*(tlog+tatan)

t=t*m*cm*t2nt
return

Continuation of Subroutine B.8.
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subroutine dircos(incl,decl,azim,a,b,c)

Subroutine DIRCOS computes direction cosines from inclination
and declination.

Input parameters:
incl: inclination in degrees positive below horizontal.
decl: declination in degrees positive east of true north.
azim: azimuth of x axis in degrees positive east of north.

Output parameters:
a,b,c: the three direction cosines.

O0O000000000O0

real incl

data d2rad/.017453293/
xincl=incl*d2rad
xdecl=decl*d2rad
xazim=azim*d2rad

a=cos(xincl) *cos(xdecl-xazim)
b=cos(xincl)*sin(xdecl-xazim)
c=sin(xincl)

return

end

Subroutine B.9. Subroutine to calculate the three direction cosines of a vector
from its inclination and declination.
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subroutine facmag(mx,my,mz,x0,y0,20,x,y,z,n,fx,fy,fz)

Subroutine FACMAG computes the magnetic field due to surface
charge on a polygonal face. Repeated calls can build the
field of an arbitrary polyhedron. x axis is directed north,
z axis vertical down. Requires subroutines CROSS, ROT, LINE,
and PLANE. Algorithm from Bott (1963).

Input parameters:
Observation point is (x0,y0,z0). Polygon corners defined
by arrays x, y, and z of length n. Magnetization given by
mx,my,mz. Polygon limited to 10 corners. Distance units
are irrelevant but must be consistent; magnetization in A/m.

Output parameters:
Three components of magnetic field (fx,fy,fz), in nT.

real mx,my,mz,nx,ny,nz
dimension u(10),v2(10),v1(10),s(10),xk(10) ,yk(10),

& zk(10) ,x1(10) ,y1(10),21(10) ,x(10) ,y(10) ,z(10)
data cm/1.e-7/,t2nt/1.e9/,epsilon/1.e-20/

£x=0.

fy=0.

£z=0.

x(n+1)=x(1)
y(n+1)=y(1)
z(n+1)=z(1)
do 1 i=1,n
x1(i)=x(i+1)-x(i)
yl(i)=y(i+1)-y(i)
z1(i)=z(i+1)-z(i)
rl=sqrt (x1 (1) **2+y1 (i) **2+21 (i) **2)
x1(i)=x1(i)/rl
y1(i)=yl(i)/rl
1 z1(i)=21(i)/rl
call cross(x1(2),y1(2),z1(2),x1(1),y1(1),21(1) ,nx,ny,nz,rn)
nx=nx/rn
ny=ny/rn
nz=nz/rn
dot=mx*nx-+my*ny+mz*nz
if (dot.eq.0.)return
call plane(x0,y0,z0,x(1),y(1),z(1),x(2),y(2),z(2),x(3),
& y(3),z(3),px,py,pz,w)
do 2 i=1,n
call rot(x(i),y(i),z(i),x(i+1),y(i+1),z(i+1) ,nx,ny,nz,
& pX,py,pz,s(i))
if(s(i).eq.0.)go to 2
call line(px,py,pz,x(i),y(i),z(1) ,x(i+1),y(i+1) ,z(i+1),

Subroutine B.10. Subroutine to calculate the magnetic field due to magnetic
charge on a flat polygonal face. By repeated calls, the magnetic field of a uni-
formly magnetized polyhedron can be computed. Subroutines PLANE, LINE,
CROSS, and ROT are required. Algorithm from Bott [36].
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ul,v,wl,vi(i),v2(i),u(i))
rk=sqrt ((ul-px) **2+(v-py) **2+(wl-pz) **2)
xk(i)=(ul-px)/rk
yk(i)=(v-py)/rk
zk (i)=(w1-pz)/rk
do 3 j=1,n
if(s(j).eq.0.)go to 3
us=u(j)**2
v2s=v2(j)**2
vis=v1(j)**2
a2=v2(j)/u(j)
al=v1(j)/u(j)
f2=sqrt (1.+a2*a2)
fl=sqrt(1.+alxal)
rho2=sqrt (us+v2s)
rhol=sqrt (us+vis)
r2=sqrt (us+v2s+wk*2)
ri=sqrt (us+vis+u**2)
if(w.ne.0.)then
fu2=(a2/f2)*alog((r2+rho2)/abs(w))

-.5xalog ((r2+v2(j))/(r2-v2(j)))
ful=(al/f1)*alog((ri+rhol)/abs(w))-

.5*alog ((r1+v1(j))/(r1-v1(j)))
fv2=(1./£2)*alog((r2+rho2)/abs(w))
fvi=(1./f1)*alog((ri+rhol)/abs(w))
fw2=atan2((a2*(r2-abs(w))), (r2+a2*a2*abs(w)))
fwl=atan2((al*(ri-abs(w))), (ri+al*al*xabs(w)))
fu=dot* (fu2-fuil)
fv=-dot*(fv2-fvl)
fu=(-wxdot/abs (w) ) * (fw2-fw1)
else

fu2=(a2/£2)*(1.+alog((r2+rho2)/epsilon)) -
.5xalog ((r2+v2(j))/(x2-v2(j)))
ful=(a1/f1)*(1.+alog((ri1+rhol)/epsilon))-
.5*alog ((r1+v1(j))/(r1-v1(j)))
fv2=(1./£2)*(1.+alog((r2+rho2)/epsilon))
fvi=(1./£f1)*(1.+alog((r1+rhol)/epsilon))
fu=dot* (fu2-ful)
fv=—dot*(fv2-£fvl)
fw=0.
end if
fx=fx-s(j)* (fuxxk (j)+fv*x1(j)+fw*nx)
fy=£fy-s(j)* (fuxyk (j) +fv*yl(j) +fw*ny)
fz=fz-s(j)* (fuxzk (j)+fv*xz1(j) +fw*nz)
continue
fx=fx*cm*t2nt
fy=fy*cm*t2nt
fz=fz*cm*t2nt
return
end

Continuation of Subroutine B.10.
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subroutine plane(x0,y0,z0,x1,y1,z1,x2,y2,22,x3,y3,23,x,y,2,r)

Subroutine PLANE computes the intersection (x,y,z) of a plane
and a perpendicular line. The plane is defined by three points
(x1,y1,21), (x2,y2,22), and (x3,y3,z3). The line passes through
(x0,y0,20). Computation is done by a transformation and inverse
transformation of coordinates systems.
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x2n=x2-x1

y2n=y2-y1

z2n=z2-z1

x0n=x0-x1

yOn=y0-y1

z0n=z0-z1

x3n=x3-x1

y3n=y3-y1

z3n=2z3-z1

call cross(x3n,y3n,z3n,x2n,y2n,z2n,cx,cy,cz,c)
call cross(x2n,y2n,z2n,cx,cy,cz,dx,dy,dz,d)
a=sqrt (x2n**2+y2n**2+z2n**2)
t11=x2n/a

t12=y2n/a

t13=z2n/a

t21=cx/c

t22=cy/c

t23=cz/c

t31=dx/d

t32=dy/d

t33=dz/d
tx0=t11*x0n+t12*yOn+t13*z0n
tz0=t31*x0n+t32*yOn+t33*z0n
r=t21*x0n+t22*y0n+t23*z0n
x=t11*tx0+t31*tz0
y=t12*%tx0+t32*t20
z=t13*tx0+t33*tz0

