: cility Location Models

;12.1 Introduction

jOue of the most important aspects of logistics is deciding where to locate new

b Tacilities such as retailers, warehouses or factories. These strategic decisions are a
& crucial determinant of whether materials will flow efficiently through the distribu-

- tion system.
In this chapter we consider several important warehouse location problems: the

7 p-Median Problem, the Single-Source Capacitated Facility Location Problem and
- a distribution system design problem. In each case, the problem is to locate a
- set of warehouses in a distribution network. We assume that the cost of locating

a warehouse at a particular site includes a fized cost (e.g., building costs, rental

L costs, etc.) and a variable cost for transportation. This variable cost includes the

cost of transporting the product to the retailers as well as possibly the cost of

' - moving the product from the plants to the warehouse. In general, the objective is

to locate a set of facilities so that total cost is minimized subject to a variety of
constraints which might include:

e each warehouse has a capacity which limits the area it can supply.
e each retailer receives shipments from one and only one warehouse.

o each retailer must be within a fixed distance of the warehouse that supplies
it, so that a reasonable delivery lead time is ensured.

Location analysis has played a central role in the development of the operations
research field. In this area lie some of the discipline’s most elegant results and
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theories. We note here the paper of Cornuéjols et al. (1977) and the two excel-
lent books devoted to the subject by Mirchandani and Francis (1990) and Daskin
(1995). Location problems encompass a wide range of problems such as the loca-
tion of emergency services (fire houses or ambulances), the location of hazardous

materials, problems in telecommunications network design, etc. just to name a

few.

In the next section, we present an exact algorithm for one of the simplest location
problems, the p-Median Problem. We then generalize this model and algorithm to
incorporate additional factors important to the design of the distribution network,
such as warehouse capacities and fixed costs. In Section 12.4, we present a more
general model where all levels of the distribution system (plants and retailers) are
taken into account when deciding warehouse locations. We also present an efficient
algorithm for its solution. All of the algorithms developed in this chapter are based
on the Lagrangian relaxation technique described in Chapter 5.3 which has been
applied successfully to a wide range of location problems. Finally, in Section 12.5,
we describe the structure of the optimal solution to problems in the design of
large-scale logistics systems.

12.2  An Algorithm for the p-Median Problem

Consider a set of retailers geographically dispersed in a region. The problem is to
choose where in the region to locate a set of p identical warehouses. We assume
there are m > p sites that have been preselected as possible locations for these
warehouses. Once the p warehouses have been located, each of n retailers will get
its shipments from the warehouse closest to it. We assume:

e there is no fixed cost for locating at a particular site, and
e there is no capacity constraint on the demand supplied by a warehouse.

Note that the first assumption also encompasses the case where the fixed cost is
not site-dependent and therefore the fixed set-up cost for locating p warehouses is
independent of where they are located.

Let the set of retailers be N where N = {1,2,...,n}, and let the set of potential
sites for warehouses be M where M = {1,2,...,m}. Let w; be the demand or flow
between retailer ¢ and its warehouse for each ¢ € N. We assume that the cost of
transporting the w; units of product from warehouse j to retailer i is c;;, for each
i€ Nandje M.

The problem is to choose p of the m sites where a warehouse will be located in
such a way that the total transportation cost is minimized. This is the p-Median
Problem.

The continuous version of this problem, where any point is a potential warehouse
location, was first treated as early as 1909 by Weber. The discrete version was
analyzed by Kuehn and Hamburger (1963) as well as Hakimi (1964), Manne (1964),
Balinski (1965) and many others.
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We present here a highly effective approach to the problem. Define the following

" decision variables:

¥ { 1, if a warehouse is located at site 7,
i

0, otherwise,
for j € M, and
1, if retailer 7 is served by a warehouse at site j,
Xij = {0. otherwise,
fori € N and j € M. The p-Median Problem is then:
n m
Problem P : Min ZZQUX.;J-

i=1 j=1
m

st. ) Xy=1, YieN (12.1)
1=1
Y Y;=p (12.2)
i=1
X;<Y;, VieN,jeM (12.3)
Xi;,Y;€{0,1}, VieN, je M. (12.4)

Constraints (12.1) guarantee that each retailer is assigned to a warehouse. Con-
straint (12.2) ensures that p sites are chosen. Constraints (12.3) guarantee that a
retailer selects a site only from among those that are chosen. Constraints (12.4)
force the variables to be integer.

