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Abstract.  Stratospheric ozone depletion through cat-
alytic chemistry involving man-made chlorofluorocar-
bons is an area of focus in the study of geophysics and
one of the global environmental issues of the twentieth
century. This review presents a brief history of the sci-
ence of ozone depletion and describes a conceptual
framework to explain the key processes involved, with a
focus on chemistry. Observations that may be considered
as evidence (fingerprints) of ozone depletion due to
chlorofluorocarbons are explored, and the related gas
phase and surface chemistry is described. Observations
of ozone and of chlorine-related trace gases near 40 km
provide evidence that gas phase chemistry has indeed
currently depleted about 10% of the stratospheric ozone
there as predicted, and the vertical and horizontal struc-
tures of this depletion are fingerprints for that process.
More striking changes are observed each austral spring
in Antarctica, where about half of the total ozone col-
umn is depleted each September, forming the Antarctic
ozone hole. Measurements of large amounts of CIO, a
key ozone destruction catalyst, are among the finger-

prints showing that human releases of chlorofluorocar-
bons are the primary cause of this change. Enhanced
ozone depletion in the Antarctic and Arctic regions is
linked to heterogeneous chlorine chemistry that oc-
curs on the surfaces of polar stratospheric clouds at
cold temperatures. Observations also show that some
of the same heterogeneous chemistry occurs on the
surfaces of particles present at midlatitudes as well,
and the abundances of these particles are enhanced
following explosive volcanic eruptions. The partition-
ing of chlorine between active forms that destroy
ozone and inert reservoirs that sequester it is a central
part of the framework for our understanding of the
40-km ozone decline, the Antarctic ozone hole, the
recent Arctic ozone losses in particularly cold years,
and the observation of record midlatitude ozone de-
pletion after the major eruption of Mount Pinatubo in
the early 1990s. As human use of chlorofluorocarbons
continues to decrease, these changes throughout the
ozone layer are expected to gradually reverse during
the twenty-first century.

1. INTRODUCTION

The unique role of ozone in absorbing certain wave-
lengths of incoming solar ultraviolet light was recognized
in the latter part of the nineteenth century by Cornu
[1879] and Hartley [1880]. Interest in ozone stems from
the fact that such absorption of solar radiation is impor-
tant in determining not only the thermal structure of the
stratosphere [e.g., Andrews et al., 1987] but also the eco-
logical framework for life on the Earth’s surface. (Terms
in italic type are defined in the glossary following the
main text.) Decreased ozone results in increased ultra-
violet transmission, which can affect the health of hu-
mans, animals, and plants [e.g., van der Leun et al., 1995,
and references therein].

Observations of the total integrated column ozone
based on ultraviolet absorption began in the first few
decades of the twentieth century [e.g., Fabry and Buis-
son, 1913; Dobson, 1968, and references therein; Diitsch,
1974]. Systematic measurements of this type have re-

vealed that the total ozone abundances over many re-
gions of the globe have decreased markedly since about
1980, as is illustrated in the data presented in Figure 1.
Indeed, the depletion of the global ozone layer has
emerged as one of the major global scientific and envi-
ronmental issues of the twentieth century.

Downward trends are evident in the time series of
spatially or time-averaged spring column ozone obser-
vations shown in Figure 1. Ozone varies from year to
year at all locations, but the behavior seen in recent
decades in Antarctic spring lies very far outside of the
historical variability. The longest available high-quality
record is that of Arosa, Switzerland, which dates back to
the 1920s [Staehelin et al., 1998a, b]. The record at this
site agrees well with the larger-scale changes observed by
satellite since 1979. Figure 1 shows that the observed
ozone changes in the 1990s compared with earlier de-
cades are large enough that sophisticated statistical
treatments are not needed to discern them, not only over
Antarctica but also in the Arctic and at midlatitudes. For
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detailed discussions of data quality and ozone trend
detection approaches, see the recent reviews by Harris et
al. [1998] and J. Staehelin et al. (Observations of ozone
trends, submitted to Reviews of Geophysics, 1998, here-
inafter referred to as Staehelin et al., submitted manu-
script, 1998).

The aim of this review is to describe a framework for
a conceptual and historical understanding of the pro-
cesses controlling stratospheric ozone depletion, partic-
ularly the role played by human use of chlorofluorocar-
bons (CFCs). Key historical and illustrative recent
references will be cited. Such a review is by design limited
in scope and is intended to be accessible to the nonspecial-
ist. It focuses strictly on ozone depletion processes rather
than on the broader aspects of the current, highly detailed
understanding of stratospheric ozone chemistry, radiative
transfer, dynamics, and meteorology. For recent in-depth
treatments of those topics, see, for example, World Meteo-
rological Organization/United Nations Environment Pro-
gramme (WMO/UNEP) [1994, 1999, and references there-
in], Andrews et al. [1987], and Holton et al. [1995].

Section 2 of this paper briefly discusses the general
theoretical understanding of the vulnerability of ozone
to chemical change, particularly the depletions that were
predicted to occur in the distant future based upon gas
phase chlorine and bromine chemistry [Molina and Row-
land, 1974]. The transformation of this theory to the
remarkable reality depicted by the ozone decline illus-

al., 1985; Jones and Shanklin, 1995] and updated cour-
tesy of J. Shanklin. The Arctic data are from satellite
observations described by Newman et al. [1997], up-
dated courtesy of P. Newman. The Arosa, Switzerland
dataset is the longest running in the world [Staehelin et
al., 1998a, b]. Satellite observations from a slightly
higher midlatitude region are shown for comparison
[Hollandsworth et al., 1995], updated courtesy of R.
Nagatani. The satellite data are zonally and monthly
averaged, while the ground-based data at each site
have also been averaged over time as indicated in each
case.

trated in Figure 1 is the focus of sections 3-6. Section 3
describes how the discovery and explanation of the Ant-
arctic ozone hole radically altered the gas phase chemical
picture by revealing the key role played by reactions of
chlorine compounds on and within surfaces (heteroge-
neous chemistry), particularly under very cold conditions
in polar regions. The chemical nature of stratospheric
surfaces capable of driving such chemistry is the focus of
section 4, where it is shown that water ice, nitric acid
hydrates, and liquid sulfuric acid/water surfaces all must
be considered. Laboratory studies, observations of mid-
latitude ozone trends, and measurements of strato-
spheric chemical composition have underscored the
need to consider both gas phase and heterogeneous
chemistry not only under extreme cold but also under
relatively warm conditions, as is discussed in sections 3,
4, and 5. Recent changes in Arctic ozone have further
illustrated the strong coupling between heterogeneous
chemistry and extensive polar ozone depletion and have
raised important questions regarding meteorological
trends (section 6). A key framework for understanding
that is emphasized throughout this review is the concept
of chemical partitioning of chlorine between forms that
are inert with regard to ozone (HCl, CIONO,) and
others that can destroy it (Cl, ClO). Major conclusions
are briefly summarized in section 7. A glossary of terms
used follows the main text.
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2.  GAS PHASE CHEMISTRY AND RELATED
CONSIDERATIONS

2.1. Catalytic Cycles and Chemical Families

A photochemical theory for formation and destruc-
tion of ozone based on an oxygen-only chemical scheme
was first proposed by Chapman [1930]. An updated
version of this framework is shown by the first seven
reactions presented in Table 1. Perhaps most impor-
tantly, Chapman noted that ozone and atomic oxygen
rapidly interchange with each other, while the sum of the
two is linked to much slower chemical processes. This
work laid the foundation for the understanding of “odd
oxygen” chemistry. Such a conceptual picture allows a
clear distinction to be drawn between net and gross
production and loss of ozone over a chosen timescale
which will be briefly summarized here (see the seminal
review by Johnston and Podolske [1978] for further de-
tails).

Ozone photolysis below ~50 km represents a gross
but not net loss process over timescales of the order of
minutes or more, since nearly all of the atomic oxygen
thus produced reforms ozone (through the reaction of
O + O, with a third body, M; see (R2) in Table 1) in just
a few seconds or less. Ozone and atomic oxygen thereby
cycle very rapidly between one another in the strato-
sphere. A very small fraction of the oxygen atoms pro-
duced from ozone photolysis can react with ozone (O +
0; — 20,), yielding a net loss of the sum of the two over
extended timescales. Hence it is conceptually useful to
consider atomic oxygen and ozone together as an odd
oxygen family distinct from the much longer-lived form
of “even oxygen,” O, (for further discussion see, e.g.,
Brasseur and Solomon, 1986]).

In the 40 years following Chapman’s groundbreaking
paper, it became clear that stratospheric ozone was
chemically destroyed not solely by reaction with atomic
oxygen, but also by hydrogen [Bates and Nicolet, 1950;
Hampson, 1964] and nitrogen oxide chemistry [Crutzen,
1970, 1971; Johnston, 1971]. Each of these species may
also be considered in terms of their own odd hydrogen
and odd nitrogen families, the members of which can
interchange chemically with one another [see, e.g., Bras-
seur and Solomon, 1986]. Table 1 illustrates the fact that
hydrogen and nitrogen oxides can destroy odd oxygen in
a catalytic fashion wherein the initiating active species
(e.g., OH, NO) are regenerated, so that even small
amounts of these gases can influence the much greater
ozone abundances. Table 1 also presents some illustra-
tive reactions that couple one family of gases to another
(such as the formation of CIONO, through reaction of
CIO with NO,; CIONO, is thus a member of both the
odd chlorine and odd nitrogen families) and processes
that form relatively long-lived reservoirs (HCl, CIONO,,
HNO;), which can strongly influence the abundances of
the ozone-destroying gases (e.g., ClO, NO,), as is dis-
cussed further below.

Perturbations to the natural abundances of odd hy-
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drogen may arise through human modifications of
source gases such as H,O and CH,, while natural odd
nitrogen can be perturbed through direct emissions of
high-flying aircraft, by nuclear explosions, or by changes
in its primary source gas, N,O. Heath et al. [1977] dem-
onstrated that large solar proton events can lead to
transient perturbations in upper stratospheric ozone due
to a natural modulation of odd nitrogen chemistry. This
verified the nitrogen-catalyzed ozone destruction cycle
in a dramatic fashion (see also the review by Jackman
and McPeters [1987]). Refinements to measured labora-
tory kinetic rates allowed the numerical model estimates
of the impacts of such perturbations upon ozone to be
gradually improved over a period of several decades
[e.g., Ko and Sze, 1983]. While the study of possible
ozone depletion due to hydrogen and nitrogen chemistry
remains an area of active research (see WMO/UNEP
[1998] for current studies and Johnston [1992] for an
historical review), the weight of evidence shows that the
bulk of the observed recent depletion depicted in Figure
1 is due to other processes, particularly the chlorine-
related chemistry that is the primary subject of this
review.

In 1974 it was shown that chlorine could also engage
in a catalytic cycle resulting in ozone destruction [Sto-
larski and Cicerone, 1974]. Of particular importance was
the identification of man-made chlorofluorocarbons as
the major source of ozone-destroying stratospheric chlo-
rine [Molina and Rowland, 1974]. Like the nitrogen and
hydrogen oxides, chlorine can destroy ozone in catalytic
cycles such as those shown in Table 1. Wofsy et al. [1975];
Yung et al. [1980], Tung et al. [1986], and McElroy et al.
[1986] showed that bromocarbons could also contribute
to ozone depletion, particularly through the coupling of
bromine and chlorine chemistry. Collectively, the deple-
tion of ozone by chlorine, bromine, and the interactions
between them will be referred to herein as halogen
chemistry.

2.2. Processes Controlling Chlorocarbon Lifetimes
Molina and Rowland [1974] and Rowland and Molina
[1975] pointed out that the chlorofluorocarbons hypoth-
esized as ozone depletors have very long atmospheric
residence times, so that if these gases were to be deplet-
ing stratospheric ozone, they would continue to do so
well into the twenty-first century. This critical point
merits a brief elucidation (expert readers may wish to
skip to section 2.3). Figure 2 is a schematic diagram of
the key processes that contribute to and control chlo-
rofluorocarbon lifetimes in the Earth’s atmosphere. As
was emphasized by Molina and Rowland [1974], the
chlorofluorocarbons are not significantly soluble in wa-
ter; nor do they react with ocean or soil surfaces or with
any chemical species present in the lower atmosphere
(below ~12-15 km, the troposphere). Their chemical
destruction depends upon the ultraviolet light found in
the upper atmosphere (between ~12-15 and 50 km, the
stratosphere). This radiation breaks up the chlorofluo-
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TABLE 1. Key Chemical Processes and Catalytic Cycles
Reaction
Chemical Process Number
Chapman Chemistry*

O, + hv — 20 R1
0O+0,+M—-0;+M R2
O; + hv — 0, + O('D) R3
o'D)+M—->0+M R4
O; +hv -0, +0 RS
O+0+M—-0,+M R6
O+ 0; —20, R7

Illustrative Odd Hydrogen Catalytic Cycles®
O+0OH—-0,+H R8
H+O,+M—HO, +M R9
O + HO, —» O, + OH R10
Net Cycle : O+ O+ M —0, + M R6
OH + O; — HO, + O, R11
HO, + O; — OH + 20, R12
Net Cycle 2: 2 O; — 30, R13

Hllustrative Odd Nitrogen Catalytic Cycle®
NO + O; = NO, + O, R14
O + NO, - NO + 0O, R15
Net Cycle 3: O + O; — O, R7

Hlustrative Odd Chlorine Catalytic Cycles®
Cl + O; = CIO + O, R16
ClIO+0—Cl+ 0, R17
Net Cycle 4: O + O3 — O, R7
Cl + O; = CIO + O, R16
Cl + O; = CIO + O, R16
ClO + CIO + M — CL,O, + M R18
CL0, + hv — Cl + CIO, R19
ClO,+M—=Cl+0,+M R20
Net Cycle 5: 2 O; — 30, R13

Hllustrative CI-Br Catalytic Cycle®
Cl + O; = CIO + O, R16
Br + O; — BrO + O, R21
BrO + CIO — Br + ClIO, R22
ClO, +M—=Cl+ 0, +M R20
Net Cycle 6: 2 O; — 30, R13
Some Important Coupling and Reservoir Reactions
ClO + NO — CI + NO, R23
Cl + CH, — HCI + CH, R24
HO, + CIO — HOCI + O, R25
ClO + NO, + M — CIONO, + M R26
OH + NO, + M — HNO; + M R27
Key Heterogeneous Reactions

HCI + CIONO, — HNO; + Cl, R28
N,O5 + H,O — 2HNO, R29
CIONO, + H,0 — HNO; + HOCI R30
HCI + HOCI — H,0 + Cl, R31
BrONO, + H,0 — HNO; + HOBr R32
HCI + BrONO, — HNO; + BrCl R33
HCI + HOBr — H,O + BrCl R34

#Chapman [1930].

"Bates and Nicolet [1950]; Hampson [1964].

“Crutzen [1970]; Johnston [1971].

9Stolarski and Cicerone [1974]; Molina and Molina [1987).
°McElroy et al. [1986]; Tung et al. [1986].

rocarbon molecules, yielding Cl atoms that can go on to
destroy ozone in catalytic cycles such as those shown in
Table 1 as they move through the stratosphere.