x=x+x1

y=y+yl

z=z+z1

return

end

Subroutine B.11. Subroutine to calculate the intersection of a plane and a
perpendicular line.
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subroutine line(x0,y0,20,x1,y1,z1,x2,y2,22,x,y,2,v1l,v2,r)

c
¢ Subroutine LINE determines the intersection (x,y,z) of two
¢ lines. First line is defined by points (x1,yl,zl1) and
c¢ (x2,y2,22). Second line is perpendicular to the first and
¢ passes through point (x0,y0,z0). Distance between (x,y,z)
¢ and (x0,y0,20) is returned as r. Computation is done by a
¢ transformation of coordinate systems.
c

tx0=x0-x1

ty0=y0-y1

tz0=20-z1

tx2=x2-x1

ty2=y2-y1

tz2=z2-2z1

a=sqrt (tx2*x*2+ty2%*x2+£22%*2)
call cross(tx2,ty2,tz2,tx0,ty0,tz0,cx,cy,cz,c)
call cross(cx,cy,cz,tx2,ty2,tz2,dx,dy,dz,d)
ttll=tx2/a

tt12=ty2/a

tt13=tz2/a

tt21=dx/d

tt22=dy/d

tt23=dz/d

tt31=cx/c

tt32=cy/c

tt33=cz/c
u0=tt11*tx0+tt12*ty0+tt13*t20
r=tt21*tx0+tt22%ty0+tt23*%t20
x=tt11*ul+x1

y=tt12*ul+y1l

z=tt13*ul+z1

vi=-u0

v2=a-u0

return

end

Subroutine B.12. Subroutine to calculate the intersection of two lines.
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subroutine cross(ax,ay,az,bx,by,bz,cx,cy,cz,r)
Subroutine CROSS computes the vector product of two vectors; i.e.,

(cx,cy,cz) = (ax,ay,az) X (bx,by,bz)
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cx=ay*bz-az*by
cy=az*bx-ax*bz
cz=ax*by-ay*bx

r=sqrt (CX**2+Ccy**2+cz**2)
return

end

Subroutine B.13. Subroutine to calculate vector products.

subroutine rot(ax,ay,az,bx,by,bz,nx,ny,nz,px,py,pz,s)

Subroutine ROT finds the sense of rotation of the vector
from (ax,ay,az) to (bx,by,bz) with respect to a second
vector through point (px,py,pz). The second vector has
components given by (nx,ny,nz). Returned parameter s is
1 if anticlockwise, -1 if clockwise, or 0 if collinear.
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real nx,ny,nz
x=bx-ax
y=by-ay
z=bz-az
call cross(nx,ny,nz,x,y,z,cX,Cy,cz,cC)
u=px-ax
=py-ay
=pz-az
SUkCX+VRCY+WHCZ
if(d)2,3,4
2 s=1.
go to 1
3 s=0.
go to 1
4 s=-1.
1 continue
return
end

Subroutine B.14. Subroutine to find the sense of rotation of one vector with
respect to another.
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subroutine ribbon(x0,z0,x1,z1,x2,22,mx,mz,fx,fz,ier)

Subroutine RIBBON computes the x and z components of magnetic
induction due to a single side of a two-dimensional prism with
polygonal cross section. The prism is assumed infinitely
extended parallel to the y axis; z axis is vertical down.

Input parameters:
Observation point is (x0,z0). Coordinates (x1,z1) and
(x2,z2) are two consecutive corners of the polygon taken in
clockwise order around the polygon as viewed with the x
axis to the right. The x and z components of magnetization
are mx and mz. Distance units are irrelevant but must be
consistent; magnetization in A/m.

Output parameters:
Components of magnetic field fx and fz, in nT.
Errors are recorded by ier:
ier=0, no errors;
ier=1, two corners are too close (no calculation);
ier=2, field point too close to corner (calculation
continues).
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real mx,mz

data pi/3.14159265/,small/1.e~18/,cm/1.e-7/,t2nt/1.e9/
ier=0

sx=x2-x1

sz=z2-z1

s=sqrt (sx**2+sz**2)

¢ -- If two corners are too close, return

if (s.lt.small)then

ier=1

return

end if
sx=sx/s
sz=sz/s
QS=mX*SZ-mZ*sSX
rx1=x1-x0
rzl=z1-2z0
rx2=x2-x0
rz2=2z2-20

Subroutine B.15. Subroutine to calculate the magnetic induction of a flat
ribbon of magnetic charge. The ribbon is infinitely extended and lies parallel
to the y axis; 2 axis is down. With repeated calls, the magnetic field of a prism
with polygonal cross section can be computed.
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If field point is too near a corner, signal error

if (abs(rx1).1t.small.and.abs(rzl) .1t.small)ier=2
if (abs(rx2).1t.small.and.abs(rz2).1t.small)ier=2
if(ier.eq.2)then
rxl=small
rzl=small
rx2=small
rz2=small
end if
ri=sqrt (rxl**2+rz1**2)
r2=sqrt (rx2**2+rz2%*2)
thetal=atan2(rz1,rx1)
theta2=atan2(rz2,rx2)
angle=thetal-theta2
if (angle.gt.pi)angle=angle-2.*pi
if (angle.lt.-pi)angle=angle+2.*pi

If field point is too close to side, signal error

if (abs(angle).gt.(.995%pi))ier=2
flog=alog(r2)-alog(rl)
factor=-2.*cm*qs*t2nt
fx=factor*(sx*flog-sz*angle)
fz=factor*(sz*flog+sx*angle)
return

end

Continuation of Subroutine B.15.
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subroutine fork(lx,cx,signi)

C
¢ Subroutine FORK calculates the Fourier transform of a one-
¢ dimensional array. Algorithm from Claerbout (1976).
C
¢ Input/output parameters:
C Complex array cx of length 1lx is the input array. Upon
c return, cx contains the transformed array. Length of
c array must be a power of 2. If signi=-1., then the forward
c calculation is performed; if signi=1., the inverse transform
C is performed.
C
complex cx(2050),carg,cexp,cw,ctemp
j=t
sc=sqrt(1./1x)
do 5 i=1,1x

if(i.gt.j)go to 2
ctemp=cx(j)*sc
cx(j)=cx(i)*sc
cx(i)=ctemp

2 m=1x/2
3 if(j.le.m)go to 5
j=j-m
m=m/2
if(m.ge.1)go to 3
5  j=j*m
1=1
6 istep=2xl
do 8 m=1,1

carg=(0.,1.)*(3.14159265*signi*(m-1))/1
cw=cexp(carg)
do 8 i=m,1lx,istep
ipl=i+l
ctemp=cw*cx(ipl)
cx(ipl)=cx(i)-ctemp
8 cx(i)=cx (i) +ctemp
1=istep
if(1.1t.1x)go to 6
return
end

Subroutine B.16. Subroutine to calculate the one-dimensional discrete Fourier
transform and its inverse. Input data is required to have a length equal to a
power of two; zeroes can be added to the end of array cx in order to satisfy
this requirement. This algorithm is a slight modification of a subroutine des-
scribed by Claerbout [60].
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11

12
13

14

subroutine fourn(data,nn,ndim,isign)

