Testing Mixed Logit and Probit

Models by Simulation

Marcela A. Munizaga and Ricardo Alvarez-Daziano

Discrete choice models with error structures that are not independent
and identically distributed haver eceived enormousattention in therecent
literature. A detailed synthetic study teststhistypeof model in acontrolled
case. With mixed logit and probit modelsasthe study objects, calibration
wasimplemented with the use of softwar eavailableon thelnternet. The
controlled situation wasbuilt asa simulation labor atory, which gener ated
databaseswith known parameters. Theeffectsof variouselementswere
analyzed: number of repetitionsof thesimulation, number of observations
inthedatabase, and how theuse of Halton sequencesimprovesthe mixed
logit calibration. Thescaleeffectson thedifferent modelsar ealso discussed.
The results obtained in this specific context lead to some recommenda-
tions for future users of these power ful modeling toals. In particular,
flexiblestructuresrequirelargesamplesizesto calibr atethe elementsof
the covariance matrix.

During the past decade, remarkabl e advances have been madein the
cdibration of discrete choice modelsthat are not independent and iden-
tically distributed (i.e., non-11D). Various model possibilities have
become available, such asthe multinomial probit (1), heteroscedastic
extremevaluelogit (2), and mixed logit (ML) (3), the most popular.
Even though none of these modelsisreally new conceptualy, al their
calibration is now feasible computationally, such that it is possible
totakefull advantage of their flexibility. Practitionersand researchers
arewilling to movefrom the multinomial logit (MNL) and nested logit
(NL) models, which were the standard until only a few years ago,
toward these more general models—specifically toward ML.

This paper focuses on the ML model, which is becoming popular,
and the probit model, which has been available longer but does not
appear as popular. In both models, the likelihood function cannot be
evaluated directly, and simulation or other approximation methods
must be used. The modeler must weigh various aspectsto determine
themodel to be used in aspecific problem, the number of observations
to collect, and the number of repetitions of the simulation procedure
required. To assess how these key elementsinfluencethe estimation
procedure, asimulation experiment was conducted according to the
methodology proposed by Williams and Ortlzar (4) and applied by
Munizagaet al. (5). Both the number of repetitions of the simulation
and the number of observations were varied, and then the model
behavior was analyzed. In addition, analysis was performed on the
behavior of the simpler models (MNL and NL) in the case of amore
complex reality in which non-11D errorsare present. Model behavior
was analyzed in three dimensions: capability to recover the indirect
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utility function parameters, behavior of the likelihood function, and
prediction capabilities.

The next section describesthe differences between and similarities
of ML and probit in theoretical terms, with emphasison those aspects
that have practical consequences and are worth exploring with the
simulation experiments. Then, adetailed description of thesimulation
procedurefollows, and the simulation results are presented and ana-
lyzed. Finally, a synthesis of the conclusions of the whole process
is presented.

DIFFERENCES AND SIMILARITIES BETWEEN
MIXED LOGIT AND PROBIT

The ML model (also known as error components or kernel logit) is
built on the basis of an MNL model by including additional error
terms to impose the desired non-11D effects. So the utility function
of alternativei for individual n (U,,) isdefined as

Uin = Vin + T]irl + €in (1)

where

Vi, = deterministic component of utility,
Nin = any density function, and
€, = |ID Gumbel error term.

Conditional inm, the choice probabilities are exactly those of the
MNL model. But the choice probability of thismodel, represented by
the MNL kernel integral over n, does not have a closed mathemati-
cal expression as the MNL or NL models do. Because the choice
probability integral cannot be solved analytically, simulationis used
toevaluateit. Theestimation procedureiswell described by Train (6)
and, in acomplementary paper, by Hensher and Greene (7).