This formulation can easily handle several side constraints. If a handling fee is
charged for each unit of product going through a warehouse, these costs can be
added to the transportation cost along all arcs leaving the warehouse. Also, if a
particular limit is placed on the length of any arc between retailer ¢ and warehouse
7, this can be incorporated by simply setting the per unit shipping cost (c;;) to
+00. In addition, the model can be easily extended to cases where a set of facilities
are already in place and the choice is whether to open new facilities or ezpand the
existing facilities.

Let Z* be an optimal solution to Problem P. One simple and effective technique
to solve this problem is the method of Lagrangian relaxation described in Chapter
5.3.

As described in Chapter 5.3, Lagrangian relaxation involves relaxing a set of
constraints and introducing them into the objective function with a multiplier
vector. This provides a lower bound on the optimal solution to the overall problem.
Then, using a subgradient search method, we iteratively update our multiplier
vector in an attempt to increase the lower bound. At each step of the subgradient
procedure (i.e., for each set of multipliers) we also attempt to construct a feasible
solution to the location problem. This step usually consists of a simple and efficient
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©  The value Z, is a lower bound on the optimal solution of Problem P for any
~ vector A € IR™. To find the best such lower bound, we consider the Lagrangian

'- dual:

subroutine. After a prespecified number of iterations, or when the solution fou

is within a fixed error tolerance of the lower bound, the algorithm is termjnaﬁégg_
To solve the p-Median Problem, we choose to relax constraints (12.1). We i .

corporate these constraints in the objective function with the multiplie‘r vectm-

A € R™. The resulting problem, call it P,, with optimal objective function vah?;‘"

Zy, Is:
n m n m
Min 33 eiXis+ 3y *i(ZX:—j = 1)
i=1 j=1

i=1 j=1

m;ax{Z)\}.

Using the subgradient procedure (described in Chapter 5.3), we can iteratively
" improve this bound.

Upper Bounds
subject to (12.2) — (12.4).
Disregarding constraint (12.2) for now, the problem decomposes by site, that is

each site can be considered separately. Let subproblem P){ , with optimal objective
function value Z, be the following.

It is crucial to construct good upper bounds on the optimal solution value as the
subgradient procedure advances. Clearly, solutions to Py will not necessarily be
feasible to Problem P. This is due to the fact that the constraints (12.1) (that each
retailer choose one and only one warehouse) may not be satisfied. The solution to
P, may have facilities choosing a number of sites. If, in the solution to P,, each
retailer chooses only one site, then this must be the optimal solution to P and
therefore we stop. Otherwise, there are retailers that are assigned to several or no
sites. A simple heuristic can be implemented which fixes those retailers that are
assigned to only one site, and assigns the remaining retailers to these and other
sites by choosing the next site to open in the ordering defined by m. When p sites
have been selected, a simple check that each retailer is assigned to its closest site
(of those selected) can further improve the solution.

n
Min Z(Cu + ) Xj
i=1
s.1. Xij < Y}, Yie N
Xi;; €{0,1}, VieN
Y; e {0,1}.

Solving Subproblem P{ Computational Results

Below we give a table listing results of various computational experiments. The
retailer locations were chosen uniformly over the unit square. For simplicity, we
made each retailer location a potential site for a warehouse, thus m = n. The
cost of assigning a retailer to a site was the Euclidean distance between the two
locations. The values of w; were chosen uniformly over the unit interval. We applied