Replaces DATA by its NDIM-dimensional discrete Fourier transform,

if ISIGN is input as 1. NN is an integer array of length NDIM,
containing the lengths of each dimension (number of complex values),
which must all be powers of 2. DATA is a real array of length twice
the product of these lengths, in which the data are stored as in a
multidimensional complex Fortran array. If ISIGN is input as -1,
DATA is replaced by its inverse transform times the product of the
lengths of all dimensions. From Press et al. (1986, pp. 451-3).

real*8 wr,wi,wpr,wpi,wtemp,theta
dimension nn(ndim) ,data(*)
ntot=1
do 11 iidim=1,ndim
ntot=ntot*nn(iidim)
continue
nprev=1
do 18 iidim=1,ndim
n=nn(iidim)
nrem=ntot/(n*nprev)
ipl=2*nprev
ip2=ipil*n
ip3=ip2*nrem
i2rev=1
do 14 i2=1,ip2,ipl
if (i2.1t.i2rev)then
do 13 i1=i2,i2+ip1-2,2
do 12 i3=i1,ip3,ip2
i3rev=il2rev+i3-i2
tempr=data(i3)
tempi=data(i3+1)
data(i3)=data(i3rev)
data(i3+1)=data(i3rev+1)
data(i3rev)=tempr
data(i3rev+l)=tempi
continue
continue
endif
ibit=ip2/2
if ((ibit.ge.ipl).and. (i2rev.gt.ibit)) then
i2rev=i2rev-ibit
ibit=ibit/2
go to 1
endif
i2rev=i2rev+ibit
continue
ifpl=ipl

Subroutine B.17. Subroutine to calculate the discrete Fourier transform and
inverse Fourier transform of an n-dimensional array. Each dimension must be
a power of two. From Press et al. [233].
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if(ifpl.1t.ip2)then
ifp2=2*ifpl
theta=isign*6.2831853071795940/ (ifp2/ipl)
wpr=-2.d0*dsin(0.5d0*theta) **2
wpi=dsin(theta)
wr=1.d0
wi=0.d0
do 17 i3=1,ifpl,ipl
do 16 i1=i3,i3+ip1-2,2
do 15 i2=i1,ip3,ifp2
ki1=i2
k2=k1+ifpl
tempr=sngl (wr) *data(k2)-sngl (wi) *data(k2+1)
tempi=sngl (wr)*data(k2+1)+sngl(wi) *data(k2)
data(k2)=data(k1l)-tempr
data(k2+1)=data(kl+1)-tempi
data(kl)=data(kl)+tempr
data(kil+1)=data(kl+1)+tempi
continue
continue
wtemp=wr
WISWr*wpr-wi*wpit+wr
wi=wi*wpr+wtemp*wpi+wi
continue
ifpl=ifp2
go to 2
endif
nprev=n*nprev
continue
return
end

Continuation of Subroutine B.17.
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subroutine glayer (rho,nx,ny,dx,dy,z1,22,store)

Subroutine GLAYER calculates the vertical gravitational
attraction on a two-dimensional grid caused by a two-
dimensional density confined to a horizontal layer. The
following steps are involved: (1) Fourier transform the
density, (2) multiply by the earth filter, and (3) inverse
Fourier transform the product. Density is specified on a
rectangular grid with x and y axes directed north and east,
respectively. z axis is down. Requires subroutines

FOURN, KVALUE, and GFILT.

Input parameters:

nx - number of elements in the south-to-north direction.

ny - number of elements in the west-to-east direction.
(NOTE: Both nx and ny must be powers of two.)

rho - a one-dimensional real array containing the
two-dimensional density, in kg/(m**3). Elements
should be in order of west to east, then south to
north (i.e., element 1 is the southwest corner,
element ny is the southeast corner, element
(nx-1) *ny+1 is the northwest corner, and element ny*nx
is the northeast corner.

store - a one-dimensional real array used internally.
It should be dimensioned at least 2*nx*ny.

dx - sample interval in the x direction, in km.

dy - sample interval in the y direction, in km.

z1 - depth to top of layer, in km. Must be > 0.

z2 - depth to bottom of layer, in km. Must be > zi.

Output parameters:
rho - upon output, rho will contain the gravity anomaly,
in mGal, with same orientation as before.
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complex crho,cmplx

real kx,ky,km2m

dimension rho(nx*ny),store(2*nx*ny) ,nn(2)

data pi/3.14159265/,si2mg/1.e5/,km2m/1.e3/

index(i,j,ncol)=(j-1)*ncol+i

nn (1)=ny

nn(2)=nx

ndim=2

dkx=2.*pi/ (nx*dx)

dky=2.*pi/ (ny*dy)

do 10 j=1,nx

do 10 i=1,ny
ij=index (i, j,ny)
store(2xij-1)=rho(ij)
10 store(2*ij)=0.
call fourn(store,nn,ndim,-1)

Subroutine B.18. Subroutine to calculate the vertical attraction due to a hori-
zontal layer with flat top, flat bottom, and a density distribution that
varies in both horizontal directions. Input density and output anomaly are
specified on the same rectangular grid; both dimensions must be a power of
two. Requires subroutines FOURN, KVALUE, and GFILT.
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do 20 j=1,nx
do 20 i=1,ny
ij=index(i,j,ny)
call kvalue(i,j,nx,ny,dkx,dky,kx,ky)
crho=cmplx(store(2*ij-1),store(2*ij))
crho=crhoxgfilt (kx,ky,z1,22)
store(2*ij-1)=real(crho)
store(2*ij)=aimag(crho)
call fourn(store,nn,ndim,+1)
do 30 j=1,nx
do 30 i=1,ny
ij=index(i,j,ny)
rho(ij)=store(2*ij-1)*si2mg*km2m/ (nx*ny)
return
end

Continuation of Subroutine B.18.
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subroutine mlayer(mag,nx,ny,dx,dy,z1,z2,mni,nd,fi,fd,store)

Subroutine MLAYER calculates the total-field anomaly on a two-
dimensional grid due to a horizontal layer with two-
dimensional magnetization. The following steps are involved:
(1) Fourier transform the magnetization, (2) multiply by the
earth filter, and (3) inverse Fourier transform the product.
Magnetization is specified on a rectangular grid with x and y
axes directed north and east, respectively. =z axis is down.
Distance units irrelevant but must be consistent. Requires
subroutines FOURN, DIRCOS, KVALUE, and MFILT.

Input parameters:

nx - number of elements in the south-to-north direction.

ny - number of elements in the west-to-east direction.
(NOTE: both nx and ny must be a power of two.)

mag - a one-dimensional real array containing the
two-dimensional magnetization (in A/m). Elements should
be in order of west to east, then south to north (i.e.,
element 1 is southwest corner, element ny is
southeast corner, element (nx~1)*ny+l is northwest
corner, and element ny*nx is northeast corner).

store - a one-dimensional real array used internally.
It should be dimensioned at least 2*nx*ny.

dx - sample interval in the X direction.

dy - sample interval in the y direction.

z1l - depth to top of layer. Must be > O.

z2 - depth to bottom of layer. Must be > z1.

mi - inclination of magnetization, in degrees positive below
horizontal.

md - declination of magnetization, in degrees east of north.

fi - inclination of regionmal field.

fd - declination of regional field.