On the one hand, it can be said that the ML modd is built on the
assumption of additional error termsthat may imply aheteroscedastic
and correlated covariance matrix. On the other hand, amultinomial
probit is derived on the assumption that, given autility function U;, =
Vi, + €, thevector €,= (€1, - . - , €n, - - - , €5) distributesmultivariate
normal with X covariance matrix; only one error term is assumed,
but it can have ageneral covariance matrix. The probit model does
not have a closed-form expression of the choice probability either, so
it becomes necessary to use approximation or simulation. Presently,
the most used estimation method is probably the simulated maxi-
mum likelihood with the Geweke—Hagjivassiliou—K eane (GHK) sim-
ulator (8), which recursively reduces the dimension of the integral
up to an equivalent problem in which repetitions of atruncated uni-
dimensional normal are required. The simulated probabilities are
unbiased, continuous, and differentiable.

Thesmulationsfor the probit and ML modelshavedifferent dimen-
sions analytically (and therefore computationally): the number of
alternatives minus one for the probit model (because it is based on
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utility differences) and the number of random terms plus the basic
Gumbel term for the ML model.

Both models are subject to identifiability restrictions that have
been studied and are now well known (9). Apart from thetraditional
identifiability restrictions that apply to all discrete choice models
because the decisions are determined by utility differences, some
specia conditions must beimposed in the deviated covariance matrix
to ensure identifiability of the additional parameters.

Also related to this subject isthe scale effect. All discrete choice
models must be scaled to become identifiable. For MNL models, the
calibrated parametersare scaled by afactor equal towt /66 that can-
not beidentified. Thiseffect also appearsinthe ML and probit case.
For the probit model, the exact factor depends on how the covari-
ance matrix isnormalized. However, for the ML moddl, itisunclear.
The problem for the specific model presented is discussed in the
following section.

DESCRIPTION OF SIMULATION EXPERIMENTS

The simulation experimentswereimplemented asarealistic caseon
the basis of transport mode choice in which only the values of the
explanatory variables and the chosen option were availablein the esti-
mation process, and they were consistent with the random utility
maximization theory. The error distribution assumed was consi stent
with ML in the case of correlation between alternatives.

The data setswere generated by computing the simulated choicefor
each observation asthe alternative that hasthelargest utility (U,).
Those utilitieswere cal cul ated asthe sum of the observable component
Vi, (sum of thetaste parameterstimesthe corresponding attributes) and
the error terms sampled according to the selected distributions. The
attributes, generated by pseudo random sampling, weretravel cost,
travel time, and accesstime for each of four modes (car, bus, metro,
and taxi) and a binary dummy variable for high income added to the
car utility. Thetimeand cost attributeswere normally distributed, with
mean and variance taken from areal database. The parameters of the
utility function, also taken from model sfitted to rea data, were—0.005
for cost, —0.08 for travel time, and —0.16 for access time. The magni-
tude of the variances of the error terms was chosen to achieve area
sonable bal ance between the number of individua swho would change
the chosen option due to the error term and those who would not.

Thefocuswas on acaseinwhich busand metro (underground) are
considered similar alternatives, which isthe classic reason to expect
correlation among modes from unobservable effects. To build the
stochastic part of the utility function, the nested ML specification
proposed by Brownstone and Train (3) was used; it includesan error
€ 11D Gumbel (0, A) and an error W, distributed normal (0, 63) that
captures the potential correlation in nest n. This specification leads
to acorrelated and heteroscedastic covariance matrix:

Ucar,n = Vcar,n + €car,n
Ubusn = Vbus,n + Mn + ebusn

Umetro,n = Vmaro,n + U, + € metro,n

Utaxi,n = \/taxi,n + etalxi,n

o’ 0 0 0
0 o:+o! o; 0
z= @)
0 ol oi+o0: O
0 0 0 (o
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Thismatrix is heteroscedastic because the variance of |, isadded to
that of the IID Gumbel term of the MNL kernel. Also implemented
wasthe homoscedastic case by inclusion of an additional 11D normal
(0, o) term for the nonnested alternatives to make the covariance
structure equivalent to that of the NL model. (Thisadditional term
isdifficult to justify because it does not have a direct theoretical
interpretation.)