A review of the fluid mechanical principles underlying
the dynamics and meteorology that is responsible for the

movement of air from the troposphere to the strato-
sphere is provided, for example, by Andrews et al. [1987]
and Holton et al. [1995]. It is interesting to note that long
before the fluid dynamical underpinnings of strato-
spheric transport were fully established, a broad concep-
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Figure 2. Schematic diagram illustrating the breakdown of
CFCs and catalytic destruction of ozone in the middle and
upper stratosphere. Because the stratosphere contains only
10% of the mass of the total atmosphere, the atmosphere must
turn over many times to destroy all of the CFCs present,
resulting in long atmospheric residence times for these gases.
The simplified cartoon illustrates only the key net processes
that transport CFCs and other gases in a zonally averaged
sense. The Brewer-Dobson circulation illustrates a typical av-
erage flow pattern. Waves mix trace gases when they break
down, particularly in the winter hemisphere (Southern Hemi-
sphere in this illustration). The long CFC lifetimes are re-
flected in the surface observations of CFC-12 at stations, such
as South Pole, that are far removed from the emission regions
in the industrialized Northern Hemisphere.

tual framework had been deduced from chemical obser-
vations that remains basically intact today. Dobson
[1930] inferred the existence of a large-scale strato-
spheric circulation cell characterized by rising motion in
the tropics and descending motion at mid and high
latitudes on the basis of his observations of the latitude
gradients in ozone. He pointed out that greater ozone
column abundances observed at higher latitudes must be
the result of downward, poleward motion. Brewer [1949]
reached a similar conclusion based upon an elegant
analysis of early measurements of water vapor. Recent
studies have, for example, used observations of very
long-lived gases with known tropospheric trends such as
CO, [e.g., Schmidt and Khedim, 1991; Boering et al.,
1996] to show that the timescale for the overturning of
this “Brewer-Dobson” circulation cell is ~5 years. About
90% of the total atmospheric mass resides in the tropo-
sphere, and ~10% resides in the stratosphere.
Consider the fate of 1 kg of CFC-11 released in
today’s atmosphere, using Figure 2. Rapid mixing in the
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lower atmosphere distributes the CFC-11 throughout
the troposphere. Observations of chlorofluorocarbons
from surface stations as far apart as the South Pole and
Colorado as indicated in Figure 2 (data taken from
Montzka et al. [1996]) show that the mixing ratios of
CFCs in the Southern Hemisphere lag those of the
Northern Hemisphere by about a year. However, the
fact that the abundances of chlorofluorocarbons are so
large at a remote site like the South Pole, far removed
from their emission in the industrialized parts of the
Northern Hemisphere, attests to the fact that their de-
struction in the troposphere must be extremely slow or
nonexistent. Key factors are the near-insolubility of
CFCs in water (which makes them resistant to the rain-
out and washout processes that remove some other gases
emitted by industrial activities, such as those that form
the local pollution of acid rain) and their chemically
inert character.

A fraction of the tropospheric mass enters the strato-
sphere and is slowly transported upward, poleward, and
back to the troposphere. Rapid horizontal mixing in the
troposphere, coupled with the fact that the primary
point of entry to the stratosphere is in the tropics (as
sketched in simplified form in Figure 2; see Holton et al.
[1995] for a more detailed picture), implies that the
chlorine content of stratospheric air will not depend
substantially upon proximity to local sources. Ozone
depletion is therefore a global phenomenon, since the
amount of total chlorine (also called chlorine loading)
both at and above the South Pole is nearly the same as
that above industrialized regions. The observed spatial
and temporal variations in ozone loss are closely tied to
chemical processes that partition this total chlorine load-
ing among its various forms and thereby modulate ozone
destruction in space and time, as is discussed below.

Within ~5 years, air will have cycled through the mid
to upper stratosphere. Most of the CFC-11 contained in
this air breaks down in the upper stratosphere to release
its chlorine (which in turn destroys ozone) and returns to
the troposphere largely in the form of hydrochloric acid
(which ultimately rains out and removes the chlorine
from the system). Since only ~10% of the mass of the
troposphere exchanges with the upper stratosphere in
each 5-year period, the process will have to be repeated
approximately 10 times to destroy the bulk of chlorofluo-
rocarbon initially released. In the case of CFC-11, this
leads to a lifetime of ~50 years. For some of the other
chlorofluorocarbons, stratospheric photodissociation de-
stroys a smaller fraction of the parent compound within
a single circuit through the Brewer-Dobson circulation,
extending the lifetimes considerably (in the case of CFC-
115, for example, the lifetime is about 500 years [WMO/
UNEP, 1994]). If all emissions of these chlorofluorocar-
bons were to cease immediately, these gases would be
slowly removed from the atmosphere on such timescales
according to the processes depicted in Figure 2. A con-
cise review of global emissions and future projections is
provided by Prather et al. [1996].
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Figure 3. Key contrasts between F, Cl, and Br for ozone loss
are linked to their gas phase partitioning processes illustrated
here.

The challenges facing geoengineering strategies to
mitigate ozone losses by, for example, making more
ozone, have been recognized for decades. The energy
required to break the O, bond in order to make two
ozone molecules is about 5.1 eV, so that the power input
required to produce the ozone layer is about 2 X 10"° W
[Hunten, 1977]. This power is provided on a natural and
continuing basis by the Sun but was estimated at ~3
times mankind’s total artificial power generation in 1970
[Hunten, 1977]. Making enough ozone to artificially re-
place even a small fraction of the global burden would
still be an extremely expensive proposition today. Alter-
native schemes involving interference with chlorine
chemistry have also been shown to be impractical [see,
e.g., Viggiano et al., 1995]. Hence the reduction of global
emissions and the resulting gradual removal of atmo-
spheric chlorine is the only known practical approach to
future recovery of the ozone layer.

2.3. Chemical Partitioning, Chlorine Sources, and
Gas Phase Chemistry Fingerprints

The foregoing discussion and the references therein
outline the dominant catalytic processes that control
ozone chemistry and describe in general terms why com-
pounds such as chlorofluorocarbons released at ground
level reside in the global atmosphere over timescales of
decades to centuries. Along with these catalytic cycles,
chemical partitioning processes play a major role in
ozone destruction that is dramatically illustrated by the
contrasts between F, Cl, and Br gas phase chemistry
shown in simplified form in Figure 3. Briefly, the halogen
atoms released in the stratosphere from chlorocarbon,
bromocarbon, and fluorocarbon source gases can form
acids (through abstraction of a hydrogen atom) and
nitrates (through reaction with NO,). In the case of
fluorine, the acid HF is quickly formed and so tightly
bound that essentially all fluorine released from fluorine
source gases in the stratosphere is irreversibly and rap-
idly “neutralized” as HF [Rowland and Molina, 1975;
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Stolarski and Rundel, 1975; Sze, 1978]. The amount of
atomic fluorine and FO available to participate in ozone-
destroying catalytic cycles (or, in chemical terms, the
catalytic chain length [see Johnston and Podolske, 1978])
is hence extremely short, and fluorine has a negligible
impact on ozone (see the recent analysis by D. J. Lary et
al. (Atmospheric fluorine photochemistry, submitted to
Journal of Geophysical Research, 1998)). Chlorine forms
both HCI [Stolarski and Cicerone, 1974] and CIONO,
reservoirs [Rowland et al., 1976]. These gases can, how-
ever, be reconverted to chlorine atoms by gas phase
chemistry (i.e., by reaction with OH and photolysis,
respectively). The amount of Cl and ClO available to
participate in ozone-destroying catalytic chemistry
therefore is critically dependent on the partitioning of
chlorine between these “active” chlorine radicals and the
non-ozone-destroying “reservoirs,” HCl and CIONO,.
The rates of chemical formation and destruction of the
reservoirs control this partitioning. Bromine is less
tightly bound than chlorine, so that relatively little of the
bromine released from bromocarbons is tied up in HBr
and BrONO,, rendering this atom quite effective for
ozone loss [Wofsy et al., 1975; Yung et al., 1980; Lary,
1996], especially in combination with chlorine [Tung et
al., 1986; McElroy et al., 1986]. Although there are sig-
nificant human sources of bromine, the contemporary
abundances of total stratospheric bromine are about 200
times smaller than those of chlorine [e.g., Schauffler et
al., 1993; Wamsley et al., 1998]. Iodine may also partici-
pate in ozone-destroying catalytic cycles with bromine
and chlorine [Solomon et al., 1994, 1997] but its strato-
spheric abundance is believed to be much smaller than
those of bromine and chlorine, and its primary sources
are believed to be natural rather than largely or partly
man-made as in the case of fluorine, chlorine, and bro-
mine.

While many natural processes produce chlorine at
ground level (including for example, sea salt and volca-
nic emissions of HCI), these compounds are efficiently
removed in precipitation (rain and snow) owing to high
solubility. The removal of HCI emitted, for example, by
volcanoes is extremely efficient [see, e.g., Tabazadeh and
Turco, 1993], rendering even the most explosive volcanic
plumes ineffective at providing significant inputs of chlo-
rine to the stratosphere (as was demonstrated in direct
observations of volcanic plumes by Mankin et al. [1992]
and Wallace and Livingston [1992]).

In contrast, airborne observations of the suite of
chlorofluorocarbons at the base of the tropical strato-
sphere [see, e.g., Schauffler et al., 1993] show that the
total chlorine content in air entering the lowermost
stratosphere due to chlorofluorocarbons in 1992 was
about 3.0 ppbv, compared with only ~0.1-0.2 ppbv from
concurrent measurements of HCl and ~0.5-0.6 ppbv
from CH;Cl, which is the sole stratospheric chlorocar-
bon that has significant natural sources. Observations
such as those in Figure 2 have confirmed that the tem-
poral trends in global surface level abundances of chlo-
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Chlorine Partitioning
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Ozone Trend at Northern Mid- Latitudes

Figure 4. (left) Observations of chlorine partitioning
as a function of altitude from an instrument on board
the space shuttle [Zander et al., 1996]. (right) Observed
vertical profile of the ozone trend at northern midlati-
tudes [Harris et al., 1998], together with a current
model estimate [from Solomon et al., 1997].
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rofluorocarbons are consistent with the known industrial
emissions [e.g., Montzka et al., 1996; Prinn et al., 1995;
WMO, 1985; WMO/UNEP, 1991, 1994, 1999], both in
terms of the buildup of these gases in past decades and
the slower accumulation in the 1990s following reduc-
tions in global use (see also Plate 5 below).

Observations of HCI, ClO, CIONO,, and other chlo-
rine-bearing gases by infrared spectroscopy onboard the
space shuttle [Michelsen et al., 1996; Zander et al., 1996]
or from satellites [Dessler et al., 1995, 1998] allow study
of how chlorine is chemically partitioned in the middle
and upper stratosphere in some detail, as shown in the
left-hand side of Figure 4. In the uppermost stratosphere
above ~45 km, nearly all of the chlorine released from
source molecules such as CFCs (hereinafter referred to
as Cl,) is sequestered in the HCI reservoir, owing largely
to the efficacy of the reaction of Cl + CH, at warm
temperatures and high Cl/CIO ratios there. Recent mod-
els [Michelsen et al., 1996], stratospheric observations
[Stachnik et al., 1992; Chandra et al., 1993], and labora-
tory measurements [Lipson et al., 1997] (see Jet Propul-
sion Laboratory (JPL) [1997]) suggest that a small yield
of HCI in the reaction of CIO with OH also affects the
HCI/CIO partitioning in this region.

Because nearly all of the chlorine and fluorine re-
leased from chlorofluorocarbons resides as HCl and HF
in the stratosphere near 50 km, observations of these two
gases in this region provide key verification of their
attribution to CFC sources. Recent global data by Rus-
sell et al. [1996] display abundances and trends in both
HCI and HF near 50 km that are quantitatively consis-
tent with observations of the chlorofluorocarbons at
ground level; these observations therefore confirm that
CFCs are the key sources for stratospheric chlorine and
fluorine. Taken together, the global measurements of
HCI, HF, other chlorine compounds, and the CFC
source gases both at the surface and in the tropopause

Ozone Trend (% /decade)

region [e.g., Russell et al., 1993; Zander et al., 1996;
Montzka et al., 1996; Schauffler et al., 1993] provide
direct evidence that the chlorine content of the contem-
porary stratosphere has been greatly perturbed, with
about 85% of the 1992 stratospheric chlorine burden
attributable to human activities.

Crutzen [1974] and Crutzen et al. [1978] carried out
some of the first detailed chemical models of ozone
depletion, building upon the studies of Stolarski and
Cicerone [1974], Molina and Rowland [1974] and Row-
land and Molina [1975] and including the chemical un-
derstanding outlined above. Crutzen [1974] predicted a
relative maximum in ClO near 40 km, which was broadly
confirmed a few years later by observations of CIO by
Anderson et al. [1977], Parrish et al. [1981], and Waters et
al. [1981]. Largely because of this relative maximum in
CIO, Crutzen [1974] predicted a maximum in ozone
depletion in the same region (although other factors
such as the availability of atomic oxygen also contribute
to the vertical profile of ozone depletion). The left-hand
side of Figure 4 shows that current observations of the
CIO/CI,, profile in the middle and upper stratosphere
agree with those early predictions and observations.

While there have been indications of ozone depletion
in the upper stratosphere for more than a decade [e.g.,
Ozone Trends Panel, 1988], only within the past few years
has it been well quantified [e.g., Miller et al., 1995; Harris
et al., 1998]. Sample observations of the northern mid-
latitude ozone profile trends as shown in the right-hand
side of Figure 4 display a maximum near 40 km, just as
predicted more than 2 decades ago. The close agree-
ment between the vertical shapes of the observed and
predicted ozone changes in the upper stratosphere pro-
vides strong evidence for gas phase chlorine-catalyzed
ozone depletion chemistry. Further, the correspondence
between the shapes of the vertical profiles of the ob-
served ozone depletion and of the CIO/Cl, ratio attests
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to the role of partitioning processes in modulating this
chemistry. Indeed, this is the first of several “finger-
prints” that can be used to establish the role of chlorine
in ozone depletion.

Plate 1 presents another fingerprint illustrating the
role of gas phase chemistry and chlorine partitioning in
ozone depletion, namely, the latitudinal gradients in
upper stratospheric CIO and ozone depletion. In the
early 1980s, global measurements of methane by satellite
illustrated that the strong upwelling of the Brewer-Dob-
son circulation in the tropical upper stratosphere (see
Figure 2) gives rise to a maximum in methane there
[Jones and Pyle, 1984]. The enhanced methane, in turn,
was predicted to lead to a tropical minimum in CIO
through its dominant role in CIO/HCI partitioning and
hence in ozone depletion [Solomon and Garcia, 1984].
Current global satellite observations of CIO [Waters et
al., 1993; Waters et al., 1999], as shown in the left panel
of Plate 1, indeed display a strong latitudinal gradient
with a pronounced minimum in the tropics. Satellite
observations of the latitudinal variation of the ozone
trends over the past 15 years (right panel of Plate 1)
reveal a similar spatial pattern in the upper stratosphere
as predicted. Thus not only the vertical profile but also
the latitudinal structure of the ozone depletion above
~25 km parallels the patterns observed in ClO. These
spatial variations in ozone depletion point towards gas
phase chlorine chemistry and highlight the role of chem-
ical partitioning in modulating ozone depletion. For
further discussion of other factors influencing upper
stratospheric ozone (including, for example, the roles of
temperature, water vapor, and other factors) see Miiller
et al. [1999] in the WMO/UNEP [1999] ozone assess-
ment. Plate 1 also shows very high CIO abundances in
the lower stratosphere (below 30 km) over the Antarctic
in austral spring, where gas phase chemical partitioning
would not predict it. These are a focus of the next
section.

3. HETEROGENEOUS CHEMISTRY UNDER COLD
CONDITIONS: THE ANTARCTIC OZONE HOLE

3.1. Discovery and Verification of the Ozone Hole
Measurable ozone depletion was first documented in
the Antarctic spring at the British Antarctic Survey sta-
tion at Halley [Farman et al., 1985]. Farman et al.
showed that the ozone hole is confined to particular
seasons (i.e., spring) and to south polar latitudes. These
pioneering findings were quickly confirmed by space-
based measurements [Stolarski et al., 1986] and by ob-
servations at other Antarctic sites [e.g., Komhyr et al.,
1986]. Observations of total column ozone using infrared
[Farmer et al., 1987] and visible spectroscopy [Mount et
al., 1987] provided further support for the seasonal de-
pletion of springtime ozone using independent methods.
As the satellite measurements confirmed that the deple-
tion extended over roughly the entire continent, the
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phenomenon became known as the Antarctic ozone
“hole.”

While the Antarctic ozone hole is not a true hole, in
the sense that some column ozone remains even in the
most extreme depletions observed in the mid 1990s
(when October ozone minima were near 100 Dobson
units (DU) over the South Pole, or depletion of about
two thirds of the historical levels [see Hofmann et al.,
1997]), the descriptor captures the fact that the peak
depletion is sharply limited to Antarctic latitudes. Dob-
son [1968 and references therein] noted that there is less
ozone naturally present over Antarctica than over the
Arctic in winter and spring, but this climatological dif-
ference between the natural ozone levels over the poles
of the two hemispheres should not be confused with the
abrupt decline that began near the mid-1970s as de-
picted in Figure 1. Newman [1994] discusses these and
other historical measurements of total ozone and shows
that the Antarctic ozone hole began in the last few
decades.