Qutput parameters:
mag - upon output, mag contains the total-field anomaly
(in nT) with same orientation as before.

complex cmag,mfilt,cmplx

real mag,mi,md,mx,my,mz,kx,ky
dimension mag(nx*ny),store(2*nx*ny) ,nn(2)
data pi/3.14159265/,t2nt/1.e9/
index(i,j,ncol)=(j-1)*ncol+i
nn(1)=ny

nn(2)=nx

ndim=2

call dircos(mi,md,0.,mx,my,mz)
call dircos(fi,fd,0.,fx,fy,fz)
dkx=2.*pi/ (nx*dx)
dky=2.*pi/(ny*dy)

Subroutine B.19. Subroutine to calculate the total-field anomaly due to a
horizontal layer with flat top, flat bottom, and magnetization that varies in
both horizontal directions. Input magnetization and output total-field anomaly
are specified on the same rectangular grid; both dimensions must be a
power of two. Requires subroutines FOURN, DIRCOS, KVALUE, and MFILT.
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do 10 j=1,nx
do 10 i=1,ny
ij=index(i,j,ny)
store(2*ij-1)=mag(ij)
store(2*ij)=0.
call fourn(store,nn,ndim,-1)
do 20 j=1,nx
do 20 i=1,ny
ij=index(i,j,ny)
call kvalue(i,j,nx,ny,dkx,dky,kx,ky)
cmag=cmplx(store(2*ij-1) ,store(2*ij))
cmag=cmag*mfilt (kx,ky,mx,my,mz,fx,fy,fz,z1,22)
store(2*ij-1)=real(cmag)
store(2*ij)=aimag(cmag)
call fourn(store,nn,ndim,+1)
do 30 j=1,nx
do 30 i=1,ny
ij=index(i,j,ny)
mag(ij)=store(2*ij-1)*t2nt/ (nx*ny)
return
end

Continuation of Subroutine B.19.
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subroutine kvalue(i,j,nx,ny,dkx,dky,kx,ky)

¢ Subroutine KVALUE finds the wavenumber coordinates of one
c element of a rectangular grid from subroutine FOURN.
c
¢ Input parameters:
c i - index in the ky directiom.
c j - index in the kx direction.
c nx - dimension of grid in ky direction (a power of two).
c ny - dimension of grid in kx direction (a power of two).
c dkx - sample interval in the kx direction.
c dky - sample interval in the ky direction.
c
¢ Output parameters:
c kx - the wavenumber coordinate in the kx direction.
c ky - the wavenumber coordinate in the ky direction.
c
real kx,ky
nyqx=nx/2+1

nyqy=ny/2+1
if (j.le.nyqx)then
kx=(j-1)*dkx
else
kx=(j-nx-1) *dkx
end if
if(i.le.nyqy)then
ky=(i-1)*dky
else
ky=(i-ny-1) *dky
end if
return
end

Subroutine B.20. Subroutine to calculate the wavenumber coordinates of
elements of grids returned by subroutine FOURN.
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function gfilt(kx,ky,z1,22)

Function GFILT calculates the value of the gravitational
earth filter at a single (kx,ky) location.

Input parameters:
kx - the wavenumber coordinate in the kx direction, in
units of 1/km.
ky - the wavenumber coordinate in the ky direction, in
units of 1/km.
z1 - the depth to the top of the layer, in km.
z2 - the depth to the bottom of the layer, in km.

Output parameters:
gfilt - the value of the earth filter.
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real kx,ky,k
data pi/3.14159265/,gamma/6.67e-11/
k=sqrt (kx**2+ky**2)
if(k.eq.0.)then
gfilt=2.*pixgammax* (z2-z1)
else
gfilt=2.*pi*gamma* (exp (-k*z1)-exp(-k*22))/k
end if
return
end

Subroutine B.21. Function to calculate the earth filter (gravity case) for a
horizontal layer.
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function mfilt(kx,ky,mx,my,mz,fx,fy,fz,z1,22)

Function MFILT calculates the complex value of the earth
filter at a single (kx,ky) location.

Input parameters:

kx - the wavenumber coordinate in the kx direction.

ky - the wavenumber coordinate in the ky direction.
mx - the x direction cosine of the magnetization vector.
my - the y direction cosine of the magnetization vector.
mz - the z direction cosine of the magnetization vector.
fx - the x direction cosine of the regional field vector.
fy - the y direction cosine of the regional field vector.
fz - the z direction cosine of the regional field vector.
z1 - the depth to the top of the layer.
z2 - the depth to the bottom of the layer.

Output parameters:
mfilt - the complex value of the earth filter.
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complex mfilt,thetam,thetaf,cmplx
real kx,ky,k,mx,my,mz
data pi/3.14159265/,cm/1.e-7/
k=sqrt (kx**2+ky**2)
if(k.eq.0.)then
mfilt=0.
else
thetam=cmplx (mz, (kx*mx+ky*my) /k)
thetaf=cmplx(fz, (kx*fx+ky*£fy) /k)
mfilt=2.*pi*cm*thetam*thetaf* (exp(-k*z1)-exp(-k*z2))
end if
return
end

Subroutine B.22. Subroutine to calculate the earth filter (magnetic case)
for a horizontal layer.
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subroutine mtopo(mag,ztop,nx,ny,dx,dy,mi,md,fi,fd,nstop,err,
& store,cstore)

Subroutine MTOPO calculates the total-field anomaly on a two-
dimensional grid due to an infinite half-space with uneven

top surface and two-dimensional magnetization. Method

according to Parker (1972, pp. 447-55).

Magnetization is specified on a rectangular grid with x and y
axes directed north and east, respectively. 2z axis is down

and anomaly is calculated at z=0; topographic grid should be
arranged accordingly. Units of distance irrelevant but must be
consistent. Requires subroutines FQURN, DIRCOS, KVALUE, and FAC.

Input parameters:

nx - number of elements in the south-to-north direction.

ny - number of elements in the west-to-east direction.
(NOTE: both nx and ny must be powers of two.)

mag - a one-dimensional real array containing the two-
dimensional magnetization (in A/m). Elements should
be in order of west to east, then south to north
(i.e., element 1 is southwest corner, element ny is
southeast corner, element (nx-1)*ny+1 is northwest
corner, and element ny*nx is northeast cornmer).

ztop - a one-dimensional real array containing the
topography of the upper surface, in same units as dx
and dy. Grid layout same as mag. Note: =z axis is
positive down and anomaly is calculated at z=0. Array
ztop is modified by subroutine.

store - a one-dimensional real array used internally.
Should be dimensioned at least 2*nx*ny.

cstore - a one-dimensional complex array used internally.
Should be dimensioned at least nx*ny.

dx - sample interval in the x direction.

dy - sample interval in the y direction.

mi - inclination of magnetization, in degrees positive below
horizontal.

md - declination of magnetization, in degrees east of north.

fi - inclination of regional field.

fd - declination of regional field.

nstop - maximum number of iterations to try.

err - convergence criterion. Iterations stop when the
contribution of the last term to the summation is less
than err times the contribution of all previous terms.

OO0 00000000000000000000000

Subroutine B.23. Subroutine to calculate the total-field anomaly due to a
semi-infinite half space with uneven top surface and infinite depth extent.
Two calls to subroutine MTOPO can provide the anomaly of a layer with
uneven top and bottom surfaces. Input arrays mag and ztop are specified on the
same rectangular grid. Edge discontinuities should be eliminated from input
grids (see subroutine EXPAND). Upon output, mag is replaced with the total-
field anomaly on the same rectangular grid. Requires subroutines FOURN,
DIRCOS, KVALUE, and FAC. Method according to Parker [204].
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Output parameters:
mag - upon output, mag contains the total-field anomaly
(in nT) with same grid orientation as before.