can = Voer,n + My + Ecar,n
= Vbusn + ”’n + ebusn
= Vme(ro‘n + My + € metron

= Vuao(i.n + p’taxi + ensxi.n

o.+c? 0 0 0

busn

metro,n

u
u
U
Utaxi,n

T= ) ) €)

Model performance was tested in terms of ability to recover the
known taste parameters and correlation and in terms of prediction
capabilities. Recovery of thetaste parameterswas eval uated by using
the classical statistical indicators of t-test and confidence interval
and by considering the scale effects. In some cases, the scale effect
isclear and can easily be incorporated to allow direct comparisons
between the calibrated parameters and the values used to generate the
data. However, in other cases, the scale effect cannot beisolated, which
makes comparisons more difficult. Those cases are highlighted.

A response analysis was carried out by implementation of some
changesin the variables for level of service that represent policy
changes and eval uation of the model predictionsin those modified
scenarios. The reference used to make comparisonsisthe simulated
behavior—abtained asthe predictions of the simulator—in the same
modified scenario. For this case, the simulator used the known taste
parameters and the modified variablesfor level of service. The predic-
tionsof two modelscalibrated with the same database a so can be com-
pared. The adequate tool for these comparisons is the y? test (10),
calculated as x° = ?(Ni - N )Z/Ni, where N isthe number of indi-
vidualsthat choose alternativei according to the prediction made by
the model and N, is the number of individuals choosing alternative
i according to the simulator.

IMIODEL ESTIMATION AND
ANALYSIS OF RESULTS

With the data sets generated as described and with observations of
the chosen option and the attribute val uesfor the complete choice set,
the choice model swere estimated through maximum likelihood using
GAUSS software (11). An algorithm was implemented to estimate
probit modelsin GAUSS using the simulated maximum likelihood
(12) approach with the GHK simulator (1, 8) for the choice proba-
bilities. The ML code (13) devel oped by Train was downloaded from
his web page (14). The two available procedures for generating
random numbers were used: pseudo random numbers and quasi-
random numbers (Halton sequences). The use of pseudo random num-
bersisthe usual procedure to obtain random draws. Quasi-random
numbersareadeterministic seriesthat coverstheintegration domain
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inamore efficient way. One of these seriesis a Halton sequence. It
isproposed astheway to make drawswhen estimating an ML mode!;
Williams and OrtUzar provide an informative discussion on the use
of Halton sequences (4). The MNL and NL models calibrated were
also implemented in GAUSS with the use of a custom code that is
very easy to program.

The specification of each model was as similar as possible to the
specification used to generate the data for each case. The determin-
istic component of the utility function alwayswasthe same, including
mode constants, travel time, accesstime, and cost parametersaswell
asanincomedummy variablefor the car aternative. Theerror struc-
tures used for generating the data are presented in Equations 2 and 3.
Itisimportant to make clear how thiserror structure was specified for
calibration purposes, becauseit affectsthe scale of themodel param-
eters. For the MNL model, the covariance matrix isasshown in Equa-
tion 4, inwhich neither correlation nor heteroscedasticity isallowed.
The scale parameter Ay isnot identifiable, and the taste parameters
calibrated will have that factor included. Scaling and identifiability
issues can be discussed only because the dataare synthetic; it would
not be feasiblewhen using real data. The normalization strategy that
warranties identifiability is trivial for the MNL model but more
difficult in complex error structures.

1 0 0 0
20 1 0 0

B medlo o 1 o @
0 0 o0 1

Because L =1 /60, if thevarianceis 62 = 1?6, then A will be equal
to unity.

In the case of NL, the covariance matrix is as described in Equa-
tion 5. Thismodel is homoscedastic but allows capturing correla-
tion by the structural parameter ¢ that can be estimated. Asin the
MNL case, the scale parameter Ay, is nonidentifiable and will be
incorporated into the taste parameters calibrated.

