
Auxiliar 15 - Lunes 6 de junio

FI2001 - Mecánica Prof. Patricia Sotomayor Semestre Otoño 2011 Auxiliares: Camilo Soto - Kim Hauser

P1

Considere un conjunto de tres partículas de masas m, 2m y 2m formando un triángulo equilátero. Las partículas están unidas por barras de masa despreciable y largo b. Este sistema, inicialmente en reposo, es impactado por una cuarta partícula de masa m que se mueve, en el instante del choque, con una velocidad v_o horizontal. Por efecto del choque, las dos partículas de masa m quedan pegadas y el sistema tiende a volcarse de forma tal que la partícula basal en el punto P no desliza debido al roce estático con la superficie.

- (a) La velocidad angular y la aceleración angular del sistema justo después del choque.
- (b) Determine el valor máximo de v_0 para que el sistema no alcance a volcarse.

P2

En un ambiente **sin gravedad** considere un anillo de masa m que desliza sin roce a lo largo de una barra. El anillo está unido a una partícula de masa m, a través de una cuerda de largo L, como se muestra en la figura. En el instante inicial, con la cuerda completamente extendida y la partícula colocada junto a la barra, se imprime una velocidad v_0 a esta última, en dirección perpendicular a la barra.

- (a) Determine la velocidad angular $\dot{\phi}$ de la cuerda, en función del ángulo ϕ que forma con la barra.
- (b) Determine la fuerza que la barra ejerce sobre el anillo cuando el ángulo que forma la cuerda con la barra es igual a $\frac{\pi}{2}$.

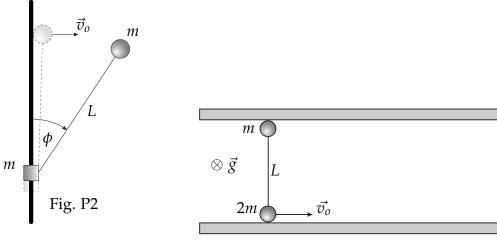


Fig. P3

P3

Considere un sistema de dos masas m y 2m, respectivamente, unidas por una cuerda inextensible de largo L y colocadas sobre una superficie horizontal entre dos paredes paralelas, como se indica en la figura. El roce con la superficie es despreciable. Inicialmente, la línea que une a las dos partículas es perpendicular a las 2 paredes. Se da un impulso a la partícula de masa 2m, de modo que su velocidad inicial es v_o , paralela a las paredes. Determine:

- (a) el tiempo que transcurre antes de que alguna de las dos masas choque con una de las paredes, y
- (b) la tensión de la cuerda justo antes del impacto.

RESPUESTAS

$$ightharpoonup \left[
ight.
ight.
ight.
ight.
ight.
ight. \left(
ight.
ight)
ight.
ight.$$

$$ightarrow \left[ext{R2}
ight]$$
 (a) $\dot{\phi}(\phi) = rac{v_o}{L} \sqrt{rac{2}{2- ext{sen}^2\phi}}$; (b) $N(\pi/2) = rac{2mv_o^2}{L}$;