0oOo0o0o0

dimension mag(nx*ny),ztop(nx*ny) ,store(2*nx*ny),cstore(nx*ny),
& nn(2)
real mag,mi,md,mx,my,mz,kx,ky,k
complex cmplx,cstore,cstep,thetam,thetaf
data pi/3.141569265/,t2nt/1.e9/,cm/1.e-7/
index(i,j,ncol)=(j-1)*ncol+i
nn(1)=ny
nn(2)=nx
ndim=2
call dircos(mi,md,0.,mx,my,mz)
call dircos(fi,fd,0.,fx,fy,fz)
dkx=2.*pi/ (nx*dx)
dky=2.*pi/(ny*dy)
ztpmax=-1.e20
ztpmin= 1.e20
do 1 j=1,nx
do 1 i=1,ny
ij=index(i, j,ny)
ztpmax=amax1 (ztpmax,ztop(ij))
1 ztpmin=aminl (ztpmin,ztop(ij))
ztpmed=ztpmin+(ztpmax-ztpmin) /2.
do 2 j=1,nx
do 2 i=1,ny
ij=index(i,j,ny)
ztop(ij)=ztop(ij)-ztpmed
2 cstore(ij)=0.
write(*,100)
100 format(/,’ Ratio = contribution of Nth term divided by’,/,

& contribution of O through N-1 terms’,//,
& ’ N | Ratio’,/,
& b I [ — 3
n=-1
3 n=n+1
do 4 j=1,nx
do 4 i=1,ny
ij=index(i,j,ny)
store(2*ij-1)=mag(ij)*ztop(ij)**n
4 store(2*ij)=0.
call fourn(store,nn,ndim,-1)
abnew=0.
abold=0.
do 5 j=1,nx

do 5 i=1,ny
ij=index(i,j,ny)
call kvalue(i,j,nx,ny,dkx,dky,kx,ky)
k=sqrt (kx**2+ky**2)
arg=((-k)**n)*exp (-k*ztpmed) /fac(n)
cstep=arg*cmplx (store(2*ij-1) ,store(2*ij))
abnew=abnew+cabs (cstep)
abold=abold+cabs(cstore(ij))

Continuation of Subroutine B.23.
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cstore(ij)=cstore(ij)+cstep
if(n.eq.0.)go to 3
ratio=abnew/abold
write(*,101)n,ratio
format (1x,15,g10.3)
if(ratio.gt.err.and.n.lt.nstop)go to 3
do 6 j=1,nx
do 6 i=1,ny
ij=index(i,j,ny)
if(ij.eq.1)then
store(2xij-1)=0.
store(2*ij)=0.
else
call kvalue(i,j,nx,ny,dkx,dky,kx,ky)
k=sqrt (kx**2+ky**2)
thetam=cmplx (mz, (mx*kx+my*ky) /k)
thetaf=cmplx (fz, (fx*xkx+fy*ky) /k)
cstore(ij)=2.*pi*cm*thetam*thetaf*cstore(ij)
store(2xij-1)=real(cstore(ij))
store(2*ij)=aimag(cstore(ij))

end if
continue
call fourn(store,nn,ndim,+1)
do 7 j=1,nx
do 7 i=1,ny

ij=index(i,j,ny)
mag(ij)=store(2xij-1)*t2nt/(nx*ny)
return
end

Continuation of Subroutine B.23.
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subroutine contin(grid,nx,ny,dx,dy,dz,store)

Subroutine CONTIN upward continues gridded potential-field

data using the following steps: (1) Fourier transform the field,
(2) multiply by the continuation filter, and (3) inverse Fourier
transform the product. Field values are specified on a
rectangular grid with x and y axes directed north and east,
respectively. 2z axis is down. North is arbitrary. Requires
subroutines FOURN and KVALUE.

Input parameters:

nx - number of elements in the south-to-north direction.

ny - number of elements in the west-to-east direction.
(NOTE: both nx and ny must be a power of two.)

grid - a one-dimensional real array containing the
two-dimensional potential field. Elements should
be in order of west to east, then south to north (i.e.,
element 1 is southwest corner, element ny is
southeast corner, element (nx-1)*ny+1 is northwest
corner, and element ny*nx is northeast corner).

store - a one-dimensional real array used internally.
It should be dimensioned at least 2*nx*ny in the
calling program.

dx - sample interval in the x direction.

dy - sample interval in the y direction.

dz - continuation distance,in same units as dx and dy. Should
be greater than zero for upward continuation.

Output parameters:
grid - upon output, grid contains the upward-continued
potential field with same orientation as before.

dimension grid(nx*ny),store(2*nx*ny),nn(2)
real kx,ky,k
complex cgrid,cmplx
data pi/3.14169265/
index(i,j,ncol)=(j-1)*ncol+i
nn(1)=ny
nn(2)=nx
ndim=2
dkx=2.*pi/ (nx*dx)
dky=2.*pi/ (ny*dy)
do 10 j=1,nx
do 10 i=1,ny
ij=index (i, j,ny)
store (2*ij-1)=grid(ij)
10 store(2*ij)=0.
call fourn(store,nn,ndim,-1)
do 20 j=1,nx
do 20 i=1,ny

Subroutine B.24. Subroutine to continue potential fields from one level to
another. Field is specified on a rectangular grid, assumed to be horizontal.
Both dimensions must be a power of two. Parameter dz should be greater than
zero for upward continuation. Subroutines FOURN and KVALUE are also
required. Edge discontinuities should be eliminated from input grids (see
subroutine EXPAND).
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ij=index(i,j,ny)
call kvalue(i,j,nx,ny,dkx,dky,kx,ky)
k=sqrt (kx**2+ky**2)
cont=exp (-kxdz)
cgrid=cmplx (store(2*ij-1),store(2*ij))*cont
store(2*ij-1)=real(cgrid)
20 store(2*ij)=aimag(cgrid)
call fourn(store,nn,ndim,+1)
do 30 j=1,nx
do 30 i=1,ny
ij=index(i, j,ny)
30 grid(ij)=store(2*ij-1)/(nx*ny)
return
end

Continuation of Subroutine B.24.
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subroutine verder(grid,nx,ny,dx,dy,norder,store)

Subroutine VERDER calculates the vertical derivative of
gridded potential-field data using the following steps:

(1) Fourier transform the field, (2) multiply by the vertical-
derivative filter, and (3) inverse Fourier transform the
product. Field values are specified on a rectangular grid
with x and y axes directed north and east, respectively.

z axis is down. North is arbitrary. Requires subroutines
FOURN and KVALUE.

Input parameters:

nx - number of elements in the south-to-north direction.

ny - number of elements in the west-to-east direciionm.
(NOTE: both nx and ny must be a power of two.)

grid - a one-dimensional real array containing the
two-dimensional potential field. Elements should
be in order of west to east, then south to north (i.e.,
element 1 is southwest corner, element ny is
southeast corner, element (nx-1)*ny+l1 is northwest
corner, and element ny*nx is northeast cormer).

store - a one-dimensional real array used internally.
It should be dimensioned at least 2*nx*ny in the
calling program.

dx - sample interval in the x direction, units irrelevant.

dy - sample interval in the y direction, units irrelevant.

norder - the order of the vertical derivative.