Assume A is fixed. In Problem Pj, site j is either selected (Y; = 1) or not

(Y}_: 0_) . If site j is not selected, then Xi; =0for all i € N and therefore Zi =0.
If site j is selected, then we set ¥; = 1 and assign exactly those retailers ¢ with
¢ij + Ai <0 to site j. In this case:

n :
7 — c lm 1) the algorithm mentioned above to many problems and recorded the relative error
A= ;mm{% + 2,0} (12.5) [ of the best solution found and the computation time required. The algorithm is
We see that P! is solved easil it _ o _ E terminated when the relative error is below 1% or when a prespecified number of
b (28] A ed easily and its optimal objective function value is given B iterations is reached. The numbers below “Error” are the relative errors averaged
S - over ten randomly generated problem instances. The numbers below “CPU Time”
To solve P . . 7ﬁ is the CPU time averaged over the ten problem instances. All computational times
0 solve [7y, we must now reintroduce constraint (12.2). This constraint forces ; are on an IBM Risc 6000 Model 950.
us & choose only p of the m sites. In Py, we can incorporate this constraint by :
choosing the p sites with smallest values Z3. To do this, let 7 be a permutation of ; Table 1: Computational results for the p-Median algorithm
the numbers 1,2, ..., m such that
ZV<n®<® <. <z, | O
Then the optimal solution to Py has objective function value: 20 4 1.7% 2.6s
P - 50 5 1.4% 20.7s
Z,=% "2 _N " 100 7 13% 87.7s
J-; ? ; ’ 200 10 2.4%  Ti54s
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'12.,3 An Algorithm for the Single-Source Capacitated

Facility Location Problem

Consider the p-Median Problem where we make the following two changes in our

assumptions.
® The number of warehouses to locate (p) is not fixed beforehand.

o If a warehouse is located at site j:
o a fixed cost f; is incurred, and
o there is a capacity gj on the amount of demand it can serve.

The problem is to decide where to locate the warechouses and then how the re-
tailers should be assigned to the open warehouses in such a way that total cost
is minimized. We see that the problem is considerably more complicated than
the p-Median Problem. We now have capacity constraints on the warehouses and
therefore a retailer will not always be assigned to its nearest warehouse. Allowing
the optimization to choose the appropriate number of warehouses also adds to the
level of difficulty.

This problem is called the single-source Capacitated Facility Location Problem
(CFLP), or sometimes the Capacitated Concentrator Location Problem (CCLP).
This problem was successfully used in Chapter 14 as a framework for solving the
Capacitated Vehicle Routing Problem.

Using the same decision variables as in the p-Median Problem, we formulate
the single-source CFLP as the following integer linear program.

n m m
Min Y% X+ Y fY;
=1

i=1 j=1
s.t. Zm:X,-j = ] Vie N (12.6)
j=1
iwiX,-j <gq;Y; VieM (12.7)
‘Z,-,Yj € {0,1} VieN, jeM. (12.8)

Constraints (12.6) (along with the integrality conditions (12.8)) ensure that each
retailer is assigned to exactly one warehouse. Constraints (12.7) ensure that the
warehouse’s capacity is not exceeded, and also that if a warehouse is not located
at site j, no retailer can be assigned to that site.

Let Z* be the optimal solution value of single-source CFLP. Note we have re-
stricted the assignment variables (X) to be integer. A related problem, where this
assumption is relaxed, is simply called the (multiple-source) Capacitated Facility
Location Problem. In that version, a retailer’s demand can be split between any
number of warehouses. In the single-source CFLP, it is required that each retailer
have only one warehouse supplying it. In many logistics applications, this is a
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alistic assumption since without this restriction optimal solutions .might have a
etailer receive many deliveries of the same product (egch for, cor_lcewably, a very
mall amount of the product). Clearly, from a managerial, marketing and.account-
ng point of view, restricting deliveries to come from only one warehouse is a more
E iate delivery strategy. .

: apgzsle);:lit:lgorithrrzs have been proposed to solve the .CF.‘LP in the literature; all
are based on the Lagrangian relaxation techniqule. This includes Neebe and'RkA(;
=8 (1983), Barcelo and Casanovas (1984), Klincewicz afld Luss (.1986) axlld Pirku

B (1987). The one we derive here is similar to the algorithm of Pirkul which seems

5 most effective. '
tOVt\)fiz T}fply the Lagrangian relaxation techniqge by including constraints (12.6)
B 0 the objective function. For any A € IR"™, consider the following problem Pjy.

mn

m m n m
Y X+ Y%+ Y (X 1)
j=1 i=1 j=1

i=1 j=1

Min

subject to (12.7) — (12.8).
Let Z be its optimal solution and note that
Zy < Z*, YAe R".