The latitudinal gradients in Antarctic ozone depletion
are related to the dynamical structure of the polar winter
stratosphere, whose circulation can be viewed as a vortex
[see, e.g., Schoeberl et al., 1992a; Holton et al., 1995].
Briefly, the absence of solar illumination in high-latitude
winter leads to cooling over the poles and hence a large
temperature gradient near the polar terminator. This
thermal gradient implies rapid zonal (west-cast) flow
characterizing the “jet” at the edge of the vortex, while
the air within the vortex is relatively isolated in compar-
ison with surrounding midlatitude regions, allowing
deep depletion to develop. Differences in the pre-1970s
ozone abundances in the two polar vortices first noted by
Dobson [1968] are related to differences in atmospheric
waves and circulation patterns, which are in turn driven
by factors relating to surface topography (e.g., distribu-
tion of mountains, oceans, and continents). In brief, the
north polar vortex is generally more disturbed by atmo-
spheric waves forced from beneath by flow over a more
variable surface topography. These lead to greater mix-
ing and faster downward motion, which both increases
the natural wintertime Arctic ozone abundances (by
bringing down ozone-rich air from above) and warms the
lower stratosphere (through adiabatic compression).
Temperatures in the Antarctic vortex are both colder
and less variable than those of the Arctic, which strongly
influences the polar ozone depletion in the two hemi-
spheres (sections 3.3 and 6 below).

Plate 2 shows measurements of the seasonal cycle of
ozone at Halley in historical and recent data, which show
that the depletion occurs only over a limited portion of
the year. These observations demonstrate that contem-
porary observations of ozone at Halley in late August
(end of austral winter) are near historical levels, while
the bulk of the ozone loss there occurs rapidly during the
month of September. The ozonesonde data [e.g., Hof-
mann et al., 1987] further underscore this point.

Farman et al. [1985] presented evidence for large
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trends in October Antarctic total ozone that were com-
pletely unanticipated at the time. They suggested chlo-
rofluorocarbons as the likely cause. This assertion was
remarkable because the observed depletion was far
larger than was ever anticipated up to that point. Scien-
tific understanding of the behavior of the ozone layer
prior to Farman et al.’s discovery suggested that trends
of a few percent in total ozone might begin to become
observable sometime in the twenty-first century if chlo-
rofluorocarbon emissions continued [see, e.g., Wuebbles
et al., 1983]. The reason that the predicted changes were
relatively small and far in the future is reflected in the
discussion of gas phase chemistry outlined in section 2.
Figures 3 and 4 show that a gas phase chemical under-
standing predicts that chlorine’s greatest impact on
ozone occurs in the upper stratosphere near 40 km.
Since the bulk of the total ozone column lies in a layer at
much lower altitudes near 10-30 km, the integrated
impact on the total ozone column is small with such a
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8 38 3¢ ¥RV ozone depletion. As Figure 1 illustrates, the Antarctic
(wy) 1ybiey ozone depletion was the earliest to be observed and

remains the most extreme on Earth at the time of this
writing [see Jones and Shanklin, 1995].

Measurements of the vertical profile of the depletion
within the ozone hole were first presented by Chubachi
[1984] and were rapidly followed by other data such as
those of Hofmann et al. [1987], Gardiner [1988], and
Iwasaka and Kondoh [1987], and more recently in satel-
lite studies such as that of Bevilacqua et al. [1997].
Hofmann et al. [1997] presented a detailed analysis of
many years of ozonesonde measurements at the South
Pole. Figure 5 summarizes a key result of that study,
showing that the depletion of the Antarctic ozone col-
umn is largely confined to altitudes from ~12 to 25 km,
far below the altitudes where gas phase chlorine chem-
istry would predict major changes. Figure 5 also illus-
trates the shape of the unperturbed ozone “layer” ob-
served in historical ozone data, as well as the near-total
removal of ozone in the heart of the layer in a typical
contemporary sonding for early October. Finally, Figure
5 shows the close correspondence between the region
where most of the ozone is depleted and a vertical
profile of a typical polar stratospheric cloud (PSC) ob-
served at the South Pole [Collins et al., 1993]; the critical
role of these clouds in formation of the ozone hole is
discussed in section 3.3.
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3.2. Solar and Dynamical Theories of the Origin of
the Ozone Hole

Observations not just of Antarctic ozone, but also of
the factors that affect it, such as chemical species (e.g.,
NO, and CIO) and meteorological properties, were ex-
tremely limited at the time of the discovery of this
dramatic and unanticipated ozone loss. As a result, a
variety of different theories were advanced as plausible
explanations. The conflicting theories were reviewed by

(left) Observations of the global distribution of zonally averaged daytime CIO abundance from satellite-based microwave remote sensing [Waters et al., 1999] together

with the zonally averaged ozone trend deduced from satellite-based visible spectroscopy [Harris et al., 1998] (see McCormick et al. [1992]).

Plate 1.
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Plate 2. Observations of the full seasonal cycle of daily ozone at Halley, Antarctica, in the years before the
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rapid September drop in total ozone in the ozone hole years.
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(left) Observations of the vertical profile of ozone observed at the South Pole during Octobers in

the late 1960s and early 1970s, contrasted with those of 1986 and 1997. Total ozone (DU) is indicated for each
profile, from Hofmann et al. [1997]. (right) Typical polar stratospheric cloud observed at the South Pole from

the observations of Collins et al. [1993].

Solomon [1988]; the theories that were not supported by
observations will be briefly discussed in this section.

The primary dynamical theory of ozone depletion
rested upon the notion that illumination of the cold
polar lower stratosphere at the end of winter could give
rise to heating and net upward motion [Tung et al., 1986;
Mahlman and Fels, 1986]. As is illustrated in Figure 5,
there is far less ozone in the troposphere than the
stratosphere, so that upward transport of ozone-poor air
from the troposphere to the stratosphere could locally
decrease the Antarctic ozone column. However, obser-
vations of conservative tracers that serve to illustrate the
direction of dynamical flow such as aerosols [Hofmann et
al., 1987], nitrous oxide [Parrish et al., 1988; Loewenstein
et al., 1989], and other long-lived gases [Jaramillo et al.,
1989; Toon et al., 1989] quickly demonstrated that the
ozone hole was not caused by such upward motion.
Indeed, much as Brewer [1949] deduced the nature of
global transport from observations of water vapor as a
tracer of atmospheric dynamics, so have observations of
a wide variety of chemical tracers shown that transport is
directed downward within the Antarctic stratosphere in
spring rather than upward, although there is still debate
about the strength of this fluid flow and the degree of
exchange of air between lower latitudes and polar re-
gions [e.g., Hartmann et al., 1989; Tuck, 1989; Tuck et al.,
1997; Schoeberl et al., 1990, 1992a, 1995; Manney et al.,
1995a, b].

Enhanced nitrogen oxides from high solar activity
that occurred in the early 1980s were also proposed as a
cause of the ozone hole [Callis and Natarajan, 1986,
drawing upon the well-known catalytic chemistry of NO,
and its enhancement by processes such as solar proton
events as discussed in section 1. While chemical in char-
acter, this theory is diametrically opposite to the chlorine
theory, which requires that nitrogen oxide abundances
be suppressed so that chlorine oxides are not tied up in
the chlorine nitrate reservoir (see Figure 3 and section

3.3). The solar theory proved to be in conflict with
observations. Measurements of the nitrogen dioxide col-
umn by Noxon [1978] and McKenzie and Johnston [1984]
displayed reduced rather than enhanced nitrogen oxides
over the south polar regions. After the discovery of the
ozone hole, similar measurements confirmed those early
data using both infrared and visible spectroscopy meth-
ods [Coffey et al., 1989; Farmer et al., 1987, Mount et al.,
1987]. Airborne measurements of the latitudinal gradi-
ent of nitric oxide at 20 km (in the heart of the south
polar ozone destruction region as shown in Figure 5) by
Fahey et al. [1989a] using a chemiluminescence method
are compared with the data of Noxon [1978] in Figure 6.
Both data sets show that the southern high-latitude
winter—spring stratosphere contains a minimum in nitro-
gen oxides rather than a maximum as required by the
solar theory of Antarctic ozone depletion. The differ-
ences in the location of the steep gradient between the
two data sets likely reflect differences in season and local
motion of the polar vortex. The observed shape of the
profile of ozone depletion is also in conflict with the solar
theory, which would predict greater ozone losses at higher
altitudes rather than removal only in a narrow range of
altitude from ~12 to 25 km as shown in Figure 5.

It is interesting to note that the observations of Noxon
[1978, 1979] revealed strong evidence for a “cliff” in
NO, in polar regions several years before the Antarctic
ozone hole was discovered. The chemistry of this anom-
aly was not understood, and it was called out as one of
the challenges to scientific understanding of strato-
spheric chemistry of the time [see, e.g., WMO, 1985]. We
now know that the chemistry that produced Noxon’s cliff
is tied to that of the ozone hole; the relationship be-
tween NO, and ClO will be discussed further below.
Arguably, the ozone hole might have been predicted
before it was observed had the Noxon cliff been better
understood in the early 1980s.
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Figure 6. Observations of the “cliff” in NO, reported by
Noxon [1978]. The solid and dashed lines represent Northern
Hemisphere measurements, while the solid circles and crosses
show Southern Hemisphere evening and morning twilight data,
respectively. The NO measurements of Fahey et al. [1989a] are
shown for comparison. The two molecules interchange rapidly
with one another in the sunlit atmosphere and hence provide a
measure of NO,. Both data sets show very low NO, in the
high-latitude stratosphere.

3.3. Heterogeneous Chlorine Chemistry and
Antarctic Ozone Depletion: Early Theoretical Studies

The light was especially good today; the sun was
directly reflected by a single twisted iridescent cloud
in the North, a brilliant and most beautiful object.

Robert Falcon Scott, diary entry for August 1, 1911
[Scott, 1996, p. 264]

This quotation from one of the first explorers to stand
at the South Pole documents the fact that polar strato-
spheric clouds were present in the Antarctic long before
the advent of the ozone hole. The term “polar strato-
spheric clouds” was coined by McCormick et al. [1982],
who first presented satellite observations of high-altitude
clouds in the Antarctic and Arctic stratospheres. The
data showed that the Antarctic clouds were present from
June to late September, that they were associated with
cold temperatures below ~200 K, and that they occurred
between ~12 and 25 km. Three quarters of a century
after their observation during Scott’s expedition and
several years after the first satellite observations, it be-
came clear that PSCs are a critical factor in the ozone
hole.

Solomon et al. [1986] suggested that HCI and
CIONO, might react on the surfaces of PSCs, perturbing
gas phase chlorine partitioning in a manner that could
greatly accelerate ozone loss in the Antarctic lower
stratosphere (HCl + CIONO, — HNO; + Cl,; see
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(R28) in Table 1). The Cl, formed would photolyze
rapidly in sunlit air and rapidly form ClO. They also
pointed out that this and related heterogeneous reac-
tions would suppress the concentration of NO, by form-
ing HNOj, so that the ClO thereby released could not
readily reform the CIONO, reservoir. Thus it was rec-
ognized that rapid ozone loss via chlorine chemistry
would require (1) the heterogeneous “activation” of
chlorine from both the HCI and CIONO, reservoirs and
(2) the suppression of NO,, an essential element in
keeping the chlorine active. The production of Cl, in this
process implies that sunlight would be required to re-
lease Cl, so that the ozone depletion would occur when
air was not only cold but also sunlit (i.e., largely in spring
as observed, rather than in winter when the polar cap is
continuously dark or summer when it is warm). Some
ozone loss can take place even in polar winter, however,
due to atmospheric waves that move polar air out to the
sunlit atmosphere for brief periods [Tuck, 1989; Sanders
et al., 1993; Roscoe et al., 1997].

Observations of PSCs, low NO, amounts in polar
regions (Figure 6), enhanced polar HNO; [Murcray et
al., 1975; Williams et al., 1982] and the vertical profile of
the ozone depletion based upon the Japanese measure-
ments [Chubachi, 1984] were cited in support of heter-
ogeneous chemistry as the primary process initiating
Antarctic ozone depletion. Such a mechanism would be
most effective in the Antarctic because of colder tem-
peratures and greater PSC frequencies there than in the
corresponding seasons in the Arctic [McCormick et al.,
1982], a point discussed further below.

As in the discussion of gas phase chemistry, a com-
plete understanding of ozone depletion requires consid-
eration not only of how much ClO is present (i.e.,
CIO/Cl,) but also of the catalytic cycles in which CIO
may engage. Solomon et al. [1986] emphasized the cat-
alytic ozone destruction initiated by the reaction be-
tween HO, and ClO. However, this process cannot de-
stroy enough ozone early enough in the spring season to
be consistent with the detailed seasonality of the ozone
loss process as shown above in Plate 2.

Molina and Molina [1987] showed that very rapid
ozone depletion can occur through a previously unrec-
ognized catalytic cycle involving formation and photoly-
sis of a CIO dimer, Cl,0,. Following a period of some
uncertainty regarding the kinetics and photochemistry of
the dimer, laboratory studies confirmed its importance
[e.g., Sander et al., 1989] (see Rodriguez et al. [1990] for
model calculations and JPL [1997] for a detailed sum-
mary of laboratory data). This cycle is now well recog-
nized as the primary catalytic process responsible for
about 75% of the ozone removal in the ozone hole.

McElroy et al. [1986] and Tung et al. [1986] empha-
sized the role of bromine chemistry in ozone hole for-
mation (in particular, its coupling to chlorine through
the reaction between CIO and BrO); this cycle is now
known to contribute about 20% to the annual formation
of the Antarctic ozone hole [e.g., Anderson et al., 1989].
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Both McElroy et al. [1986] and Tung et al. [1986] also
emphasized the need for reduced NO, in order for CIO
to remain active (noting the links to the Noxon cliff), and
McElroy et al. [1986] also emphasized the Japanese
ozonesonde observations, particularly the observation of
ozone loss at low altitudes, where bromine can be very
effective for ozone destruction.

Partly because of limited analysis of Antarctic strato-
spheric temperatures, early studies such as those de-
scribed above were not specific about the type of parti-
cles of which the observed PSCs were composed. It was
generally assumed that the particles were mainly water
ice [Steele et al., 1983]. Stratospheric ice clouds are
frequently optically thick and brilliant in color, like those
observed by Captain Scott. Such clouds form when tem-
peratures drop below the frost point and are now re-
ferred to as type 2 PSCs. However, more sensitive satel-
lite measurements [McCormick et al., 1982] suggested
that optically thinner PSCs were also present at warmer
temperatures.

Toon et al. [1986] and Crutzen and Arnold [1986]
pointed out that the PSCs particles might be composed
not only of water ice but also of solid nitric acid trihy-
drate (NAT). Both studies noted that such composition
could affect the impact on ozone in two ways: (1) by
reducing the amount of nitrogen oxide that could be
present (i.e., not only by forming nitric acid but also by
removing it from the gas phase) and (2) by raising the
temperature at which clouds could form, since thermo-
dynamic analyses suggested that NAT could condense at
temperatures well above the frost point. These clouds
came to be known as type 1 PSCs. In addition, Toon et al.
[1986] suggested that sedimentation of large particles
could result in denitrification of the stratosphere. The
removal of nitric acid not only from the gas phase but
from the stratosphere altogether would have a potential
to further reduce NO, concentrations and hence en-
hance CIO/CIONO, ratios and attendant chlorine-cata-
lyzed ozone loss. McElroy et al. [1986] also considered
the possibility of nitric acid—water particles, suggesting
that nitric acid monohydrate (NAM) was likely to form.