Output parameters:
grid - upon output, grid contains the vertical derivative of
the potential field with same orientation as before.

dimension grid(nx*ny),store(2*nx*ny),nn(2)
complex cgrid,cmplx
real kx,ky,k
data pi/3.14159265/
index(i,j,ncol)=(j~1)*ncol+i
nn(1)=ny
nn(2)=nx
ndim=2
dkx=2.*pi/ (nx*dx)
dky=2.*pi/ (ny*dy)
do 10 j=1,nx
do 10 i=1,ny
ij=index(i, j,ny)
store (2*ij-1)=grid(ij)
10 store(2*ij)=0.
call fourn(store,nn,ndim,-1)
do 20 j=1,nx
do 20 i=1,ny

Subroutine B.25. Subroutine to calculate vertical derivatives of gridded
potential-field data. Field is specified on a rectangular grid, assumed to be

horizontal. Both dimensions must be a power of two. Requires subroutines

FOURN and KVALUE. Edge discontinuities should be eliminated from input
grids (see subroutine EXPAND).
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ij=index(i,j,ny)
call kvalue(i,j,nx,ny,dkx,dky,kx,ky)
k=sqrt (kx**2+ky**2)
cgrid=cmplx(store(2*ij-1),store(2*ij))
cgrid=cgrid*k**norder
store(2xij-1)=real(cgrid)
20 store(2*ij)=aimag(cgrid)
call fourn(store,nn,ndim,+1)
do 30 j=1,nx
do 30 i=1,ny
ij=index (i, j,ny)
30 grid(ij)=store(2*ij-1)/(nx*ny)
return
end

Continuation of Subroutine B.25.
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subroutine newvec(grid,nx,ny,dx,dy,fil,fd1,mil,md1,fi2,
£d2,mi2,md2,store)

Subroutine NEWVEC transforms a gridded total-field anomaly
into a new anomaly with new directions of magnetization and
ambient field. NEWVEC uses the following steps: (1) Fourier
transform the field, (2) multiply by the phase filter, and
(3) inverse Fourier transform the product. Anomaly values
are specified on a rectangular grid with x and y axes
directed north and east, respectively. =z axis is down.
Requires subroutines FOURN, DIRCOS, and KVALUE.

Input parameters:

nx - number of elements in the south-to-north direction.

ny - number of elements in the west-to-east direction.
(NOTE: both nx and ny must be a power of two.)

grid - a one-dimensional real array containing the
two-dimensional total-field anomaly. Elements should
be in order of west to east, then south to north (i.e.,
element 1 is southwest corner, element ny is
southeast corner, element (nx-1)*ny+l is northwest
corner, and element ny*nx is northeast corner).

store - a one-dimensional real array used internally.
It should be dimensioned at least 2*nx*ny in the
calling program.

dx - sample interval in the x direction, units irrelevant.

dy - sample interval in the y direction, units irrelevant.

mil - original inclination of magnetization, in degrees.

mdl - original declination of magnetization.

fil - original inclination of ambient field.

fdl - original declination of ambient field.

mi2 - new inclination of magnetization, in degrees.

md2 - new declination of magnetization.

£fi2 - new inclination of ambient field.

£fd2 - new declination of ambient field.

OQutput parameters:
grid - upon output, grid contains the transformed total-
field anomaly with same orientation as before.
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dimension grid(nx*ny),store(2*nx*ny) ,nn(2)

complex cgrid,cmplx,thetaml,thetam2,thetafl,thetaf2,
& cphase

real kx,ky,k,mil,md1l,mi2,md2,mx1,myl,mz1,mx2,my2,mz2
data pi/3.14159265/

index(i, j,ncol)=(j-1)*ncol+i

nn(1)=ny

nn(2)=nx

ndim=2

dkx=2.*pi/ (nx*dx)

Subroutine B.26. Subroutine to transform the magnetization direction and
ambient-field direction of a total-field anomaly. Anomalies can be reduced to
the pole by letting mi2=£fi2=90. Anomaly is specified on a rectangular grid,
assumed to be horizontal. Both dimensions must be a power of two. Sub-
routines FOURN, KVALUE, and DIRCOS are required. Edge discontinuities
should be eliminated from input grids (see Osubroutine EXPAND).
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dky=2.*pi/ (ny*dy)
call dircos(mil,md1,0.,mx1,myl,mz1)
call dircos(fil,fd1,0.,fx1,fyl,f=1)
call dircos(mi2,md2,0.,mx2,my2,mz2)
call dircos(fi2,fd2,0.,fx2,fy2,f=z2)
do 10 j=1,nx
do 10 i=1,ny
ij=index(i,j,ny)
store(2*ij-1)=grid(ij)
store(2%ij)=0.
call fourn(store,nn,ndim,-1)
do 20 j=1,nx
do 20 i=1,ny
ij=index(i,j,ny)
if(ij.eq.1)then
cphase=0.
else
call kvalue(i,j,nx,ny,dkx,dky,kx,ky)
k=sqrt (kx**2+ky**2)
thetaml=cmplx (mz1, (kx*mx1+ky*my1l) /k)
thetaf1=cmplx (fz1, (kx*fx1+ky*fyl) /k)
thetam2=cmplx (mz2, (kx*mx2+ky*my2) /k)
thetaf2=cmplx (fz2, (kx*fx2+ky*fy2) /k)
cphase=thetam2+thetaf2/(thetaml*thetaf1)
end if
cgrid=cmplx(store(2*ij-1) ,store(2*ij))
cgrid=cgrid*cphase
store(2*ij-1)=real(cgrid)
store(2*ij)=aimag(cgrid)
call fourn(store,nn,ndim,+1)
do 30 j=1,nx
do 30 i=1,ny
ij=index(i,j,ny)
grid(ij)=store(2*ij-1)/(nx*ny)
return
end

Continuation of Subroutine B.26.
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subroutine pseudo(grid,nx,ny,dx,dy,fi,fd,mi,md,store)

Subroutine PSEUDO transforms a gridded total-field anomaly

into a pseudogravity anomaly using the following steps:

(1) Fourier transform the field, (2) multiply by the phase
filter, and (3) inverse Fourier transform the product. Anomaly
values are specified on a rectangular grid with x and y axes
directed north and east, respectively. =z axis is down. Ratio
of density to magnetization assumed to be 100 kg/(m**3) per

1 A/m. Requires subroutines FOURN, DIRCOS, and KVALUE.

Input parameters:

nx - number of elements in the south-to-north direction.

ny - number of elements in the west-to-east direction.
(NOTE: both nx and ny must be a power of two.)

grid - a one-dimensional real array containing the
two-dimensional total-field anomaly in nT. Elements
should be in order of west to east, then south to north
(i.e., element 1 is southwest corner, element ny is
southeast corner, element (nx-1)*ny+l1 is northwest
corner, and element ny*nx is northeast corner).

store - a one-dimensional real array used internally.
It should be dimensioned at least 2*nx*ny in the
calling program.

dx - sample interval in the x direction, in km.

dy - sample interval in the y direction, in km.

mi - inclination of magnetization, in degrees.

md - declination of magnetization.

fi - inclination of ambient field.

fd - declination of ambient field.