1 0 0 0
2 |0 1 1-¢* 0
= 2z (5)
M [0 (1-¢?) 1 0
0 0 0 1

Inthecase of ML, both casesused to generate the datacan beimple-
mented: homoscedastic and heteroscedastic. In the heteroscedastic
case, the covariance matrix of Equation 2 also can be written asin
Equation 6, in which the variance of the Gumbel error iswrittenin
terms of the scale parameter A.. The variance of the common error
component (o3) is introduced to capture correlation; it can be esti-
mated withinthe model calibration processbut will be subject to the
scale effect 6, = A 0, That variance is associated with only one
additional error term (,), so the dimension of the simulation required
to calibrate the model is equal to one. The homoscedastic case
described by Equation 3 hasthree additional error terms (pea, Hn, and
Maxi), SO thedimension of thesimulation required isthree. But all three
error terms have the same variance (to achieve homoscedasticity),
sointhis case also, only o is caibrated.
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Inthe probit case, the heteroscedastic and homoscedastic structures
can also be accommodated. The heteroscedastic matrix is shownin
Equation 7. Itiswrittenin termsof theindependent alternativeserror
variance o and the covariance o;. To be ableto calibrate the model,
the basic scale must be fixed. This was accomplished by setting 62
to its known value. In doing this, the scale is forced to be equal to
unity, which simplifies comparisons. In the homoscedastic case, the
only difference isthat the entire diagonal will be equal to the terms
at the center of the matrix.

M1 0 0 0]
0 o; + G4 oL 0
2 2
1 Op Ob
so L ™
b 0 o, o,+o; 0
2 2
Gp Op
o o 0 1)

Number of Repetitions

Because ML and probit models require simulation to be estimated,
the authors wanted to examine the behavior of the estimates when
varying the number of repetitions of the simulation procedure and
also when using Halton sequencesin the ML model. Here, adatabase
of 4,000 hypothetical individual swas used and a choice made among
four aternatives. The error structure is that shown in Equation 3
(homoscedastic), with acorrelation of 0.5for Alternatives2 and 3. The
number of simulation repetitions for the estimation procedure was
varied from fiveto 1,000. In this case, the dimension of thesmulation
for the probit model isthree (four modes), equal to the dimension of
the ML (three additional error terms).

Themorerelevant parameters of the calibration resultsare reported
in Table 1 for the probit model and for the ML model calibrated with
pseudo random numbers (MLR) and with quasi-random numbers
(MLH). A “target value” referenceisincluded for comparison—that
is, the original parameter (the one used to generate the data), scaled
appropriately. Because the covariance structure is known, the scale
parameter can be calculated in this case, as demonstrated in the pre-
vious section. The subjective value of time (SVT) is calculated as
theratio between timeand cost parameters; the scale cancelsout. The
t-vauefor the SVT iscalculated with aformuladerived from aTaylor
expansion (15).

The results for the probit model estimation indicate that the
parameters stay stable, even for alow number of repetitions. SVT is
systematically overestimated and the correl ation systematically under-
estimated. The taste parameters—and consequently the SVT—are
quite stable, whereas correlation is detected with increasing accuracy
as the number of repetitions of the simulation increases.
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At first glance, the point estimates of the ML parameters seem to
vary morethan the probit parameters with the number of repetitions
of the simulation. However, in this case, the scale effect is present
inacuriousmanner. The scalefactor dependson only the Gumbel part
of the error variance. This database was built in such away that the
total varianceis equal to n%/6 such that the scale parameter A should
be equal to unity if an MNL model were calibrated; however, in the
ML case, A will depend on how much of that variance can be associ-
ated to the Gumbel term. Becausein this case p = 0.5, the scale factor
isequal to V2 andthe target values are the origina taste parameters
timesthat factor. However, the calibrated parameters are affected by
ascale effect that depends on the magnitude of the correlation actu-
ally calibrated by the model. When the number of repetitionsistoo
small, themodel cannot capture correlation effects, the Gumbel term
explains aimost all the variance, and the scale factor is almost one
(not V2, asit should be). The ML parameters reported in Table 1
indicatethat the empirical ratio between the calibrated and true param-
etersvariesfrom an average of 0.7 to an average of 1.0, whereasthe
corresponding correlation parameters detected vary fromlessthan 0.03
tomorethan 1.2. Sothe scale effect isvariable, rel ated to the balance
between the Gumbel (independent) and the normal (commontoinduce
correlation) components of the error term.