Table 1 includes a list of the major heterogeneous
processes of importance in the stratosphere. Through
these heterogeneous reactions, the chemical partitioning
of chlorine in the Antarctic lower stratosphere in spring
can be greatly perturbed in comparison with gas phase
chemistry, making chlorine (and its coupling with bro-
mine) far more damaging to ozone than it would be in a
gas phase framework. A broad range of models, includ-
ing two-dimensional [e.g., Isaksen and Stordal, 1986;
Chipperfield and Pyle, 1988; Brasseur and Hitchman,
1988; Ko et al., 1989; Rodriguez et al., 1989; Tie et al.,
1997], three-dimensional [e.g., Cariolle et al., 1990; Aus-
tin et al., 1992; Brasseur et al., 1997; Knight et al., 1998],
and trajectory and Lagrangian studies [e.g., Jones et al.,
1989; Schoeberl et al., 1996] have probed this basic
framework and presented numerical analyses of calcu-
lated ozone trends. Several authors have emphasized the
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importance of atmospheric waves in modulating the
temperatures and sunlight that influence the ozone loss
process [e.g., Jones et al., 1989], while others have un-
derscored the role of interannual variability in dynamical
conditions in determining not only the temperature-
dependent chemistry [Tie et al., 1997] but also the re-
supply of ozone into the depleted region, hence modu-
lating the chemistry [Knight et al., 1998]. Schoeberl and
Hartmann [1991] and Schoeberl et al. [1996] have used
dynamical tracers such as N,O to carefully identify the
edge of the vortex and show its links to both dynamics
and chemistry. In particular, they have simulated chem-
ical perturbations at the outer fringes of the Antarctic
vortex, including high CIONO, abundances observed,
for example, by Toon et al. [1989].

Since ozone provides the primary source of heat to
the stratosphere through its absorption of UV radiation,
Shine [1986] noted that the ozone hole should be ex-
pected to lead to a stratospheric cooling, which in turn
could make heterogeneous chemistry even more effec-
tive. The seasonal increase in Antarctic ozone observed
after October as shown in Plate 2 is associated with the
seasonal warming and breakdown of the Antarctic vor-
tex, which allows ozone-rich air to flow into the region.
Its delay in recent years compared with historical data is
evident in Plate 2 and suggests that such a positive
feedback mechanism has indeed modified not only the
October-November temperatures [Newman and Randel,
1988] but also the meteorological characteristics of the
Antarctic stratosphere [see Jones and Shanklin, 1995] in
a fashion that prolongs the ozone hole. It is important to
note, however, that analyses of winter temperatures in
the Antarctic stratosphere reveal little or no evidence for
cooling before the ozone depletion occurs in September
[Newman and Randel, 1988; Trenberth and Olson, 1989;
Jones and Shanklin, 1995], confirming that the meteoro-
logical changes are primarily a consequence and not a
cause of the ozone hole.

3.4. Heterogeneous Chlorine Chemistry and the
Ozone Hole: Field and Laboratory Observations
Foremost among the data that established the cause
of the ozone hole are observations of active chlorine
species, particularly ClO. De Zafra et al. [1987, 1989]
presented ground-based microwave emission measure-
ments at McMurdo Station, Antarctica, showing evi-
dence for greatly enhanced ClO in the lower strato-
sphere. Near 20 km the observations suggested mixing
ratios of ~1 ppbv in September, about 100 times greater
than the 10 pptv predicted by gas phase photochemical
theory. Anderson et al. [1989] presented in situ airborne
measurements of ClO using a resonance fluorescence
method. The latitudinal coverage of the airborne data
taken flying south from Chile near 20 km showed a very
steep gradient in CIO as the airplane crossed into cold
regions within the Antarctic vortex, increasing to about 1
ppbv in mid-September as shown in Figure 7. Hence
within a few years after the discovery of the ozone hole,
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Figure 7. Observations of the latitude gradients in CIO,
NO,, and H,O on a flight of the ER-2 aircraft in September
1987, showing evidence for extremely high ClO in the Antarc-
tic together with substantial denitrification and dehydration
(removal of NO, and H,0) associated with PSCs.

two independent methods confirmed remarkably ele-
vated ClO abundances in the ozone hole region, which
are possible only if chlorine is released from both of the
reservoir gases, HCI and CIONO,.

Figure 8 shows both ground-based and airborne mea-
surements of ClO in September over Antarctica from
1987, and compares them with gas phase and heteroge-
neous photochemical theory. More recently, satellite
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Figure 8. Observations of the vertical profiles of ClO in the
Antarctic stratosphere in September 1987 from both ground-
based microwave remote sensing [de Zafra et al., 1989] and
aircraft resonance fluorescence techniques [Anderson et al.,
1989]. These data are compared with a gas phase photochem-
istry model and with the heterogeneous chemistry model of
Jones et al. [1989], which accounts for air parcel trajectories.
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observations as depicted in Plate 1 have allowed study of
the full global distribution of CIO [Waters et al., 1993,
1999] using microwave emission methods that further tie
the ozone destruction region with the spatial distribution
of enhancements in ClIO [Manney et al., 1995b; Mac-
Kenzie et al., 1996]. The front cover of this issue of
Reviews of Geophysics presents satellite observations of
lower stratospheric ozone and CIO on August 30, 1996,
over Antarctica. The data show that the region of re-
duced ozone extends over an area larger than the con-
tinent beneath and illustrate the close spatial correspon-
dence between the regions of depleted ozone and those
of enhanced CIO as first emphasized by Anderson et al.
[1989].

Observations of chlorine dioxide (OCIlO) via visible
spectroscopy was another independent method of prob-
ing the chlorine chemistry that also revealed hundred-
fold enhancements of active chlorine in the Antarctic
vortex [Solomon et al., 1987; Wahner et al., 1989; Kreher
et al., 1996]. This technique also allowed study of the
seasonal changes in Antarctic chlorine activation and its
links to PSC chemistry. These showed a seasonal decline
of OCIO between late August and early October, asso-
ciated with increasing temperatures and the cessation of
heterogeneous chemistry [Solomon et al., 1987].

Observations of the HCI column, and in particular its
ratio to the HF column, strongly suggested that HCI had
indeed been converted to active chlorine in the Antarctic
spring [Farmer et al., 1987; Toon et al., 1989; Coffey et al.,
1989]. The recent global satellite data by Russell et al.
[1993] further demonstrate this behavior on larger spa-
tial scales. The first in situ measurements of HCI show-
ing evidence for conversion to active chlorine were ob-
tained in Arctic studies by Webster et al. [1993]; see
section 6.1. Concurrent global HCl and CIONO, data
from the UARS satellite illustrated the simultaneous
chemical conversion of both species where polar strato-
spheric cloud surfaces were also present [Geller et al.,
1995; Yudin et al., 1997]. A detailed view of the temper-
ature dependence of chlorine activation is provided from
Antarctic in situ observations of both CIO and HCI,
which dramatically illustrate rapid activation at temper-
atures below about 195 K [Kawa et al., 1997] (see earlier
studies by Toohey et al. [1993] and Schoeberl et al. [1993a,
b]) and provide a key demonstration of rapid heteroge-
neous chemistry under cold conditions.

The combination of simultaneous observations of
ClO, HCI, OCIO, NO, NO,, and other gases by a variety
of independent chemical methods demonstrates that the
springtime Antarctic stratosphere is indeed heavily per-
turbed compared to expectations from gas phase chem-
istry, and in a manner consistent with heterogeneous
reactions on PSC particles. Through the resulting dra-
matic enhancements in the CIO/Cl, ratio, chlorine’s ef-
fectiveness for ozone destruction is greatly enhanced.
For CIO abundances near 1-1.3 ppbv as observed since
1986-1987 (and BrO abundances near 7-10 pptv [see
Brune et al., 1989]), Antarctic ozone is destroyed near 20
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km in September at a rate of about 0.06—0.1 ppmv d ',
so that within ~40-60 days virtually all of the ozone at
this level can be depleted unless rapid dynamical resup-
ply occurs, broadly consistent with Figure 5 [see Ander-
son et al., 1989; Murphy, 1991; MacKenzie et al., 1996].
The cold temperatures observed in the Antarctic during
September in most years suggest that net downward
motion (which would tend to warm the air through
adiabatic compression) and horizontal mixing is rela-
tively limited at that time. This general picture of rela-
tive dynamical isolation in the heart of the ozone deple-
tion region is supported by a number of dynamical
studies [e.g., Hartmann et al., 1989; Manney et al., 1994b,
1995a, b; Schoeberl et al., 1995, 1996].

The observations offer several different spatial and
temporal fingerprints that strongly support the identifi-
cation of chlorine chemistry and its perturbations by
heterogeneous processes as the principal cause of the
ozone hole. The measurements shown in Figure 8 reveal
that the enhanced ClO occurs over about the 12- to
25-km range, the region where PSCs are observed and
where the ozone is depleted as shown in Figure 5. The
airborne data of Anderson and colleagues, as depicted,
for example, in Figure 7, demonstrate the steep latitu-
dinal gradient in ClO, consistent with the connection of
the ozone hole to cold Antarctic latitudes; a fully three-
dimensional view of the same behavior based upon sat-
ellite data [Waters et al., 1993, 1999] is illustrated in Plate
2 and the cover of this issue. Seasonal observations of
OCIO, CIO, HCI, NO,, and other gases have been used
to show that the large temporal changes in the abun-
dances of these chemical species are consistent with the
time evolution of the ozone hole and with heteroge-
neous chemistry. In short, the vertical, latitudinal, and
seasonal behavior observed in active chlorine and a host
of related species all provide independent evidence con-
firming the basic processes that control the occurrence
of the ozone hole.

Antarctic field measurements also allowed study of
the formation, composition, and seasonal behavior of
polar stratospheric clouds. Fahey et al. [1989b, 1990b],
Gandrud et al. [1989], and Pueschel et al. [1989] carried
out the first observations of the composition of polar
stratospheric clouds and demonstrated that the particles
do indeed contain nitric acid as had been predicted.
Laboratory studies [Hanson and Mauersberger, 1988]
confirmed the thermodynamic stability of NAT at tem-
peratures well above the frost point. Observations dem-
onstrated that gas phase reactive nitrogen or NO, [Fahey
et al., 1989b] and water vapor [Kelly et al., 1989] are
strongly depleted in the Antarctic stratosphere, as was
predicted by Toon et al. [1986] on the basis of sedimen-
tation of large type 2 PSC particles. Figure 7 shows
evidence for NO, and H,O removal in the same region
displaying enhanced ClO in the Antarctic stratosphere
(poleward of ~64°S in that particular transect) from
airborne studies. Later measurements documenting the
“denitrification” and “dehydration” of the Antarctic
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lower stratosphere include those of Santee et al. [1998,
1999], Voemel et al. [1995] and Pierce et al. [1994].

Many laboratory studies have confirmed that rapid
heterogeneous processes do indeed take place on the
kind of surfaces present in polar regions. The fundamen-
tal principles of surface chemistry are outlined in the
excellent book by Somorjai [1994], which illustrates
many of the factors that allow surfaces to facilitate
processes that do not happen, or happen only very
slowly, in the gas phase. Fairbrother et al. [1997] review
thermodynamic principles behind stratospheric hetero-
geneous chemistry. The first laboratory studies of strato-
spheric reactions on ice by Molina et al. [1987] and
Tolbert et al. [1987] showed that the reaction of HCI with
CIONO, indeed takes place readily on water ice films.
Hanson and Ravishankara [1994] showed that a portion
of the reaction is due to HOCI + HCI — Cl, + H,0,
following formation of HOCI through the surface reac-
tion CIONO, + H,0 — HOCI + HNO;. Prather [1992a]
discussed the implications of a surface HOCI + HCI
reaction for ozone depletion. Numerous laboratory in-
vestigations have shown that HCI reacts with CIONO,
on nitric acid trihydrate ice surfaces as well, although the
rate depends on factors such as the HCI partial pressure
and on the water content of the NAT surface [Leu, 1988;
Abbatt et al., 1992; Hanson and Ravishankara, 1993;
Peter, 1997; Carslaw and Peter, 1997]. Some authors have
noted that heterogeneous reactions between bromine
and chlorine can also contribute to chlorine activation,
through, for example, reaction between HOBr and HCI
[Hanson and Ravishankara, 1995; Danilin and McCon-
nell, 1995]. For a review of recent laboratory studies of
these and other heterogeneous processes, see JPL
[1997].

Both the nature of stratospheric surfaces and the
detailed reaction mechanisms that can occur within
them have been the subjects of many studies. CIONO,
hydrolysis on ice may proceed via nucleophilic attack at
Cl by a lattice water molecule in concert with proton
transfer [Bianco and Hynes, 1998]. It is possible that
proton transfer from HCI to water forms Cl™ on ice
surfaces, allowing reaction with CIONO, through an
ion-assisted and hence efficient mechanism [Van Doren
et al., 1994]. Fundamental surface chemistry models sug-
gest that HCI forms a bilayer on ice, allowing ionization
and subsequent surface chemistry [Gertner and Hynes,
1996]. On the other hand, Materer et al. [1997] suggest
that a quasi-liquid layer displaying less order than the
bulk may be present at an ice surface under stratospheric
conditions, so that uptake of HCI into stratospheric ice
particles may occur through a process akin to solution at
a quasi-liquid interface. In addition to these interesting
questions regarding the fundamental physical chemistry
of heterogeneous reactions in the stratosphere, the un-
derstanding of the composition of polar stratospheric
clouds has also been a subject of intense study and is the
subject of the next section.
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4. FORMATION, COMPOSITION, AND CHEMICAL
ROLE OF POLAR STRATOSPHERIC CLOUDS:
RETHINKING PSCS

The foregoing discussion illustrates the rapid progress
made toward understanding the key role of heteroge-
neous chlorine chemistry on polar stratospheric clouds
in the formation of the Antarctic ozone hole in the last
half of the decade of the 1980s. However, at present our
conceptual picture of the composition and chemistry of
PSCs has evolved considerably from the relatively simple
one that prevailed a decade ago. Detailed recent reviews
of the microphysics, thermodynamics, and heterogenous
chemistry of stratospheric particulates are provided by
Peter [1997] and Carslaw et al. [1997a], and excellent
short summaries of laboratory work are given by Tolbert
[1994, 1996]. Only the key points will be reviewed here.
Both Arctic and Antarctic observations that jointly con-
tribute to this understanding will be described in this
section.

4.1. What Are PSCs Made of?

Toon et al. [1990] were the first to present evidence
that PSCs may be composed of liquid as well as solid
particles, drawing upon lidar measurements by Browell et
al. [1990]. Briefly, the observations by Browell et al.
[1990], and later work [e.g., Beyerle et al., 1994; Adriani et
al., 1995; Steffanutti et al., 1995; Gobbi et al., 1998]
showed evidence for high backscatter (hence the detec-
tion of clouds). However, while some data revealed high
accompanying depolarization as expected for aspherical
solid particles, other measurements showed very low
depolarization of the backscatter signal, suggesting lig-
uid rather than solid particles. The two distinct cloud
types resulted in a further subdivision of PSCs into type
la (depolarizing solid) and #ype 1b (nondepolarizing
liquid).

In situ and satellite measurements also showed evi-
dence for shortcomings in our understanding by demon-
strating that while PSCs form at temperatures above the
frost point and do contain nitric acid, the detailed rela-
tionships to temperature are often difficult to reconcile
with NAT thermodynamics [Kawa et al., 1990, 1992;
Rosen et al., 1989; Arnold, 1992; Dye et al., 1996; Del
Negro et al., 1997; Santee et al., 1998a]. Toon and Tolbert
[1995] further showed that infrared spectra of type 1
PSCs observed over Antarctica were inconsistent with
those expected for NAT.

Arnold [1992] showed evidence for uptake of HNO;
into PSCs that could not be reconciled with NAT parti-
cles and suggested that ternary liquid HNO5-H,SO,-
H,O particles might be responsible for the observed
anomalies. The introduction of H,SO, in this discussion
merits a brief description of its origins. It has been
known since the pioneering work of Junge et al. [1961]
that particles composed of sulfuric acid and water form
throughout the stratosphere. The mechanism responsi-
ble for growth of PSCs was originally thought to involve
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freezing of these “background” sulfate aerosol particles
followed by uptake of nitric acid and water when the
NAT condensation temperature was reached [Dye et al.,
1992; Molina et al., 1993] (see Peter [1997] and refer-
ences therein). Recent observations and theoretical
studies raise many questions about this picture, as is
discussed below.