Output parameters:
grid - upon output, grid contains the pseudogravity anomaly
in mGal with same orientation as before.
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dimension grid(nx*ny),store(2*nx*ny) ,nn(2)
complex cgrid,cmplx,thetam,thetaf,cpsgr
real kx,ky,k,mi,md,mx,my,mz,mag,km2m
data cm/1.e-7/,gamma/6.67e-11/,t2nt/1.e9/,si2mg/1.e5/
data pi/3.14159265/,rho/100./,mag/1./ ,km2m/1.e3/
index(i,j,ncol)=(j-1)*ncol+i
const=gamma*rho*si2mg*km2m/ (cm*mag*t2nt)
nn(1)=ny
nn (2)=nx
ndim=2
dkx=2. *pi/ (nx*dx)
dky=2.*pi/ (ny*dy)
call dircos(mi,md,0.,mx,my,mz)
call dircos(fi,fd,0.,fx,fy,fz)
do 10 j=1,nx

do 10 i=1,ny

Subroutine B.27. Subroutine to transform a total-field anomaly into a pseudo-
gravity anomaly. Anomalies are specified on a rectangular grid, assumed
to be horizontal. Both dimensions must be a power of two. Requires
subroutines FOURN, DIRCOS, and KVALUE. Edge discontinuities should be
eliminated from input grids (see subroutine EXPAND).
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ij=index(i, j,ny)
store(2*ij-1)=grid(ij)
10 store(2xij)=0.
call fourn(store,nn,ndim,-1)
do 20 j=1,nx
do 20 i=1,ny
ij=index(i, j,ny)
if(ij.eq.1)then
cphase=0.
else
call kvalue(i,j,nx,ny,dkx,dky,kx,ky)
k=sqrt (kx**2+ky**2)
thetam=cmplx (mz, (kx*mx+ky*my) /k)
thetaf=cmplx(fz, (kx*fx+ky*fy) /k)
cpsgr=1./(thetam*thetaf*k)
end if
cgrid=cmplx(store(2*ij-1),store(2*ij))
cgrid=cgrid*cpsgr
store(2xij-1)=real(cgrid)
20 store(2*ij)=aimag(cgrid)
call fourn(store,nn,ndim,+1)
do 30 j=1,nx
do 30 i=1,ny
ij=index(i, j,ny)
30 grid(ij)=store(2*ij-1)*const/(nx*ny)
return
end

Continuation of Subroutine B.27.
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subroutine hgrad(grid,nx,ny,dx,dy,store)

Subroutine HGRAD calculates the maximum horizontal

gradient of a two-dimensional function using simple finite-
difference relations. Function is specified on a
rectangular grid with x and y axes directed north and east,
respectively. North is arbitrary.

Input parameters:

nx - number of elements in the west-to-east direction.

ny - number of elements in south-to-north direction.

grid - a one-dimensional real array containing the
two-dimensional function. Elements should
be in order of west to east, then south to north (i.e.,
element 1 is southwest corner, element ny is
southeast corner, element (nx-1)*ny+1 is northwest
corner, and element ny*nx is northeast corner).

dx - sample interval in the x direction, units irrelevant.

dy - sample interval in the y direction, units irrelevant.

store - one-dimensional real array used internally.
Should be dimensioned at least nx*ny in the calling
program.

Output parameters:
grid - upon output, grid contains the maximum horizontal
gradient with same orientation as before.
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dimension grid(nx#*ny),store(nx*ny)
index(i,j,ncol)=(j-1)*ncol+i
dx2=2.%dx
dy2=2.*dy
do 10 j=1,nx
jm1=j-1
if(jmi.1t.1)jmi=1
jpl=j+1
if (jpl.gt.nx)jpl=nx
do 10 i=1,ny
iml=i-1
if(iml1.1t.1)iml=1
ipl=i+l
if(ipl.gt.ny)ipl=ny
dfdx=(grid(index(ipl,j,ny))-grid(index(iml,j,ny)))/dx2
dfdy=(grid(index (i, jpl,ny))-grid(index(i,jml,ny)))/dy2
store(index (i, j,ny))=sqrt(dfdx**2+dfdy**2)
10 continue
do 20 i=1,nx*ny
20 grid(i)=store(i)
return
end

Subroutine B.28. Subroutine to calculate the maximum horizontal gradient
of a two-dimensional function specified on a rectangular grid.
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subroutine expand(grid,ncol,nrow,grid2,ncol2,nrow2)

Subroutine EXPAND adds "tapered" rows and columns to a
grid. Imput grid(i,j), i=1,2,...,ncol, j=1,2,...,nrow, is
modified as follows:

(1) Each row is expanded in length from ncol to ncol2.
New elements of row j linearly change in value from
grid(ncol,j) to grid(1,j).

(2) Each column is expanded in length from nrow to nrow2.
New elements of column 1 linearly change in value
from grid(i,nrow) to grid(i,1).

(3) All elements at i < or = to ncol and j < or = nrow
are left unchanged.

Input parameters:

grid - one-dimensional real array representing
a two-dimensional grid.
ncol,nrow - dimensions of input grid.

ncol2,nrow2 - dimensions of output grid (grid2).
ncol2 must be > ncol; nrow2 must be > nrow.

Output parameters:
grid2 - one-dimensional real array representing
a two-dimension grid, as described earlier.

OO0 00000000000000000

dimension grid(ncol*nrow),grid2(ncol2*nrow2)
index (i, j,ncol)=(j-1)*ncol+i
do 10 j=1,nrow
do 10 i=1,ncol
ij=index(i,j,ncol)
ij2=index(i,j,ncol2)
10 grid2(ij2)=grid(ij)
if(ncol2.gt.ncol)then
do 20 j=1,nrow
il=index(1,j,ncol2)
i2=index(ncol, j,ncol2)
i3=index(ncol2, j,ncol2)
step=(grid2(i1)-grid2(i2))/(ncol2-ncol+l)
do 20 i=ncol+l,ncol2
ij=index(i,j,ncol2)

20 grid2(ij)=grid2(i2)+step*(i-ncol)
else
pause ’EXPAND: mncol2.le.ncol’
end if

Subroutine B.29. Subroutine to expand the dimensions of a grid. Rows and
columns are added to the east and north edges of the grid in order to eliminate
discontinuities in discrete Fourier transforms. Elements added to each row
change gradually from the value of the last element of the row to the value
of the first element of the row, and likewise for each column.
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if (nrow2.gt .nrow) then
do 30 i=1,ncol2

jl=index(i,1,ncol2)
j2=index(i,nrow,ncol2)
j3=index(i,nrow2,ncol2)
step=(grid2(j1)-grid2(j2))/(nrow2-nrow+1)
do 30 j=nrow+l,nrow2

ij=index(i,j,ncol2)

30 grid2(ij)=grid2(j2) +step*(j-nrow)
else
pause ’EXPAND: nrow2.le.nrow’
end if
return
end

Continuation of Subroutine B.29.