AsTable 1 shows, in the case of probit, the smaller values of com-
puting time were not obtained for the lower number of repetitions.
An unstable behavior makesthe process convergein moreiterations,
and even though each of those iterations take less time, the imple-
mentation with five repetitionstook moretotal timeto convergethan
that with 10 and even 25 repetitions.

Asfor theimplementations with pseudo random numbers (MLR)
and Halton random numbers (MLH), the values obtained from both
are very close, including the statistics. However, in terms of corre-
lation coefficient recovery, 50-repetition MLH hasabehavior equiv-
alent to 500-repetition MLR in terms of the confidence interval and
the t-statistic against the target value.

In terms of processing time, in this implementation the use of
Halton sequences appeared to improve efficiency for amoderate num-
ber of repetitions (25 to 250). Asthis number increased, the pseudo
random number implementation was faster; the reason isthat, when
the number of repetitionsis too high, the Halton sequences imple-
mentation requiresahuge amount of memory to storethe series, which
could cause alack of efficiency in the process. The processing time
for probit was notoriously longer than that for either ML implemen-
tation. Of course, that is aresult of this particular implementation,
and more efficient codes probably are available to estimate both ML
and probit; it isnot known what the relation would be with processing
time in those implementations. However, these values correspond
to easily accessible codes.

Asfor model capacity to detect correlation, Figure 1illustratesthat
the probit model can obtain biased punctual parameters. Even when
the number of repetitionswasincreased, the parameters stabilized in
avalue different from the real parameter. However, the confidence
intervals appear appropriate (the real parameter is contained in the
interval) starting from 50 repetitions. Withan MLR, the s, estimation
isappropriate from 100 repetitions. In general, the confidence interval
for this parameter is adequate, but it presents a peculiar behavior for
50 repetitions (acheck showed that it was not an error) in which the
t-valuesare particularly high. When MLH isused, the parameter that
captures correlation is unbiased. When the number of repetitionsis
increased, the parameter becomes stable, taking avaluevery closeto
the real parameter. In terms of number of repetitions, this behavior
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isachieved earlier than in the MLR implementation (25 repetitions
versus 100).

Because the objective function in this optimization processisthe
(simulated) log likelihood, examination of its behavior was consid-
ered important. (Figure 2). A curious situation is observed for the
probit model, because the highest valuein the averagelog likelihood
was obtained for 50 repetitions (—1.04472); it decreases with addi-
tional repetitions and stabilizes at a value lower than the maximum
(—1.04519 for 1,000 repetitions). The MLH achieved log likelihood
valueslarger than —1.045 for 25 repetitions, nearing —1.044 asthey
increased. In contrast, the MLR reached values greater than —1.045
starting from 250 repetitions.

To take this comparison a step further, the prediction capabilities
of themodels are evaluated by means of the response analysis; results
arereportedin Figure 3. The probit model achieved valuesunder the
critical value () 3s,; = 7.815) starting from 10 repetitions and quickly
stabilized at very low values, near 3.5. In contrast, the MLH achieved
valuesunder thecritical valuefor at least 25 repetitions, whereassMLR
didit from 200 repetitions. The M LH stabilized at 5.4 (100 repetitions)
andthe MLR at 5.8 (500 repetitions). In that sense, probit and MLH
behave better than MLR.