Observations by Dye et al. [1992] and their analysis by
Carslaw et al. [1994], Drdla et al. [1994] and Tabazadeh et
al. [1994] have demonstrated that some PSCs are prob-
ably composed of supercooled ternary liquid solutions of
HNO;-H,SO,-H,0. Briefly, the observations showed a
smooth growth in particulate volume with decreasing
temperature rather than a “step function” in growth at
the stability point for NAT. The dependence of the
growth of particulate volume with temperature closely
followed model predictions based on the thermodynam-
ics of ternary liquid solutions (see Carslaw et al. [1997a]
for an in-depth review). Laboratory studies support this
picture by demonstrating that realistic solutions and
particles containing sulfuric acid, water, and nitric acid
remain liquid even at very cold temperatures, as low as
188 K [e.g., Beyer et al., 1994; Koop et al., 1995, 1997,
Anthony et al., 1997; Clapp et al., 1997; Bertram and
Sloan, 1998]. Indeed, the results of these recent labora-
tory studies show that it is extremely difficult to make
such particles freeze at temperatures above the frost
point, even when they are kept cold for many hours.

Thus recent field and laboratory observations, and
related modeling studies, have substantially altered the
conceptual understanding of PSCs. The data show that
PSCs are liquid much of the time. While there is no
difficulty understanding the formation of frozen type 2
water ice clouds that form below the frost point [see
Poole and McCormick, 1988a, b; MacKenzie et al., 1995;
Peter, 1997], the mechanism whereby solid type 1 PSCs
sometimes (but not always) are present at temperatures
above the frost point [e.g., Poole et al., 1988] is not clear.
The studies by Tabazadeh et al. [1996], Santee et al.
[1998a], and Larsen et al. [1997] suggest that tempera-
ture histories as well as local temperatures are likely to
be important in determining when and if freezing occurs.
Mesoscale temperature fluctuations (i.e., transient rapid
cooling in atmospheric waves) could lead to nonequilib-
rium conditions under which NAT or the nitric acid
dihydrate, NAD (emphasized by Worsnop et al. [1993])
could freeze [Meilinger et al., 1995; Tsias et al., 1997].

On the other hand, Tabazadeh et al. [1994] and Taba-
zadeh and Toon [1996] have emphasized amorphous
solid solutions and water-rich hydrates as possible pre-
cursors to freezing, while MacKenzie et al. [1995] and
Drdla et al. [1994] suggested that trace impurities in
stratospheric particles (such as meteoritic material, or-
ganics, or soot; see observations by Murphy et al. [1998])
may play a key role in the freezing process. However,
Iraci et al. [1998] recently showed that solid sulfuric acid
tetrahydrate (SAT) particles may form in the laboratory
under certain conditions, then (in a perhaps ironic twist)



37, 3 / REVIEWS OF GEOPHYSICS

het
HCI + ClON02—>HNO32+ Clo

Solomon: STRATOSPHERIC OZONE DEPLETION e 291

|OO:||||1||||]|]||1||: LI I A0 IO O O
o Range, 3 - E
E fﬁ:“fir Liquid sulfuric - 20 Liquid suifuric =
- iquid sulfuric i i
L ice e ] - acid/water
— I8} .
o \ 4 £ ol 1  Figure 9. (left) Laboratory data on the effi-
> E . 4 — - N - . .
e C h’.‘?‘r’.i’ acdrwater lg t | 4 ciency of the reaction between HCl and
B r solids 12rF \ - CIONO, for ice, nitric acid-water solid sur-
3 = - . . . . .
E o2 < 6 i 5 y O\‘ faces, and liquid sulfuric acid-water solutions.
=3 E » mv \ . . . . L.
s 2 . | PRI \ ] (right) Altitude variation of the temperature at
5 - Iﬁﬁ?;cr acidmare . % 15 ' v which the efficiency of this reaction on liquid
g8 L o7" . 138ual opprvH0 Y ] sulfuric acid-water solutions becomes greater
1073k 4 < '} " 25ppmy ] than 0.3 for water vapor mixing ratios typically
E Hanson and Ravishankara ] B LOHD VT observed in the lower stratosphere.
I ®  Tolbert etal ] i Y 1
[ | ® upL, 1997 . 12 ' v
- | O JpL,l997 ] 1
I(T4I|I|Ill|llll|[||l Nlhooas Lo gt by vyl
0 0 10 20 30 40 50 60 70 80 I90 195 200 205 210

% HySO,

Approximate Temperature at which

7>0.3

take up HNO; not in a cooling but in a melting phase,
which could be followed not by complete melting of the
particle but rather by crystallization of NAT. Thus the
solid SAT could form a core that allows uptake of HNO,
into a liquid melting surface, followed by freezing.

4.2. What is the Effect of Different Surfaces on
Ozone Depletion Chemistry?

It is extremely important to consider whether the
phase and microphysical mechanisms underlying PSC
formation are important for ozone depletion. The up-
take of condensable vapors enhances surface areas when
PSCs are present. This increases the gas-particle colli-
sion frequency and hence can enhance the rates of
heterogeneous reactions. Background stratospheric
aerosols grow into type la and/or type 1b particles as
they cool, then further grow into type 2 water ice PSCs
if temperatures fall below the freezing point. The impact
of enhanced surface areas for chemistry depends not
only on the frequency with which gases strike these
surfaces but also on the reactivity of the surfaces and the
availability of those gases.

Let us first consider how reactive the different sur-
faces are and where they are to be found in the strato-
sphere. Laboratory studies have shown that water ice,
NAT, and liquid ternary solutions are all effective for
activating chlorine heterogeneously, but with differing
efficiencies and with different dependencies on temper-
ature, water vapor abundance, and pressure [e.g.,
Carslaw et al., 1997a; JPL, 1997, and references therein].
These dependencies are related to the thermodynamics
of the different surfaces, which control not only their
surface areas but also their composition (especially the
uptake of HCI onto/into the particles).

Figure 9 summarizes a number of laboratory mea-
surements of the efficiency of the key heterogeneous
surface reaction HCI + CIONO, — Cl, + HNOj; (where

1 indicates reaction on every collision of CIONO, with a
surface, 0.1 indicates 1 reaction in 10 collisions, etc.).
Water ice is believed to be highly reactive wherever it
can form, but the thermodynamics of ice condensation
imply that rather cold temperatures are required to form
it in the stratosphere (e.g., below ~188 K near 20 km).
There is currently debate about the efficiency of NAT
for this reaction [Carslaw and Peter, 1997; JPL, 1997] as
well as the conditions under which NAT can form, but
from a thermodynamic viewpoint, NAT may form near
20 km when temperatures drop below ~195 K, thus
allowing reaction on a solid surface at temperatures
above the frost point. In the case of liquid solutions, the
efficiency of reaction depends strongly on the fraction of
water in the particle [e.g., Tolbert et al., 1988; Hanson et
al., 1994]. The HCI + CIONO, reaction becomes more
efficient for lower percentages of sulfuric acid (and
higher water in the liquid particles, which greatly in-
creases the solubility of HCI; see Robinson et al. [1998]
for a detailed recent analysis). This reaction takes place
in liquid solutions with an efficiency greater than 1 in 100
(0.01 as shown in Figure 9) for temperatures colder than
~197 K at 20 km, and an efficiency of 1 in 10 for
temperatures below ~195 K. Ravishankara and Hanson
[1996] have emphasized that liquid PSCs can be compa-
rable to or more effective than solid PSCs for many
surface reactions at temperatures below ~195 K at 20
km, a point also illustrated by Cox et al. [1994], Borr-
mann et al. [1997a] and Del Negro et al. [1997].
Because liquid aerosols are present throughout the
global stratosphere and because the water vapor pres-
sures available to condense into them increases with
increasing total pressure, the temperatures at which
effective reactions may occur in liquid particles are
higher for lower altitudes [Hofimann and Oltman, 1992],
as is also shown in Figure 9. This is a critical issue for
both the polar and midlatitude lower stratospheres. Fig-
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ure 9 suggests that both liquid and solid surfaces can
activate chlorine efficiently near the tropopause [Bor-
rmann et al., 1996, 1997b; Bregman et al., 1997; Solomon
et al., 1997]. Observations of enhanced CIO and reduced
NO close to the tropopause for relatively wet (15 ppmv
of H,0) conditions provide evidence for such liquid
surface chemistry [Keim et al., 1996]. Note that Figure 9
is based upon the thermodynamic model of Carslaw et al.
[1997a]; its extrapolation to very high water vapor pres-
sures (e.g., >5 ppmv at 200 mbar) is uncertain at present
and requires laboratory studies for those conditions [see
Robinson et al., 1998].

It is useful to note that the HCl + CIONO, reaction
competes with H,O + CIONO, for the available
CIONO, on liquid aerosol surfaces. Thus if HCI has
been depleted, the rate of the latter reaction increases,
so that effective heterogeneous activation of chlorine is
not dependent upon both HCl and CIONO, being
present. Further, the reactions of HCI with HOCI and
HOBr are also quite efficient on liquid aerosol under
moderately cold and/or wet conditions [Ravishankara
and Hanson, 1996; JPL, 1997], providing additional path-
ways for chlorine activation.

A key conclusion of Figure 9 is that while there are
differences and uncertainties in the reactivity of various
surfaces, rather effective chlorine activating reactions
can occur irrespective of particle phase below ~198 K at
20 km and below 200-210 K near 12-14 km. As an air
parcel cools and particle reactivities increase, liquid
chemistry will occur first. This may be followed by reac-
tions on NAT and ice, depending on factors including
microphysics, the minimum temperature reached, and
whether or not all of the chlorine activation has already
occurred [Turco and Hamill, 1992]. This latter point is
critical. For example, if effective chemical processing on
liquid surfaces has depleted all of the available HCI
and/or CIONO, within an air parcel, then further low-
ering of temperature and formation of, for example
NAT, may have a limited effect on ozone depletion.
Moreover, an increased rate of reaction and/or an in-
creased surface area (through, for example, formation of
NAT type 1 PSCs or type 2 PSCs) may not enhance
ozone depletion in a time averaged sense. If, for exam-
ple, reactions on sulfate aerosols are sufficient to acti-
vate all of the available chlorine within a day, ozone
depletion will not be increased if instead reactions on ice
activate all of the chlorine in an hour, since the ozone
depletion is a process that occurs over a much longer
period (weeks) following the activation. Hence the de-
tails of the reactivities and the microphysics that control
particle surface areas, while playing a role to some
degree, are not critical to formation of the ozone hole
[e.g., Portmann et al., 1996; Carslaw et al., 1997b]. They
are likely to be more important at the margins, particu-
larly regions where temperatures are cold but not ex-
tremely cold.

Primary sources of sulfur to the stratosphere are
carbonyl sulfide [Crutzen, 1976; Chin and Davis, 1995]
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and explosive volcanic eruptions that inject SO, gas
directly into the stratosphere [e.g., McCormick et al.,
1995] which subsequently forms liquid sulfate aerosols.
Observations of PSC extinction show that the major
eruptions of El Chichdn in 1981 and Mount Pinatubo in
1991 led to large increases in particle surface areas in
polar regions [e.g., McCormick et al., 1995; Deshler et al.,
1992; Thomason et al., 1997]. Hofmann et al. [1992, 1997]
and Hofmann and Oltmans [1993] showed that enhanced
aerosol surface areas due to Pinatubo expanded the
altitude range of significant Antarctic ozone depletion
into one of its margins, down to lower, warmer altitudes
(i.e., 10-14 km) where solid PSCs do not form. Obser-
vations of OCIO in the Antarctic fall season (March—
April) at temperatures above 200 K in the year imme-
diately following Pinatubo also suggest significant
activation of chlorine through sulfate aerosol processing
[Solomon et al., 1993]. Hence both ozone and trace gas
observations from the Antarctic provide support for the
role of temperature-dependent heterogeneous chemis-
try on liquid aerosols. Portmann et al. [1996] showed that
volcanically enhanced PSC surface areas were likely
responsible for the sharp onset of the ozone hole in the
early 1980s following the El Chich6n eruption, and for
the very deep ozone holes observed in the early 1990s
following the Pinatubo eruption.

It may be useful to pause for a brief summary of the
conceptual picture for Antarctic ozone depletion that
emerged in the late 1980s and describe how it has
changed. Initial observations of Antarctic chemistry as
discussed above showed evidence both for heteroge-
neous chlorine activation on PSCs and for denitrifica-
tion. An understanding emerged that chlorine-activating
reactions took place on solid PSCs in Antarctic winter,
accompanied by denitrification that allowed the deple-
tion to persist in spring, even in the absence of further
PSC formation. This picture was simple and easy to
explain in chemical terms. However, the current under-
standing suggests that denitrification can increase ozone
destruction somewhat but is not required for polar
ozone losses. This is because chlorine activation can
continue to occur on liquid aerosols in spring, keeping
the chlorine active in sunlit air whether denitrified or not
[Portmann et al., 1996; Chipperfield and Pyle, 1998]. Ob-
servations following the eruption of Mount Pinatubo
support the view that liquid aerosol chemistry has been
a key factor in determining the depth of the ozone hole
after major eruptions. More generally, the expansion of
heterogeneous chemistry from ice, to NAT, to liquid
sulfate aerosols has lessened the expected dependence
of the ozone loss on extreme cold to one of relative cold,
thereby expanding the height, time, and latitude ranges
where ozone depletion may be expected to be enhanced
by heterogeneous processes that affect chlorine parti-
tioning. The next two sections explore these issues by
illustrating the important role of heterogeneous pro-
cesses for both mid-latitude and Arctic ozone depletion.
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5. MIDLATITUDE OZONE DEPLETION

The discovery of the Antarctic ozone hole naturally
raised the question of whether other latitudes might also
display greater ozone depletion than expected. Within a
few years after the ozone hole was discovered, statisti-
cally significant trends in ozone were found at northern
midlatitudes as well [Ozone Trends Panel, 1988, and
references therein]. By the 1990s, significant trends had
been established for both northern and southern mid-
latitudes, not only in winter and spring but also in
summer [WMO/UNEP, 1991, 1994; Stolarski et al., 1991;
McPeters et al., 1996a, b; Harris et al., 1997; Staechelin et
al., submitted manuscript, 1998]. Midlatitude ozone col-
umn trends as of the 1990s are of the order of 5-10%,
much smaller than those of the Antarctic (Figure 1) but
far greater than gas phase model predictions. As in
Antarctica, recent analyses have shown that the bulk of
the northern midlatitude ozone decline is occurring in
the lower stratosphere (near 12-20 km [see McCormick
etal., 1992; Miller et al., 1995; WMO/UNEP, 1994; Bojkov
and Fioletov, 1997; Harris et al., 1998]).

5.1. Heterogeneous Chemistry and Midlatitude
Ozone Depletion

One mechanism that could affect midlatitude ozone
depletion is heterogeneous chemistry. It had long been
suspected that some heterogeneous process involving
N,Os5 might be responsible for the Noxon ‘cliff” and for
anomalously high HNO; abundances in middle to high
latitudes of the Northern Hemisphere [e.g., Wofsy, 1978;
Noxon, 1979; Austin et al., 1986] but it was not until the
late 1980s that laboratory studies showed that N,O5 can
hydrolyze rapidly (reaction efficiency of about 0.1) on
sulfuric acid-water films [Tolbert et al., 1988] and parti-
cles [Mozurkiewicz and Calvert, 1988]. Hence the possi-
bility of heterogeneous chemistry on the liquid sulfate
layer that is pervasive throughout the stratosphere began
to be considered in earnest (but see also Cadle et al.
[1975] for an early and interesting exploratory paper).

The hydrolysis of N,Os reduces NO, and its impact
on ozone in the lower stratosphere, and indirectly en-
hances the effect of CIO through its control of the
CIONO,/CIO ratio, as was discussed earlier. Recent
studies have examined the dependence of the N,Os
hydrolysis reaction on temperature and pressure [Rob-
inson et al., 1997] and have probed reaction conditions in
extensive detail [JPL, 1997]. This key reaction and the
related hydrolysis of bromine nitrate [Hanson et al.,
1996] both take place rather rapidly at virtually all
stratospheric conditions, making their influence ex-
tremely widespread (and, as is shown below, extremely
important). In addition to these indirect effects, how-
ever, there is evidence for direct activation of chlorine
on liquid sulfate aerosols as well. As noted above in
connection with polar chemistry, Tolbert et al. [1988]
suggested that CIONO, could react with water and with
HCI on sulfuric acid-water surfaces, but with a strong
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dependence on the particle composition, specifically, the
water content of the particle (hence on the temperature
and water vapor pressure).