Appendix C
Review of Sampling Theory

Gridding embodies forgotten compromises made at an early stage of
analysis from which we may suffer later on — an Achilles’ heel.
(Lindrith Cordell)

The process of sampling a continuous function f(z) can be represented
mathematically as multiplication of f(x) by a series of impulses,

N
Z f(z) 6(x — mAzx)

m=—N

N
f(x) Z 6(z — mAx)

m=—N
= f(z) kn,az() (C.1)

where Az is the sample interval and 2N + 1 is the number of points in
the sample sequence. The series of impulses ky ax(x) in equation C.1
is called the sampling function (Figure C.1). It may seem curious to
represent f(x) by a series of impulses, but the process of digitizing f(x)
at = ¢ really amounts to finding an average value of f(x) over a very

fo(z)

l

k N, Ax KN, Ax —2N+1
B
— = 2r
- 2r
Ax +

Ax 0 Ax

Fig. C.1. An example of the sampling function and its Fourier transform for
N=1and Az =1.
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narrow range of z centered about zo, and equation 11.14 shows that the
value of a function f(z) at zo is given by the convolution of f(x) with
an impulse,

o0

fao) = [ f(a)6(a -~ zo)de.
Note that fp(z) and f(z) do not have the same units because §(z) has
units of inverse distance.

We want to investigate the differences between f(z) and fp(z) in the
Fourier domain, so we begin by Fourier transforming equation C.1 and
then employing equation 11.20. Hence, the Fourier transform of fp(x)
will be given by the convolution of the Fourier transforms of f(z) and
kN,Aa:(z)a

Fo(k) = 5 [ FOF)Knacll—K) ab'

The Fourier transform of the sampling function, therefore, will describe
how the Fourier transform of a digitized function differs from the trans-
form of its continuous form. From equation 11.15, it follows that the
Fourier transform of an impulse at the origin is given by
/ S(z)e " dr =1,
and the shifting theorem of Section 11.1.2 leads to
/ §(z — mAz)e T dg = e~ thmAT
—OoQ

and

N
KN,Ax(k)z Z gthmaT,

m=—N
After some algebraic manipulations, the previous equation can be writ-
ten in a more instructive form,

_ sinkAz(N + 1)

Kn an(k) = .
N.ax (k) sin %kAz (C.2)

Equation C.2 shows that the Fourier transform of the sampling func-
tion is periodic and repeats itself over the interval %. Figure C.1 shows
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an example for N = 3. The narrowness of the large peaks and the number
of zero-crossings between the large peaks both increase with increasing
N. In fact, it can be shown that as N becomes very large, the Fourier
transform of the sampling function approaches an infinitely long series
of impulses spaced along the k axis at intervals of 2—’;,

lim KNAw(k):2—7r i 6( _2ﬂ) .
N—oo ’ Az X Azx
j==—o00
Hence an infinite set of impulses spaced Az apart Fourier transforms to
an infinite set of impulses spaced —2% apart.

Suppose now that we were able to digitize an infinitely long continuous
function f(z). (This is not as impossible as it may seem; if we assume
that f(z) = 0 for |z| > N Az, then we may consider N to be infinite
and f(x) to be infinitely long.) According to equation 11.20, the Fourier
transform of this infinite series would be

o0

Fp(k) = Kla? 42 F ( - Zi;) . (C.3)
J=—o

This summation describes aliasing, an important phenomenon of sam-
pled data. We would like the Fourier transform of the digital function to
equal the Fourier transform of the continuous function at any arbitrary
wavenumber; that is, we would like AzFp (ko) = F(ko). Unfortunately,
equation C.3 shows that the discrete Fourier transform is equal to F'(ko)
plus an infinite set of additional values:

Fo(k) = 1= [---+F<ko+%)+F(ko)+F<ko—%)+---] .

In other words, the periodic nature of Fi(k) produces contamination at
each value of ko; instead of F(kp), we get F(ko) plus F(k) evaluated at
an infinite number of other values of k.

The amplitude spectrum for many kinds of physical phenomena (in-
cluding potential-field anomalies) decreases rapidly with increasing |k|.
Hence, the low-wavenumber part of F(k) may be a good approximation
to F(k) if f(z) has been properly sampled. This should be clear from
equation C.3; the contaminating terms in the summation will be small if
F(k) decreases rapidly with increasing |k|. Aliasing will be most severe
at wavenumbers near k = <. This is the symmetry point in Figure C.1
and is called the Nyquist or folding wavenumber. Clearly one way to
reduce aliasing is to increase the Nyquist wavenumber, and this can be
done only by making the sample interval Az smaller.
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Note that the Nyquist wavenumber corresponds to a wavelength of
twice the sample interval. We cannot find information at wavelengths
smaller than this threshold. For some physical phenomena, it might be
appropriate to assume that the energy-density spectrum or the power-
density spectrum of a process is zero at wavenumbers greater than some
critical wavenumber k.. Such a function is said to be band limited. The
sampling theorem states that if f(z) is band limited with no energy at
wavelengths less than \., Fp(k) will contain all the information of F(k)
so long as Az < A\./2.



Appendix D

Conversion of Units

The only known antidotes to discussions of units are undisturbed silence

in a dark room for 15 minutes or a brisk walk in the park.

(Robert F. Butler)

Two systems of electromagnetic units are in common usage in the geo-
physical literature: The venerable cgs system, also known as electro-
magnetic units (emu), and the more modern and internationally ac-
cepted Systéeme Internationale (International System, abbreviated SI).
Geophysical journals now require the use of SI units, and for the most
part SI units are adhered to in this text. Geophysical journals pub-
lished prior to 1980, however, employed emu, and even some recently
published textbooks (e.g., Butler [47]) continue its usage. Consequently,
reading the geophysical literature requires conversion between the two
systems, a common source of frustration because the two systems are
significantly different.

The following table summarizes these two important systems of units
and the conversion factors between them. Additional discussions can be
found in textbooks by Panofsky and Phillips [201, pp. 459-65], But-
ler [47, pp. 15-18], and the Society of Exploration Geophysicists [266],
and in papers by Shive [255], Payne [213], and Moskowitz [189].
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Electromagnetic Units (emu)

International Standard (SI)

Quantity Unat Dimensions Unit Dimensions Conversion
Force (F) dyne g-cm-s 2 newton (N) kg'm-s 2 1dyne = 107> N
Current (I) abampere 10 C-s™? ampere (A) Cs™? 1 abampere = 10 A
Induction or flux density (B) gauss (G) 0.1gs'.C™! tesla (T) kgs~!1.C™! 1gauss =107* T

“ gamma 10~° gauss nanotesla (nT) 107° T 1 gamma =1 nT
Field intensity (H) oersted (Oe) 0.1 gs™'.C™? Am™! Cstm™? 1 oersted = 10%/47 A-m™!
Magnetization (M) ga,uss]L (G) 0.1gs™t.c™! Am™? Cstm™? 1 gauss = 10* Am™~!
Moment (m) ga,uss-cm31 0.1gs™'.C"l.em® Am? Cs™lm? 1 gauss -cm®= 1072 A-m?
Susceptibility () — dimensionless — dimensionless 1 (emu) = 4x (SI)
Koenigsberger ratio (Q) — dimensionless — dimensionless 1 (emu) = 1 (SI)

TAlso called emu-cm™3.
Also called emu.

Notes:
1. The units of field intensity H are different, both numerically and dimensionally, between the two systems. This is because of
the different defining equations for H,
B H+ 4rM (emu),
B wo(H + M) (S1),
where po = 4m x 10~7 N-A~2, Likewise, magnetization M differs both numerically and dimensionally in the two systems.
2. Although B and H are often considered equal fields outside magnetic material, in SI they differ by a factor po, making them

different both numerically and dimensionally.
3. Susceptibility, although dimensionless, differs by a factor of 4w between the two systems.
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