To solve Py, as in the p-Median Problem, we separate the probl.em ‘by site. I_E‘or
a given j € M, define the following problem P}, with optimal objective function

value Z7:

n

Min Z(Ci] + X)Xy + £iY;
=1
s.t Z w; Xi; < q;Y;
.é t=1
X;; € {0,1} Vie N
« Y; € {0,1}.

Solving P

Problem Pj can be solved efficiently. In the optimal solution to P§, Y; is e.i:cher
Oor 1. If Y; = 0, then X;; =0 for all i € N. If Y; = 1, then the prgblem is no
more difficult than a single constraint 0-1 Knapsack Probllem, for which efﬁculant
algorithms exist; see, for example, Nauss (1976). If thf: optlm?l.knapsack sqlutfon
is less than —f;, then the corresponding optimal ‘solut‘lon. to 1.3’\ is found by s-e?;ltmg‘;
Y; = 1 and X; according to the knapsack solut101.1, u}dlcatmg whether retai ea;le
is assigned to site j. If the optimal knapsack solution is more than —fj. then the
optimal solution to Pj is found by setting ¥; = 0 and X;; =0 for alli e V.
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The solution to Py is then given by

Zy = i‘zﬁ - i,\,-.
Jj=1

i=1

For any vector A € IR", this is a lower bound on the optimal solution Z*. In order
to find the best such lower bound we use a subgradient procedure.

Note that if the problem has a constraint on the number of warehouses (facilities)
that can be opened (chosen), this can be handled in essentially the same way as
it was handled in the algorithm for the p-Median Problem.

Upper Bounds

For a given set of multipliers, if the values {X} satisfy (12.6), then we have
an optimal solution to Problem P, and we stop. Otherwise, we perform a simple
subroutine to find a feasible solution to P. The procedure is based on the observa-
tion that the knapsack solutions found when solving P, give us some information
concerning the benefit of setting up a warehouse at a site (relative to the current
vector A). If, for example, the knapsack solution corresponding to a given site is
0, that is, the optimal knapsack is empty, then this is most likely not a “good”
site to select at this time. In contrast, if the knapsack solution has a very negative
cost, then this is a “good” site. Given the values Z3 for each j € M, let 7 be a
permutation of 1,2,...,m such that

The procedure we perform allocates retailers to sites in a myopic fashion. Let
M be the minimum possible number of warehouses used in the optimal solution
to CFLP. This can be found by solving the Bin-Packing Problem defined on the
values w; with bin capacities Qj; see Section 3.2. Starting with the “best” site, in
this case site (1), assign the retailers in its optimal knapsack to this site. Then,
following the indexing of the knapsack solutions, take the next “best” site (say site
J = m(2)) and solve a new knapsack problem: one defined with costs Cij =cij+ A\
for each retailer ¢ still unassigned. Assign all retailers in this knapsack solution to
site j. If this optimal knapsack is empty, then a warehouse is not located at that
site, and we go on to the next site. Continue in this manner until M warehouses
are located.

The solution may still not be a feasible solution to P since some retailers may
not be assigned to a site. In this case, unassigned retailers are assigned to sites
that are already chosen where they fit with minimum additional cost. If needed,
additional warehouses may be opened following the ordering of 7. A local im-
provement heuristic can be implemented to improve on this solution, using simple
interchanges between retailers.

Computational Results
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We now report on various computational experiments using this algorithm. The
retailer locations were chosen uniformly over the unit square. Again, for simplicity,
we made each retailer location a potential site for a warehouse; thus, m = n. The
fixed cost of a site was chosen uniformly between 0 and 1. The cost of assigning a
retailer to a site was the Euclidean distance between the two locations. The values
of w; were chosen uniformly over the interval 0 to % with warehouse capacity equal
to 1. We applied the algorithm mentioned above to ten problems and recorded the
average relative error of the best solution found and the average computation time
required. The algorithm is terminated when the relative error is below 1% or when
a prespecified number of iterations is reached. The numbers below “Error” are the
relative errors averaged over the ten randomly generated problem instances. The
numbers below “CPU Time” is the CPU time averaged over the ten problem
instances. All computational times are on an IBM Risc 6000 Model 950.