The laboratory investigations of Tolbert et al. [1988]
and Mozurkiewicz and Calvert [1988] prompted Hofmann
and Solomon [1989] to study the role of N,Os hydrolysis
and chlorine activation on sulfuric acid aerosols at mid-
latitudes, particularly under volcanic conditions when
such processes would be enhanced. They suggested that
this chemistry could be significant for both background
and volcanically perturbed conditions, and that the
ozone reductions noted by several authors [e.g., Adriani
et al., 1987] following the eruption of El Chich6n in 1981
might be linked to heterogeneous reactions similar to
those occurring in Antarctica, albeit with reduced rates.
Observations of marked reductions in NO, over New
Zealand after the El Chichén eruption [Johnston and
McKenzie, 1989] provided some of the first chemical
evidence that such processes could be important at mid-
latitudes. Several modeling studies [e.g., Rodriguez et al.,
1991, 1994; Brasseur and Granier, 1992; Prather, 1992b;
McElroy et al., 1992; Pitari and Rizi, 1993; Toumi et al.,
1993] further probed the role of this chemistry in deter-
mining global ozone trends and related questions of
chemical partitioning and odd oxygen destruction cycles.
Prather [1992b] pointed out that the hydrolysis of N,Os
saturates beyond a certain aerosol load at which N,Os is
converted to HNOj; as fast as it can be formed, so that
further increases in aerosol do not affect NO, abun-
dances through this process.

Rodriguez et al. [1991] and McElroy et al. [1992]
pointed out that hydrolysis of N,Os would have the
effect of dramatically altering the competition between
the various catalytic cycles in the lower stratosphere,
enhancing the roles of the odd hydrogen and odd chlo-
rine/bromine destruction mechanisms, even for back-
ground aerosol conditions. Direct observations by Wenn-
berg et al. [1994] later confirmed this view by providing
simultaneous measurements of a suite of key radicals
including OH, HO,, NO, and CIO near 20 km; these
data can be related in hindsight to the anomalously low
NO mixing ratios reported in the midlatitude lowermost
stratosphere by Ridley et al. [1987]. Cohen et al. [1994]
present a detailed chemical argument demonstrating the
dominance of HO, chemistry in the natural lower strato-
spheric ozone balance based on observations. Taken
together, this improved understanding of the balance of
terms among chemical cycles of ozone destruction is a
key building block for attempts to evaluate ozone loss,
which is tied to the competition of chlorine- and bro-
mine-catalyzed destruction compared with other chem-
ical processes and to transport. In short, slower rates of
ozone loss through other processes (especially NO,
chemistry) result in a larger relative role for human-
induced perturbations at midlatitude due to chlorine
and/or bromine increases.

From about 1988 to the early 1990s the scientific
understanding of midlatitude ozone depletion evolved
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Observed Changes in Chemical Partitioning Due To the Eruption of Mt. Pinatubo
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Figure 10. Observations of the changes in chemical partitioning as a function of aerosol load after the
eruption of Mount Pinatubo at 20 km at midlatitudes [Fahey et al., 1993]. The primary chemistry responsible
for the observed behavior is depicted by the schematic diagram.

from a gas phase picture into the expectation of en-
hanced ozone depletion at least via the N,O5 hydrolysis
process, not only for volcanically perturbed conditions
but also for background aerosol loading. The eruption of
Mount Pinatubo in June 1991 was the largest thus far in
the twentieth century and occurred near the peak load-
ing of atmospheric chlorine (see section 7). This geo-
physical event provided numerous lines of evidence sug-
gesting that heterogeneous chemical reactions on sulfate
aerosols play a key role in ozone chemistry and its
depletion. Gleason et al. [1993] were the first to report
record low northern midlatitude ozone abundances in
the following year. Hofmann et al. [1994] and McGee et
al. [1994] demonstrated that substantial ozone losses
occurred in the lower stratosphere following the Pina-
tubo eruption, particularly in winter and spring, with
peak local depletions near 20 km at 40°-50°N as large as
about 25%. Randel and Cobb [1994] showed that
changes in temperatures relating to aerosol heating can
provide an important means of distinguishing ozone
losses due to volcanic eruptions from those relating to
the quasi-biennial oscillation (QBO), El Nifio, or other
perturbations in statistical analyses of ozone data (see
also Jiger and Wege [1990], Bojkov et al. [1993] and
Zerefos et al. [1994]). The high aerosol load present just
after the eruption in mid-1991 changed stratospheric
heating and hence reduced tropical ozone through dy-
namical effects [Brasseur and Granier, 1992], but this
lasted only a few months and was largely confined to the
tropics [see Schoeberl et al., 1992b; Tie et al., 1994]. For
reviews of the many studies establishing the large and
persistent midlatitude ozone changes after Pinatubo, see

Toohey [1995] and WMO/UNEP [1994, 1998]. Because
the stratospheric Brewer-Dobson circulation (as de-
picted in Figure 2) transports material upward and pole-
ward, major volcanic eruptions that inject material into
the tropical stratosphere can have the greatest and long-
est impacts on global ozone, while volcanic injections at
higher latitudes are removed by downward motion. Both
El Chichén and Pinatubo are tropical volcanoes.
Chemical measurements after Pinatubo have identi-
fied many signatures of heterogeneous reactions on sul-
fate aerosols at midlatitudes that are akin to those oc-
curring in the ozone hole region. Observations from
New Zealand showed both reduced NO, and enhanced
HNOj; column abundances [Johnston et al., 1992; Koike
et al., 1994]. Aircraft, ground-based, and balloon- and
shuttle-borne experiments revealed similar large
changes in NO,/NO, partitioning associated with the
roughly thirty-fold increases in aerosol surface observed
[e.g., Rinsland et al., 1994; Webster et al., 1994; Fahey et
al., 1993; Mills et al., 1993; Coffey and Mankin, 1993; Sen
et al., 1998]. Figure 10 shows direct observations of
perturbations in NO,/NO,, and CIO/CI, at 20 km from
Fahey et al. [1993], associated with the buildup of Pina-
tubo aerosols at midlatitudes. NO,/NO, decreases follow
the behavior broadly predicted by Prather [1992b] and
expected from the dominance of N,Os hydrolysis. Ran-
deniya et al. [1997] and Slusser et al. [1997] used summer
polar observations of NO, to show evidence for
BrONO, hydrolysis on sulfate aerosols as well. Obser-
vations of enhanced OH at sunrise further suggest that
the latter process is significant not only in reducing NO,
via heterogeneous chemistry but also as a source of OH
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[Hanson and Ravishankara, 1995; Hanson et al., 1996;
Salawitch et al., 1994; Lary et al., 1996].

Turning to the key chlorine-related species, Avallone
et al. [1993a, b] and Wilson et al. [1993] showed post-
Pinatubo CIO observations suggesting heterogeneous
perturbations in midlatitude air. HCl observations by
Webster et al. [1998] provide evidence that CIO not only
is enhanced by high volcanic loading at midlatitudes as
an indirect effect through shifts in NO,, but also is
directly affected by chlorine activation (as reflected in
reduced HCI). Debate on the magnitude of the latter
effect in some regions has focused both on the rates of
chlorine activation in liquid aerosols for midlatitude
conditions and on mass balance among Cl, species [see
Dessler et al., 1996, 1997, 1998; Stimpfle et al., 1994].
While chlorine-activating reactions on liquid sulfate
aerosols are thought to be relatively slow at 20 km for
the average temperatures that prevail at midlatitudes,
the strongly nonlinear dependence of these reactions on
temperatures implies that the reaction rate averaged
over the actual temperatures including cold fluctuations
associated with wave motions will substantially exceed
the rate computed for the average temperature [Murphy
and Ravishankara, 1994]. In other words, brief exposure
to cold temperatures may alter CIO/Cl, partitioning and
hence enhance ozone depletion at midlatitudes, espe-
cially under high aerosol loads [Webster et al., 1998;
Solomon et al., 1998].

Figure 10 shows that even rather modest changes in
aerosol abundances can substantially affect the CIO/Cl,
partitioning near 20 km. Indeed, Figure 10 suggests that
aerosol surface area increases of a factor of only about 5
(as observed, for example, in some locations following
the relatively minor Mount St. Helens eruption [see
Thomason et al., 1997] could increase CIO/Cl, by 50%,
thus greatly enhancing the chlorine-driven local ozone
destruction reactions.

As has been emphasized throughout this paper, pro-
cesses that enhance ClO relative to Cl, are at the heart
of ozone depletion. A point of useful comparison may be
drawn by noting that if CIO/Cl, had been constant from
1980 to 1990, then CIO would have been expected to
increase by about 50% over this decade (owing to the
roughly 50% increase in Cl, from the gradual increase in
chlorofluorocarbons during that period). However, Fig-
ure 10 demonstrates that much larger changes in ClO
can be rapidly induced by volcanic aerosol increases
through their effects on chemical partitioning. Solomon
et al. [1996, 1998] showed that both the long-term ozone
trend at northern midlatitudes and its year-to-year vari-
ations over the past 20 years are highly likely to be
closely tied to volcanic-aerosol-driven changes in CIO/
Cl, partitioning (see Plate 6 below). Jackman et al. [1996]
and Zerefos et al. [1997] reached similar conclusions with
their models, and showed that solar cycle contributions
to interannual ozone depletion are much smaller. Sev-
eral authors have shown that the ozone response to
volcanic aerosols before humans perturbed stratospheric
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chlorine (e.g., in the nineteenth century after the erup-
tion of Krakatoa) would likely be a slight column in-
crease as a result of suppression of NO,-catalyzed de-
struction as depicted in Figure 10 rather than the
observed decreases obtained for current chlorine loads
[Solomon et al., 1996; Tie and Brasseur, 1995]. It is also
useful to note that observations such as those at Arosa in
Figure 1 show no noticeable depletion after a series of
large eruptions in the 1960s, most notably the major
tropical eruption of Agung in 1963. Observations from
many other ground-based sites confirm that the en-
hancements in aerosol of the 1960s had little effect on
ozone [e.g., Bojkov et al., 1995]. Only since about 1980
have chlorine levels become sufficiently elevated that
volcanic perturbations to CIO/Cl, such as those shown in
Figure 10 result in significant ozone loss. Hence the
evidence suggests that volcanic particles at midlatitudes
exacerbate halogen-induced ozone depletion in the con-
temporary stratosphere (much as PSCs do for polar
regions, and with some similar chemistry) but cannot on
their own significantly destroy stratospheric ozone.

Lary et al. [1997] were the first to suggest that soot
may also affect Northern Hemisphere midlatitude
ozone, mainly through possible reactions involving reac-
tive nitrogen species [see Rogaski et al., 1997]. A study by
Bekki [1997] further probed this chemistry in some detail
and argued for significant impacts on ozone trends in the
vicinity of the tropopause. There is currently debate
about the surface area of soot available at stratospheric
altitudes, the extent to which it can remain active for
chemistry or be quickly “poisoned,” and whether or not
chemical data support such perturbations [Gao et al.,
1998].

The observation of large midlatitude ozone depletion
following Pinatubo and EI Chichon, substantial related
changes in chemical species, and a wide range of mod-
eling studies [e.g., Hofmann and Solomon, 1989; Brasseur
and Granier, 1992; Michelangeli et al., 1989; Pitari and
Rizi, 1993; Bekki and Pyle, 1994; Tie et al., 1997; Solomon
et al., 1996; Jackman et al., 1996] provide strong evidence
that heterogeneous sulfate aerosol chemistry plays a
major role together with man-made chlorine in the pro-
cesses controlling midlatitude ozone trends. The ob-
served CIO/Cl, and NO,/NO, dependencies upon volca-
nic aerosol amounts as shown, for example, in Figure 10
may be considered a chemical fingerprint underlying
these effects, like the observations of greatly enhanced
ClO in the ozone hole region. Another parallel with
Antarctic ozone depletion is the observation of a close
correspondence in altitude between the region of en-
hanced Pinatubo aerosol abundances and ozone deple-
tion [e.g., McGee et al., 1994; Hofmann et al., 1994]. A
third fingerprint is the onset and slow relaxation of the
ozone depletion after Pinatubo observed at midlatitudes
[see, e.g., Solomon et al., 1996, 1998; Jackman et al.,
1996] over a period of a few years, mirroring in a slower
manner the seasonal depletion of the ozone hole.
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5.2. Dynamical Processes and Midlatitude Ozone
Trends

Although the focus of this review is on ozone chem-
istry, other mechanisms that could contribute to midlati-
tude ozone depletion will be briefly summarized here.
Several studies examined the extent to which dynamical
processes might spread the influence of the ozone hole,
either through a one-time “dilution” at the end of the
winter when stratospheric warmings break up the polar
vortex or through vortex “processing” whereby flow of
air through the vortex (and hence chemical activation of
chlorine) might be transported to lower latitudes [e.g.,
Tuck, 1989; Tuck et al., 1992; Waugh et al., 1994, 1997,
Wauben et al., 1997; Tuck and Proffitt, 1997].

The amount of ozone depletion observed at both
northern and southern midlatitudes is considerably
greater than that implied by a one-time end-of-winter
dilution process [see, e.g., Sze et al., 1989; Prather et al.,
1990; Pitari et al., 1992]. For the Southern Hemisphere,
such one-time dilution likely provides an average mid-
latitude column ozone depletion of ~1-2%. Locally
larger but transient dilution effects following the
breakup of the Antarctic ozone hole in late spring have
been documented in observations over New Zealand,
Australia, Brazil, and Chile [Atkinson et al., 1989; Leh-
mann et al., 1992; Kirchhoff et al., 1996, 1997a]. The city
of Punta Arenas, Chile, at 53°S occasionally lies just
beneath the tip of the Antarctic ozone hole itself for
brief periods in October when wave disturbances push
the vortex overhead [Kirchhoff et al., 1997a, b]. Because
of greater dynamical activity, the northern vortex is
likely to be subject to a greater degree of processing, and
many studies conclude that there is ample evidence for
the spread of polar “filaments” to midlatitudes at times
[Tuck et al., 1992; Gerber and Kampfer, 1994; Pyle et al.,
1995; Lutman et al., 1997]. However, dynamical analyses
and tracer studies suggest that the transport from polar
regions alone cannot account for the observed ozone
losses in midlatitudes [e.g., Schoeberl et al., 1992b;
Waugh et al., 1994; Manney et al., 1994b; Jones and
MacKenzie, 1995; Chipperfield et al., 1996; Wauben et al.,
1997; Grewe et al., 1998]. This subject will be discussed
further below in the section relating to Arctic ozone
depletion.

In addition to vortex processing as described above,
the notion of PSC processing has also been suggested
(wherein PSCs forming outside the vortex provide the
sites for heterogeneous reactions), particularly in asso-
ciation with locally cold temperatures that may be re-
lated to mountain lee waves and hence of quite small
spatial and temporal scale [e.g., Godin et al., 1994;
Carslaw et al., 1998]. All of these processing mechanisms
depend upon heterogeneous chlorine-related chemistry
in some fashion and hence connect midlatitude ozone
depletion to chlorine trends, but with important differ-
ences in the degree of nonlocal (i.e., transport-related)
linkages.

A few authors have argued that changes in strato-
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spheric dynamics themselves could have contributed to
the observed midlatitude ozone trends. A recent review
is provided by Ravishankara et al. [1999] (see references
therein). In brief, some studies [e.g., Hood and Zaff,
1995; McCormack and Hood, 1997; Hood et al., 1997,
Fusco and Salby, 1999] have argued for a component of
purely dynamical change in midlatitude ozone relating,
for example, to changes in the transport of ozone. It is
well known that dynamical processes strongly influence
ozone from year to year, particularly in January in the
Northern Hemisphere [Fusco and Salby, 1999]. How-
ever, evaluation of trends requires long records and
analysis of low-frequency trends (i.e., timescales of the
order of a decade) rather than higher-frequency varia-
tions. While some contribution to the observed trends
from dynamical processes that could change over long
time intervals (decadal) cannot be ruled out, the evi-
dence cited above and in Plate 6 below demonstrates
that chlorine chemistry has played an important and very
likely dominant role in the observed trends in midlati-
tude ozone over the past 2 decades.

6. CHEMICAL/DYNAMICAL COUPLING:
ARCTIC OZONE DEPLETION

Perhaps ironically in view of the extremely remote
nature of the Antarctic, ozone depletion was more
readily observed there than in the Arctic. This was due in
part to the fact that no corresponding “hole” developed
in the Arctic stratosphere in the early 1980s, but also to
the paucity of ground-based long-term measurements in
the high Arctic and to the greater local variability of
Arctic ozone associated with atmospheric waves, as dis-
cussed above [see Reed, 1950]. As the mechanism for
Antarctic ozone depletion began to be elucidated in the
latter half of the 1980s, it was understood in general
terms that Arctic ozone depletion would likely be
smaller on account of warmer temperatures (hence
fewer PSCs as documented by McCormick et al. [1982])
and the associated dynamical differences (i.e., a less
isolated vortex). The top panel of Figure 11 illustrates
the climatological differences in the seasonal cycles of
temperature for 65°N and 65°S, the edge regions of the
Arctic and Antarctic. Colder temperatures are typically
found at higher latitudes, but this region is shown in
order to illustrate accompanying satellite total ozone
data (which are available only in the sunlit atmosphere).
Perhaps most importantly, the typical springtime in-
crease in stratospheric temperatures occurs in associa-
tion with much earlier stratospheric warmings in the
north than in the south [e.g., Andrews et al., 1987],
suggesting that the overlap between cold temperatures
and sunlight would be limited and the Arctic ozone
depletion hence less severe (see, e.g., the review by Pyle
et al. [1992]). However, not all years are typical (a point
discussed below).
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Figure 11. (top) Observations of the average temperatures

at 65°S and 65°N from the Fleming et al. [1990] Cospar Inter-
national Reference Atmosphere (CIRA) climatology, with sat-
ellite measurements of the annual cycles of total ozone at
(middle) 65°N and (bottom) 65°S in the late 1970s and in 1996
and 1997 (from SBUV/SBUV2, courtesy of R. Nagatani).

6.1. Chemical Processes in the Arctic

As in the Antarctic, direct observations of a broad
range of chemical species have shown that heteroge-
neous chemistry greatly perturbs the composition of the
Arctic vortex. Evidence for effective winter activation of
chlorine was provided by measurements of enhanced
OCIO [Solomon et al., 1988; Schiller et al., 1990; Pom-
mereau and Piquard, 1994a; Perner et al., 1994; Pfeilstic-
ker and Platt, 1994] and CIO [Brune et al., 1990, 1991;
Toohey et al., 1993; Waters et al., 1993; Crewell et al.,
1994; Bell et al., 1994; de Zafra et al., 1994; Shindell et al.,
1994; Donovan et al., 1997]. Decreased NO and NO,
were also observed with several independent methods
[Fahey et al., 1990a; Noxon, 1978; Toon et al., 1994;
Mankin et al., 1990; Wahner et al., 1990; Pommereau and
Piquard, 1994b; Goutail et al., 1994; Pfeilsticker and Platt,
1994; Van Roozendael et al., 1994]. The column abun-
dances of HCI and HF supported the view that chlorine
activation on PSCs must be effective in the Arctic [Toon
et al., 1994; Mankin et al., 1990; Traub et al., 1994]. In situ
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Figure 12. Observations of the chemical composition of the
Arctic stratosphere from the ER-2 aircraft in February 1992.
The data show high CIO abundances associated with reduced
HCI abundances as would be expected from heterogeneous
conversion. H,O does not display evidence for dehydration on
this Arctic transect.

measurements of HCl were particularly important in
sharpening the link between enhanced ClO and conver-
sion from HCI [Webster et al., 1993; Michelsen et al.,
1999], as shown for example in Figure 12. Measurements
of CIONO, also displayed evidence for heterogeneous
processing on PSCs [e.g., von Clarmann et al., 1993;
Roche et al., 1994; Oelhaf et al., 1994; Adrian et al., 1994;
Geller et al., 1995; Yudin et al., 1997]. Concurrent in situ
and space-based observations of ClO and PSCs together
with trajectory studies further linked the activated chlo-
rine to heterogeneous chemistry [Jones et al., 1990b;
Yudin et al., 1997; Dessler et al., 1998, and references
therein]. Thus the same general fingerprints of hetero-
geneous chemistry that were first observed in the Ant-
arctic were not only apparent in, but also further
strengthened by Arctic data.

Observations of NO,, and water vapor displayed signs
of sporadic and limited denitrification and dehydration
(compare Figures 12 and 7), in marked contrast with the
pervasive characteristics of these chemical conditions in
the Antarctic [Kawa et al., 1990; Fahey et al., 1990b] (see
later work by Kondo et al., 1994; Oelhaf et al., 1994;
Khattatov et al., 1994; Rinsland et al., 1996; Santee et al.,
1998, 1999]. In some cases, denitrification was observed
without accompanying dehydration, raising new chal-
lenges regarding the mechanism underlying the micro-
physics of the denitrification process that still are not
completely resolved [see, e.g., Toon et al., 1990; Gandrud
et al., 1990; Salawitch et al., 1989; Koop et al., 1995].

On the basis of CIO observations [Brune et al., 1990]
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and related model calculations, observed and calculated
rates of ozone loss in February 1989 were shown to be of
the order of 20 ppbv day ' near 20 km [Schoeberl et al.,
1990; Salawitch et al., 1990; McKenna et al., 1990]. Fur-
ther, the BrO observations of Toohey et al. [1990] re-
vealed that the CIO-BrO catalytic cycle was probably of
particular importance for the Arctic, since ClO enhance-
ments were smaller there than in the Antarctic and
hence the efficiency of the ClO dimer cycle was reduced
(note that the rate of the latter depends on the square of
ClO density [e.g., Salawitch et al., 1990, 1993]). However,
the early warming observed in February 1989 as illus-
trated in Plate 3 prevented extensive total ozone loss in
that year. Several studies suggested that the less exten-
sive denitrification of the Arctic would limit ozone losses
there [Brune et al., 1991; Salawitch et al., 1993] through
less effective NO, reduction in sunlit air and hence an
early cutoff of the depletion process in spring; the pre-
ceding section illustrates that new understanding of lig-
uid aerosol chemistry has affected this picture. Thermal
decomposition of the CL,O, dimer (which cuts off the
ClO dimer ozone loss cycle) also affects the degree of
ozone loss as air warms in spring even if denitrified
[McKenna et al., 1990; MacKenzie et al., 1996]. As will be
discussed further below, recent observations of large
Arctic ozone depletions (see Figure 1) have not been
associated with extensive denitrification.

6.2. Quantifying Arctic Ozone Depletion

The more complex dynamics of the Arctic vortex as
compared with the Antarctic demands the application of
sophisticated tools for analysis of ozone destruction. The
greater wave activity of the Northern Hemisphere can
enhance ozone losses even in winter by increasing the
exposure of polar air to sunlight in the distortions caused
by atmospheric waves, as compared with the Southern
Hemisphere [see, e.g., Jones et al., 1990a]. However, the
same wave activity can warm the air and perhaps even
distort it sufficiently to mix with its surroundings, thus
reducing ozone depletion. Detailed methods have been
developed [Schoeberl et al., 1990; Manney et al., 1994b,
1995a, b, 1996] to evaluate the air parcel trajectories
along which ozone and other trace gases are trans-
ported. These help to quantify the amount of ozone
chemically destroyed by revealing that while the time
evolution of inert tracers such as N,O can be well
simulated in the Arctic using such approaches, the evo-
lution of ozone shows large departures from conserva-
tion that likely reflect chemical loss [Manney et al.,
1994a, 1995a, b, ¢, 1996, 1997]. Further, the regions of
apparent ozone depletion identified in this manner oc-
cur in regions of enhanced CIO revealed by concurrent
satellite observations [e.g., Waters et al., 1993; Manney et
al., 1994a, 1995¢c; Lutman et al., 1994a, b; MacKenzie et
al., 1996].

Tracer-ozone correlations are another method used
to provide insights into polar ozone loss. Briefly, changes
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in the amount of ozone observed for a given amount of
conserved tracer such as N,O or CH, [Proffitt et al.,
1993; Miiller et al., 1996, 1997a, b] provide a useful
(albeit imperfect) diagnostic for ozone loss based upon
understanding of ozone—inert tracer relationships
[Plumb and Ko, 1992] and their spatial distributions.
Using satellite data for CH,, O, and HCI, for example,
Miiller et al. [1996] suggest that 60 DU of total Arctic
ozone was depleted on constant CH, surfaces in a man-
ner inconsistent with transport from any other region of
the stratosphere in the Arctic winter of 1991-1992. The
reduced ozone was associated with pronounced HCI
depletion observed in the same air, as was expected on
the basis of heterogeneous chemistry on PSCs.

Another method of quantifying ozone destruction
involves the use of trajectory analyses of airflow together
with multiple ozonesondes to find “matches” wherein
the air observed at one site is observed again some days
later. Changes in the observed ozone then provide a
measure of ozone loss [Von der Gaathen et al., 1995].
This approach has provided strong evidence for exten-
sive Arctic ozone depletion that is closely tied to cold
temperatures near 195 K [Rex et al., 1997, 1998]. Under-
standing can be further tested by comparing the ob-
served depletion derived from such “matches” with
chemistry calculations along the same trajectories. These
studies have shown good agreement in February and
March, but some evidence for midwinter ozone loss that
exceeds photochemical theory has recently been sug-
gested [Rex et al., 1998; Becker et al., 1998].

Fully three-dimensional models driven in some cases
by the meteorological data for specific years have also
been used to probe the Arctic ozone losses and test
photochemical understanding. These models have suc-
ceeded in explaining much of the observed ozone deple-
tion, documenting its connections to chemical processes,
and even reproducing much of the observed variability
seen from one year to another as depicted, for example,
in Figure 1 [see, e.g., Chipperfield et al., 1994, 1996;
Deniel et al., 1998; Douglass et al., 1995].

Taken together, these combined approaches to trans-
port analyses using tracers, matches, chemical transport
models, or Lagrangian calculations together with ozone
and trace constituent observations provide strong evi-
dence for a chemically driven Arctic ozone loss (order of
60-120 DU) in several recent years. Each approach is
subject to different sources of quantitative error and
uncertainty, such as inaccuracies in temperature data
used as input in observationally-based transport studies,
incomplete understanding of the factors influencing
tracer-tracer correlations, and small scale dynamical
processes that are not well represented in modelling
studies (e.g., mountain waves). In spite of these short-
comings and in contrast with the Antarctic, there is
substantial evidence for a dynamical contribution to
recent trends as well. These are discussed in section 6.3.
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6.3. Variability of Arctic Temperatures

Since Antarctic ozone depletion occurs mainly in
September under cold conditions, it is natural to con-
sider whether comparable conditions are ever attained
in the Arctic in the analogous month of March. Nagatani
et al. [1990] pointed out that while such conditions
appear to be quite rare based on the available record
(which extends back to about the 1950s), they are not
unknown. For example, during the Arctic winter of
1975-1976, March temperatures were close to those
typically seen in the Antarctic in September, but chlorine
loading was small in 1975, and no discernible Antarctic
ozone hole was observed at that point (see Figure 1).
Nagatani et al. [1990] noted that extensive Arctic ozone
loss might be expected if such meteorological conditions
were to be realized in an atmosphere with current chlo-
rine loadings.

There have been several unusually cold Arctic winters
since 1990, with correspondingly large Arctic ozone
losses [see Newman et al., 1997; Coy et al., 1997] illus-
trated in Figure 1. Not all the years since 1990 have been
cold, as is reflected for example in the high spring ozone
observed in 1998 for example. Enhanced volcanic aero-
sol from the Mount Pinatubo eruption probably contrib-
uted to the very low ozone observed in 1992 and 1993,
but the continuing depletions in, for example, 1996 and
1997 suggest a strong effect of temperature. Plate 3
illustrates the full seasonal behavior of temperatures
observed in some recent cold years, and contrasts their
behavior with the Antarctic. As has already been em-
phasized, the warmer temperatures generally observed
in the winter Arctic stratosphere as compared with the
Antarctic reflect adiabatic heating associated with faster
downward motion, which also leads to a rapid winter-
time increase in Arctic total ozone (from values of ~300
DU in September to as much as 450 DU at the spring
maximum in March in 1979 and 1980, for example, as
shown in Figure 11). In the much colder Antarctic,
pre—ozone hole total ozone did not show such a winter
increase (remaining instead near 250-300 DU from
March through September; see Plate 2 and Figure 11),
suggestive of an isolated and less dynamic vortex. In
today’s Antarctic atmosphere, an abrupt drop in ozone
occurs in September deep in the vortex as shown in Plate
2 and even earlier on the edge of the vortex as shown in
Figure 11, reflecting rapid chemical removal in sunlit air
with limited dynamical resupply as discussed earlier. In
the relatively stagnant Antarctic vortex the total ozone
actually decreases in spring to form a “hole” compared
with the surrounding midlatitude air. In the more dy-
namic Arctic, transport replaces a substantial portion of
the ozone lost, even in recent cold years [see, e.g.,
Manney et al., 1997]. Indeed, Figure 11 shows that even
in the very cold years 1996 and 1997, Arctic ozone
continued to increase at 65°N during spring; it simply did
not do so as rapidly as it had in 1979 or 1980. Hence
large chemical ozone losses of the order of 60—-120 DU
occurred, but no Arctic hole formed (see the detailed
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analyses by Manney et al. [1997] and Miiller et al. [1997a,
b]). The formation of an Arctic ozone hole may require
not only cold March temperatures but also cold temper-
atures throughout the winter, both in order to cause
activation of chlorine in sunlit air and to inhibit the
buildup of ozone through downward transport. Such
conditions were not satisfied even in the very cold Arctic
winter/spring seasons of recent years [see Coy et al.,
1997; Zurek et al., 1996].

It is important to note that denitrification was ob-
served but was rather limited in degree in the Arctic
springs of 1993, 1996, and 1997 [Santee et al., 1995, 1996,
1997, 1999], so that the observations of the order of
60-120 DU of ozone depletion in each of these years are
not associated with denitrification. Rather, as in the
Antarctic and consistent with current understanding of
liquid aerosol chemistry, the evidence suggests that het-
erogeneous reactions in the sunlit atmosphere are
mainly responsible for maintaining the high CIO [Santee
et al., 1997] that depleted the Arctic ozone in those years
[Manney et al., 1997].

Plate 4 shows observed changes in the vertical profile
of Arctic ozone at Sodankyld, Finland (67°N), in 1996
that illustrate this general picture. Plate 4 is intended for
the purpose of illustration. A detailed analysis would be
needed to quantify dynamical and chemical contribu-
tions to ozone losses as in the studies of Rex et al. [1998]
and Manney et al. [1997]; the points sketched here are
consistent with those papers. The ozone observed in late
March 1996 lies well below the climatology for this
location, much as the South Pole ozone in September
1986 lay below its climatology (Figure 5); other dates in
March display similar behavior. The ozone at ~15-20
km at South Pole was depleted in 1986, similar to the
layer of reduced ozone observed over Finland at nearly
the same altitudes in March 1996 (and at those altitudes
where PSCs are frequently observed). However, at the
South Pole, the historical and current ozone profiles
display nearly the same values above the depleted re-
gion, showing little evidence for large changes in the
amount of ozone brought down from above. The data
from Finland present an interesting contrast, with re-
duced ozone above 20 km not only in March but also in
February, likely reflecting reduced dynamical transport
from above. This is not surprising, since the cold tem-
peratures observed in that year must reflect reduced
downward motion. Hence particularly cold Arctic win-
ters must be associated with less downward motion and
a component of dynamic impact on total ozone. The
shape of the profile is suggestive of chemical removal in
the broad layer near 15-20 km.