Table 2: Computational results for the
single-source CFLP algorithm

n  Error CPU Time
10 1.2% 1.2s

20 1.0% 8.1s

50 1.1% 110.0s
100 1.1% 558.3s

12.4 A Distribution System Design Problem

So far the location models we have considered have been concerned with minimiz-
ing the costs of transporting products between warehouses and retailers. We now
present a more realistic model that considers the cost of transporting the product
from manufacturing facilities to the warehouses as well.

Consider the following warehouse location problem. A set of plants and retailers
are geographically dispersed in a region. Each retailer experiences demands for a
variety of products which are manufactured at the plants. A set of warehouses
must be located in the distribution network from a list of potential sites.

The cost of locating a warehouse includes the transportation cost per unit from
warehouses to retailers but also the transportation cost from plants to warehouses.
In addition, as in the CFLP, there is a site-dependent fixed cost for locating each
warehouse.

The data for the problem are the following.

e L = number of plants; we will also let L = {1,2,...,L}
e J = number of potential warehouse sites, also let J = {1,2,...,J}
e [ = number of retailers, also let I = {1,2,... T}

e K = number of products, also let K = {1,2,...,K}
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e W = number of warehouses to locate

e cz,k, = cost of sh1pp1ng one unit of product & from plant £ to
warehouse site j

d;ir = cost of shipping one unit of product k& from warehouse
site j to retailer 7

f; = fixed cost of locating a warehouse at site j

ver = supply of product k at plant ¢

e w;; = demand for product k at retailer ¢

® 5; = volume of one unit of product k

e g; = capacity (in volume) of a warehouse at site j

We make the additional assumption that a retailer gets delivery for a product
from one warehouse only. This does not preclude solutions where a retailer gets
shipments from different warehouses, but these shipments must be for different
products. On the other hand, we assume that the warehouse can receive shipments
from any plant and for any amount of product.

The problem is to determine where to locate the warehouses, how to ship the
product from the plants to the warehouses and also how to ship the product from
the warehouses to the retailers. This problem is similar to one analyzed by Pirkul
and Jayaraman (1996).

We again use a mathematical programming approach. Define the following de-
cision variables:

1, if a warehouse is located at site 7,

Y—:
. {0,

Upjx = amount of product k shipped from plant ¢ to warehouse 7,

otherwise,

and

foreach £ € L, j € J and k € K. Also define:

1,
Xjip =
Hx {0, otherwise,

if retailer i receives product k from warehouse 7,

foreachje J,ieland k € K.
Then the Distribution System Design Problem can be formulated as the follow-
ing integer program.

L J K I J K J
Min ZZ Z ceikUejk + Z Z Zdjikwiichik + ijyj
=1 j=1k=1 =

i=1 j=1 k=1 j=1

i
{%

4

=
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- 5.t Z X =1 viel, ke K (12.9)
I K
3 Zskwik.‘(ﬁk <qY; Vield (12.10)
i=1 k=
I L
Y waXji = Uk Vi€J keK (12.11)
i=1 =1
J
Z Lk < Vek Vel ke K (12.12)

j=1
XJ: (12.13)

(12.14)
(12.15)

Viel,je Jke K
Vvie L,je J k€ K.

l/:i’in‘i € {0,1}
Uf;k >0

The objective function measures the transportation costs between plants and ware-
houses, between warehouses and retailers and also the fixed cost of locating the
warehouses. Constraints (12.9) ensure that each retailer/product pair is assigned to
one warehouse. Constraints (12.10) guarantee that the capacity of the warehouses
is not exceeded. Constraints (12.11) ensure that there is a conservation of the flow
of products at each warehouse; that is, the amount of each product arriving at a
warehouse from the plants is equal to the amount being shipped from the ware-
house to the retailers. Constraints (12.12) are the supply constraints. Constraints
(12.13) ensure that we locate exactly W warehouses.

The model can handle several extensions such as a warehouse handling fee or a
limit on the distance of any link used just as in the p-Median Problem. Another
interesting extension is when there are a fixed number of possible warehouse types
from which to choose. Each type has a specific cost along with a specific capacity.
The model can be easily extended to handle this situation (see Exercise 12.1).