In summary, there is abundant evidence for some
chemical perturbations and ozone destruction in the
Arctic even in relatively warm years, but the degree of
ozone depletion depends upon cold temperatures in
sunlit conditions, just as in the Antarctic. An unprece-
dented number of cold years have occurred in the Arctic
since 1990. Each of these is reflected in low ozone in the
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Plate 4. Arctic ozonesonde data from Sodankyld, Finland. The climatologies for February and March
represent the averages of all data for 1988-1997. Sample profiles observed in February and March 1996 are

shown for comparison.

Arctic record as shown in Figure 1. Five of the years
from 1991 to 1998 have been significantly colder than
average [Coy et al., 1998; Zurek et al., 1996]. This series
of unusually cold years raises the key question of cause.
Randel and Wu [1999] argue that the cooling observed in
both the Arctic and the Antarctic is due to the ozone
depletion itself; hence they propose a feedback mecha-
nism, following Shine [1986], wherein ozone losses lead
to colder temperatures and hence even greater deple-
tion. The study by Thompson and Wallace [1998] sug-
gests that changes in the dynamics of the north polar
vortex are linked to the underlying tropospheric wave
field, particularly the North Atlantic Oscillation (NAO).
These authors thus suggest a wave-driven systematic
linkage between tropospheric waves and stratospheric tem-
perature, which could reflect ozone changes. Hartley et al.
[1998] argue for a similar linkage involving the modifica-
tion of stratospheric dynamics due to the ozone changes,
with tropospheric propagation as a key element.

It has long been known that the “greenhouse effect”
due to increases in CO, and other gases warm the planet
surface but cool the stratosphere [e.g., Fels et al., 1980],
with attendant effects on temperature-dependent ozone
chemistry [Haigh and Pyle, 1979]. While this effect is
predicted to be small (only a few tenths of a degree in
today’s atmosphere, far less than the recent coolings

observed in the Arctic), dynamical amplification of such
changes is also possible, as was noted above. A number
of studies have suggested that increased CO, and other
greenhouse gases could substantially affect Arctic ozone
[e.g., Austin et al., 1992; Shindell et al., 1998]. The work
of Shindell et al. argues for a key role for such a feed-
back both in the 1990s and perhaps in future years, with
the peak Arctic ozone losses being predicted to occur
near 2010, well after the expected peak of chlorine
loading (see also Dameris et al. [1998]). However, at
present the possibility that the recent colder Arctic tem-
peratures are part of a natural low-frequency cycle that
could, for example, induce a series of colder years every
50 years or so cannot be ruled out given the short record
of existing global stratospheric temperature data. Hence
while it is clear that there has been significant chemical
ozone depletion associated with the cold Arctic winter—
spring seasons of recent years, the fundamental reason
for those cold temperatures remains a topic of research.

7. SUMMARY OF THE PAST AND A LOOK TO THE
FUTURE

This paper has outlined the history and conceptual
understanding of the processes responsible for ozone
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Plate 6. (top) Total tropospheric chlorine content estimated from the baseline scenario of WMO/UNEP

[1999]; this is based on a gas-by-gas analysis like those shown in Plate 5. (bottom) Changes in the 5-year
running mean ozone observed over Switzerland [Stacehelin et al., 1998a, b] compared with a model calculation
for 45°N applying the same time averaging, with and without considering the effects of volcanic enhancements
in aerosol chemistry (from the model of Solomon et al. [1996, 1998]). The major eruptions since 1980 were

those of El Chichon in 1982 and Pinatubo in 1991.

depletion by chlorofluorocarbons in the stratosphere. In
brief, the long lifetimes of chlorofluorocarbons are re-
flected in their observed worldwide accumulation in the
atmosphere. Their role in stratospheric ozone depletion
depends critically on partitioning processes that follow
release of halogen atoms; indeed, the marked contrasts
between fluorine (which does not deplete stratospheric
ozone), chlorine, and bromine illustrate the central role
of partitioning chemistry. Table 2 summarizes a series of
spatial and temporal fingerprints that connect chlorine
chemistry to ozone depletion. Observational evidence
for gas phase chlorine chemistry impacts on ozone is
provided, for example, by observations of the CIO/CI,
and ozone trend profiles above about 25 km at midlati-
tudes and by the similarities in their observed latitudinal
distributions.

The cold conditions of the Antarctic winter and
spring stratosphere lead to formation of polar strato-
spheric clouds. Heterogeneous chemistry involving man-
made chlorine takes place on these surfaces and results
in the dramatic and unanticipated Antarctic ozone hole.
The heterogeneous activation of chlorine from both its
HCI and CIONO, reservoirs and the suppression of the
NO, (that would otherwise reform CIONO,) alters chlo-
rine partitioning and allows effective ozone loss in cold
sunlit air. The close correspondence between observed
enhancements in ClIO and depleted Antarctic ozone
through independent observational methods as func-
tions of altitude, latitude, and longitude illustrates the
key role of these chemical partitioning processes in
producing the ozone hole. A broad range of chemical
observations of HCI, HNO;, NO,, OCIO, and other
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TABLE 2. Summary of Key Fingerprints of Ozone Depletion
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Primary Chemistry

Observation Method Latitude Altitude Linkage
Profile shapes of upper satellite and ground-based Northern Hemisphere 30-50 km Gas phase chlorine
stratospheric ozone midlatitude chemistry,
depletion and CIO/CI, particularly
partitioning
processes
Latitudinal structure of upper satellite Polar, midlatitude, 30-50 km Gas phase chlorine
stratospheric ozone and tropical chemistry,
depletion and CIO particularly HCl/
ClO
Latitudinal structure of ClO, airborne and satellite 50°-85°S, 50-85°N 20 km Heterogeneous
HCI, NO, NO,, and ozone chlorine
loss in polar regions activation and
NO, suppression
Vertical structure of seasonal  balloon-borne, lidar, and 90°S, 50°-85°S, 50— 12-24 km Heterogeneous
ozone loss and PSCs in satellite 85°N chlorine
polar regions activation
Seasonal changes in PSCs, balloon-borne, lidar, 50°-90°S in both ~12-24 km and  Heterogeneous
ozone depletion, OCIO, ground-based, and polar regions column chemistry
ClO, HCl, and CIONO, satellite
Post-Pinatubo (~1992-1995)  ground-based and some midlatitudes and near 20 km and  Heterogeneous
ozone depletion and satellite polar regions column liquid surface
recovery; contrast with chemistry
post-Agung (~1964-1968) relating to
chlorine
Post-Pinatubo changes in airborne, ground-based, midlatitudes and near 20 km, near Heterogeneous
stratospheric chemical balloon-borne, and some polar tropopause, chemistry,
state and aerosol content satellite and column particularly
(NO,, CIO, HNO;, OCIO) N,Ojs hydrolysis
and some
chlorine
activation

species support and extend this picture. Quantitative
numerical modeling studies that include detailed analy-
ses of transport and chemistry further connect the en-
hanced CIO produced by heterogeneous chemistry to
the formation of the Antarctic ozone hole.

Scientific understanding of PSCs and heterogeneous
chemistry has evolved considerably in recent years. The
detailed microphysical mechanisms responsible for
freezing of PSC particles and for denitrification are
subject to debate at present, but these processes appear
to be less critical to ozone depletion than was once
thought. There is evidence from field, laboratory, and
modeling studies that PSCs can be composed not only of
solid water ice and nitric acid hydrates but also of liquid
solutions of water, sulfuric acid, and nitric acid. The
chemistry associated with these varying surfaces displays
important differences in detail but has the common
feature that all can suppress NO, and activate chlorine
from the reservoir species, making the ozone depletion
process more continuous in temperature and less depen-
dent upon the abrupt temperature thresholds that are
associated with formation of solids than was previously
thought.

Observations of enhanced Antarctic and midlatitude
ozone depletion following the eruption of Pinatubo con-

firm the impact of liquid aerosol surfaces on chlorine
and nitrogen partitioning chemistry. Observations and
laboratory studies have demonstrated the efficacy of
heterogeneous processes on such surfaces (both at 20
km and at lower altitudes, where high water vapor pres-
sures enhance chlorine activation chemistry). As in the
Antarctic, concurrent observations of a broad range of
chemical species show evidence for surface reactions
associated with particles, which work to enhance ClIO/
Cl, partitioning at midlatitudes. Dilution and processing
of the polar ozone losses also contribute to midlatitude
ozone depletion. While some studies suggest a role for a
purely dynamical trend in midlatitude ozone depletion,
these have not yet succeeded in quantifying a significant
contribution.

There is abundant evidence for heterogeneous per-
turbations to Arctic chemistry through observations of
CIO, OCIO, HCI, and many other key gases. Arctic
ozone has reached record low values in many years in
the 1990s, linked not only with heterogeneous chemistry
on Pinatubo aerosols but also with unusually cold spring
temperatures. A chemical contribution to these low val-
ues has been documented with a variety of methods
including trajectory “matches,” chemistry transport
modeling, and tracer correlation studies. The funda-
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mental question of the cause or causes of record low
temperatures in many of the Arctic winter—spring
seasons of the 1990s remains a topic of debate and a
key issue.

In closing, Plates 5 and 6 are presented to show the
impact of changes in global emissions of chlorofluoro-
carbons and the likely future of the ozone layer based on
the conceptual picture developed in this review. Plate 5
displays surface observations of CFC-11 and methyl
chloroform (CH; CCls). The latter gas is the only short-
lived industrial chlorofluorocarbon produced in large
amounts in the 1970s and 1980s. Because of its 5-year
lifetime, the abundances of methyl chloroform have al-
ready begun to decline, as a result of reduced global
emissions. Those of CFC-11 are just passing their peak
and are projected to decline slowly in coming decades,
reflecting its 50-year lifetime.

Plate 6 (top) shows the past and future projections of
the total tropospheric chlorine content (which leads the
stratosphere by 3-5 years). It is anticipated that the
combined effect of all CFCs will lead to a peak strato-
spheric chlorine loading in the late 1990s. By about 2040,
the chlorine will return to levels close to those of the late
1970s, when ozone depletion was first apparent. All
other things being equal, the Antarctic ozone hole and
midlatitude ozone depletion will likely disappear around
this time. However, the key role of temperature and
aerosols in modulating ozone depletion must also be
considered. The unusually cold Arctic winter—spring sea-
sons of recent years stand at the time of this writing as a
critical challenge to our understanding that could affect
the future of polar ozone depletion in both hemispheres.
For example, if the majority of future Arctic winters
were to be colder than average, then the Arctic ozone
depletion would likely be prolonged. The bottom panel
of Plate 6 shows the long-running Arosa, Switzerland,
ozone record illustrating the onset of midlatitude ozone
depletion, its links to heterogeneous chemistry, and its
simulation with a current stratospheric chemistry model
including the processes described in this review. The
changes in ozone observed over Arosa are in good
agreement with the zonally averaged global satellite data
discussed earlier, and the time-averaged trends obtained
there are representative of northern midlatitudes. Plate
6 illustrates that the future of midlatitude ozone deple-
tion is likely to be linked not only to chlorine but also in
part to volcanoes for at least several decades. If there
were to be an extremely large volcanic eruption such as
that of Tambora (whose 1815 eruption is estimated at
about 3 times the stratospheric impact of Pinatubo) in
coming decades, it is likely that midlatitude ozone de-
pletion would be increased even though the chlorine
content of the stratosphere is expected to be lower than
it is today. This illustrates the connection between the
accumulation of chlorine in today’s atmosphere due to
human activities of the industrial era and the unpredict-
able timescales of geologic phenomena that couple into
this altered chemical state.
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This review has emphasized many spatial and tempo-
ral “fingerprints” that illustrate the role of chlorine in
depleting ozone in the contemporary stratosphere (Ta-
ble 2). Indeed, it is the structure of the ozone loss in
space (e.g., in the 40-km region) and time (e.g., in the
Antarctic spring and in midlatitudes in the years follow-
ing Pinatubo) that tests and confirms scientific under-
standing, illustrating how gas phase and heterogeneous
modulation of CIO/Cl, partitioning affects ozone deple-
tion. Through the impacts of this chemistry, the strato-
spheric ozone layer in the twenty-first century will con-
tinue to reflect the impact of the changes in chlorine
enacted in the twentieth.

GLOSSARY

Active chlorine: chlorine compounds that destroy
ozone and interchange rapidly with one another in the
sunlit atmosphere (mainly Cl, ClO, Cl,0,, OCIO, and
HOCI); chlorine that is not tied up in the reservoir gases
(HCI and CIONO,).

Chlorine loading: Abundance of total chlorine in
all forms (including CFCs) at a given location.

Chlorofluorocarbons (CFCs): Chemicals, used in a
variety of industrial applications, that are the dominant
source of chlorine to the present-day stratosphere.

Cl,:  The sum of all chlorine gases liberated by de-
composition of CFCs, including Cl, CIO, HCI, CIONO,,
HOC], Cl,0,, and other trace species.

ClO dimer: Cl,0,, a key intermediate in the forma-
tion of the Antarctic ozone hole. See the catalytic cycle
involving this gas illustrated in Table 1.

Denitrification: Removal of reactive nitrogen
(NO,) from the stratosphere through sedimentation of
large particles containing nitric acid.

Dehydration: Removal of water vapor from the
stratosphere through sedimentation of large particles
containing water.

Dobson Unit (DU): Unit of measurement of total
ozone column abundance, named for G. M. B. Dobson,
a pioneer in measurement of ozone. One Dobson unit
corresponds to 2.6 X 10'® molecules cm 2 of total over-
head column ozone.

Frost point: The temperature at which water con-
denses to form solid ice.

NAT: Nitric acid trihydrate, or HNO; + (H,0)3).
Some polar stratospheric clouds are probably composed
of solid NAT particles.

NO,: NO + NO,, two reactive forms of nitrogen
that interchange very rapidly with each other in the
sunlit atmosphere. The amount of NO, is linked to NO,
and hence to formation of the CIONO, reservoir.

NO,: The sum of the relatively reactive total nitro-
gen gases, including N, NO, NO,, CIONO,, NO3, N,Os,
BrONO,, HNO;, and other trace species.

Ozone hole: Widespread removal of total ozone in
Antarctic spring. The hole is reflected in both the steep
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latitudinal gradients in the observed ozone depletion
and in its temporal evolution since the mid-1970s.

Partitioning: Distribution of chlorine between ac-
tive compounds that destroy ozone and reservoirs that
are inert toward ozone.

ppbv, pptv:  Parts per billion by volume or parts per
trillion by volume, indicating relative abundance of a
given gas (i.e., 1 ppbv = 1 molecule per billion total air
molecules).

Processing: General term describing conversion of
chlorine to active forms. Chemical processing refers to
in situ chemistry. Vortex processing refers to flow of air
to midlatitudes from the vortex, while PSC processing
refers to flow of air through PSCs associated with locally
cold temperatures.

Polar stratospheric clouds (PSCs): Clouds that are
observed to form at cold temperatures (below ~200 K)
in the polar stratospheres of both hemispheres.

Reservoir: Long-lived compound capable of storing
NO, or active chlorine in a relatively inert form (mainly
HNO;, HC], and CIONO,).

Stratosphere: The region of the atmosphere be-
tween ~12 and 50 km (a few kilometers lower in polar
regions and higher in the tropics) in which heating by
ozone leads to increasing temperatures with increasing
altitude.

Sulfuric acid tetrahydrate (SAT): A solid form of
sulfuric acid and water that can form under certain
thermodynamic conditions.

Tracer: Long-lived chemical compound that can be
used to trace the atmospheric airflow.

Tropopause: The transition region, in which tem-
peratures reach a minimum, between the troposphere
and stratosphere.

Troposphere: The region of the atmosphere be-
tween the surface and the stratosphere, in which tem-
peratures decrease with increasing altitude.

Type 1:  Polar stratospheric clouds that form at tem-
peratures above the frost point.

Type 1a (1b): Solid (liquid) polar stratospheric
clouds at temperatures above the frost point.

Type 2: Solid water ice polar stratospheric clouds
that form when temperatures drop below the frost point.

Vortex: Dynamical structure of the stratosphere in
polar winter caused by the absence of solar illumination,
which leads to a cooling over the poles and a large
temperature gradient relative to midlatitudes. This tem-
perature gradient implies rapid zonal (east-west) flow
characterizing the “jet” at the edge of the vortex, while
the air within the vortex is relatively isolated in compar-
ison with surrounding regions.
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