As in the previous problems, we will use Lagrangian relaxation. We relax con-
straints (12.9) (with multipliers A;x) and constraints (12.11) (with multipliers 6;).
The resulting problem is:

L J K J I K J
Min ZZ Zijkajk o+ Z Z ZdjiktUikaik + ijyj

=1 j=1 k=1 j=11i=1k=1 J=1
J K I L I K J
+Y°) ik [Zwikxjik—z[]fjk]+ZZ/\ik{1_z~ ;,-ik]:
j=1 k=1 =1 i=1 i=1 k=1 j=1

subject to (12.10), (12.12) — (12.15).

Let Zy 4 be the optimal solution to this problem. This problem can be decom-
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posed into two separate problems P; and P,. They are the following.

L J K
Problem P, : Z; =Min Z Z Z[Ctjk — 0k)Usjx

£=1j=1 k=1
J
st Y Upk<va,VeeL keK (12.16)

=1
Uik 20, VeeL,jeJkeK.

K J
Problem Pg : ZQ =Min Z Z Z[dj;‘kﬂ)ik == )\ik + ijwik]Xﬁk + Z'fJYJ

j=11i=1k=1 j=1
I K
s.t. ZZskwikXﬁk <gqY;, VjelJ (12.17)
i=1 k=1
J
> Y; =P, (12.18)
=1

Y;’:ij'k € {0,1}, Viel,jeJkeK.

Solving P,

?rot_)lem P can be solved separately for each plant/product pair. In fact, the
objective functlons of each of these subproblems can be improved (without loss in
computation time) by adding the constraints:

L
kY Uyk<q, Vi€l keK. (12.19)
=1
For each plant /product combination, say plant £ and product k, sort the J values
€j = Cgjk — Ojk. Starting with the smallest value of ¢j, say ¢;r, if € > 0, then the
solution is to ship none of this product from this plant. If cpjp < 0,_then ship as
much of this product as possible along arc (¢, ;' ) subject to satisfying constraints
(12.16) and (12.19). Then if the supply vgx has not been completely shipped, do
the same for the next cheapest arc, as long as it has negative reduced cost 1(E).
Continue in this manner until all of the product has been shipped or the reduced
costs are no longer negative. Then proceed to the next plant/product combination
repeating this procedure. Continue until all the plant/product combinations have
been scanned in this fashion.

Solving P

Solvifzg Problem P, is similar to solving the subproblem in the CFLP. For now
we can ignore constraints (12.18). Then we separate the problem by warehouse. In
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L the problem corresponding to warehouse j, either Y; =0 or ¥; = L. If Y; = 0, then
E X =0 foralli € N and k € K. IfY; = 1, then we get a Knapsack Problem with
| NK items, one for each retailer /product pair. Let ZJ be the objective function
. value when Yj is set to 1 and the resulting knapsack problem is solved. After

W E
Z, =Y 739,
i=1
For fixed vectors A and 8, the lower bound is
I K
Zyo =21+ 2o+ ZZ)\ik-
i=1 k=1
To maximize this bound, that is,

max{Zxs},
A9 { )“9}.
we again use the subgradient optimization procedure.

Upper Bounds

At each iteration of the subgradient procedure, we attempt to construct a fea-
sible solution to the problem. Consider Problem Ps. Its solution may have a re-
tailer /product combination assigned to several warehouses. We determine the set
of retailer /product combinations that are assigned to one and only one retailer and
fix these. Other retailer/product combinations are assigned to warehouses using

~  the following mechanism. For each retailer/product combination we determine the

cost of assigning it to a particular warehouse. After determining that this assign-
ment is feasible (from a warehouse capacity point of view), the assignment cost is
calculated as the cost of shipping all of the demand for this retailer/product com-
bination through the warehouse plus the cost of shipping the demand from the
plants to the warehouse (along one or more arcs from the warehouse to the plants).
For each retailer/product combination we determine the penalty associated with
assigning the shipment to its second best warehouse instead of its best warehouse.
We then assign the retailer/product combination with the highest such penalty
and update all arc flows and remaining capacities. We continue in this manner
until all retailer/product combinations have been assigned to warehouses.
Computational results for this problem appear at the end of Chapter 17.
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12.5 The Structure of the Asymptotic Optimal Solution 2.6 Exercises

In this section we describe a region partitioning scheme to solve large instances of
the CFLP.

Assume there are n retailers located at points {z,,z,,...,z,}. Each retail
also serves as a potential site for a warehouse of fixed capacity g. The fixed cost
of locating a warehouse at a site is assumed to be proportional to the distance the
site is from a manufacturing facility located at xo which is assumed (without logg
of generality) to be the origin (0, 0). Retailer i has a demand w; which is assumed
to be less than or equal to q- Without loss of generality, we assume ¢ = 1 and
therefore w; € [0, 1] for each i € N. Let a be the per unit cost of transportation
between warehouses and the manufacturing facility, and let 3 be the per unit cost
of transportation between warehouses and retailers.

We assume the retailer locations are independently and identically distributed
in a compact region 4 c JR2 according to some distribution x. Assume the retailer
demands are independently and identically distributed according to a probability
measure ¢ on [0, 1]. The bin-packing constant associated with the distribution o
(denoted by v, or simply ) is the asymptotic number of bins used per item in an
optimal packing of the retailer demands into unit size bins, when items are drawn
randomly from the distribution @ (see Section 4.2).

The following theorem shows that if the retailer locations and demand sizes
are random (from a general class of distributions), then as the problem size in-
creases, the optimal solution has a very particular structure. This structure can
be exploited using a region partitioning scheme as demonstrated below.

¢ Exercise 12.1. In the Distribution System Design Problem, explain how the
olution methodology changes when there are a fixed number of possible warehouse
capacities. For example, at each site, if we decide to install a warehouse, we can

nstall a small, medium or large one.

3 Exercise 12.2. Prove Theorem 12.5.1.

® Exercise 12.3. Show how any instance of the Bin-Packing Problem (see Part I)
§ can be formulated as an instance of the Single-Source CFLP.

: i i Section 12.4.
E  Exercise 12.4. Consider Problem P of . o
' (a) Show that this formulation can be strengthened by adding the constraints:

L K
YN slUyk<q;, Vield
=1 k=1

(b) Show that this new formulation can be transformed to a specialized kind of

linear program called a transportation problem. -
(¢) Why might we not want to use this stronger formulation?

Exercise 12.5. (Mirchandani and Francis, 1990) Define the Uncapacitated Facil-
ity Location Problem (UFLP) in the following way. Let F; be the fixed charge of

opening a facility at site j, for j =1,2,..., m.

n m m
Problem UFLP : Min Y > cyXi;+ Y FY;
Jj=1

i=1 j=1

st Y Xy=1, VieN
1=1

Xij<Y;, VieN, jeM
Xi;,Y;€{0,1}, VieN, je M.

Theorem 12.5.1 Let zy, k = L,2,...,n be a sequence of independent random
variables having a distribution p with compact support in IR?. Let ||z|| be the Eu-
clidean distance between the manufacturing facility and the point z R?, and
let

E(d) = / lzlldu(z).

Let the demands wy, k= 1,2, ... »n be a sequence of independent random variables
having a distribution ¢ with bin-packing constant equal to . Then, almost surely,

lim %Z; = a'}/E‘(d).

n—og
. ; . Show that UFLP is ANP-Hard by showing that any instance of the A'P-Hard
This analysis demonstrates that simple approaches which consider only the ge- 3 Node Cover Problem can be formulated as an instance of UFLP. The Node Co\fer
ography and the packing of the deinands can be very efficient on large problem Problem is defined as follows: given a graph G and an integer k, does there exist
instances. Asymptotically, this is in fact the optimal strategy. This analysis also g a subset of k nodes of G that cover all the arcs of G? (Node v is said to cover arc

demonstrates that, asymptotically, the cost of transportation between retailers and

i if v is an end-point of e.)
warehouses becomes a very small fraction (eventually zero) of the total cost. £: P

3 Exercise 12.6. (Mirchandani and Francis, 1990) It appears that the p.-Median
7 problem can be solved by solving the resulting problem UFLP (see Exercise 12.5)
for different values of F' = Fj, Vj, until a value F* is found where the UFLP opens
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exactly p facilities. Show that this method does not work by giving an instance
of a 2-Median problem for which no value of F provides an optimal solution to

UFCLP with two open facilities.

VEHICLE ROUTING MODELS

‘-
5
:
=
%
g
-
=
£