Number of Observations

This section reviews how NL, ML, and probit models behave when
the sample size is varied. The databases were generated assuming
homoscedasticity and correlation (asin Equation 3). In this particu-
lar case, NL isas appropriate asNML or probit to represent the cor-
relation structure. To estimate the probit model, the GHK simulator
with 10 repetitionswas used and for the ML, 200 Halton repetitions
(following recommendations from previous studies, even though it
was found herethat it would be possible to work with alower num-
ber). Estimation resultsarereported in Table 2. Thetarget valuesfor
the taste parameters reported include scaling for ML (calculated as
described in the previous section). For both probit and NL models,
the scale factor isequal to unity, so the target values are directly the
taste parameters used for generating the database. The target value
for the structural parameter of the NL model (¢) was calculated
as 41— p with p equa to 0.5 (a direct result of the covariance
matrix presented in Equation 5).

TheNL mode recoversthestructural parameter well, evenfor small
sample sizes; a sample size under 8,000 NL has some difficulty
reproducing certain parameters (e.g., travel cost). Theresultsfor the
probit model show that, peculiarly, quite good resultsare obtained for
the smallest samplesize. Excluding thisspecial case, the estimations
improved when the sample size wasincreased, especialy inregard
to correlation. But the estimate of the standard deviation of the com-
mon stochastic term that causes correlation remained below the tar-
get value, even for arather high sample size (16,000 observations).
InFigure4, correlationisunderestimated. Inthecase of ML, the stan-
dard deviation of the additional stochastic term appears to be well
estimated and significantly different from zero, independent of the
number of observations. An important effect of the sample size on
the confidenceinterval of the parameterswas observed. Apart fromthe
confidence intervals for the parameters associated with correlation
(Figure4), the confidenceintervalsfor the SVT can be derived from
valuesin Table 2. They include thetarget valuein all cases, butitis
acceptable in terms of wideness only in the cases of 4,000 or more
observations.
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For synthesis, sample size is an important variable in the model
capacity to recover the parameters, especially those associated with
correlation. This finding corroborates the results of Munizaga and
Ortlzar (16), who recommend the use of 8,000 observations to
obtain an interesting combination between statistical significance of
the parameters and a good recovery within the confidenceinterval.

Ingenerd, for convergence analysiswith avariable samplesize, the
use of flexible models that allow correlation does not present great
difficulties or a particularly excessive use of resources for samples
of amoderate size. Inthat sense, the probit model behaved better here
than the ML (probit with 10 repetitions, MLH with 200 repetitions),
but as in the previous section, the processing times are presented
and commented only for compl eteness because they depend on the
particular implementation.

Homoscedasticity and Heteroscedasticity

Thenested ML model isnaturally heteroscedastic but can beforced to
homoscedasticity, whereasthe traditional NL model is homoscedastic
by construction. Probit models can accommodate both cases easily.
Toillustrate the differences, acase wasimplemented with 8,000 obser-
vationswith acorrel ation coefficient equal to 0.5 between thebusand
metro alternatives, where 6, = ¢.. The heteroscedastic (Equation 2)
and homoscedastic (Equation 3) databases were used.

The MNL, NL, probit, and ML estimation results are listed in
Table3. Theprobit and ML mode parameterscan be compared directly
with thetarget val ues, because the probit covariance matrix was nor-
malized in away that the scale parameter is equal to unity, and the
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ML parameterswere properly scaled to allow that comparison. They
were divided by the known scale parameter, and enough repetitions
and observations were used to make sure that correlation was well
detected by themodel, so the variable scal e effect mentioned earlier
was not present.

The MNL and NL parameters also can be compared directly with
the targetsin the homoscedastic case because they are affected by a
factor of 1.0. However, the total variance is different for the differ-
ent alternatives in the heteroscedastic case, so it is not known how
the NL and MNL parameterswill be affected by scale effects. Table 3
liststhe parameter estimates for each model, the t-statistic against
zero, and thet-test for the reference value of the parameter for the
ML model. For theNL, thereference value of ¢ isca culated fromthe
simulated correlation.

The ML model allows al the taste parameters used to generate
the database to recover properly, as expected and indicated by the
t-statistic, whichislessthan 1.96 in all cases(Table 3, t-value against
target). In these results, the relationship between the NL estimates
andthe ML estimatesin the heteroscedastic case are highlighted. The
ratio between both parametersin each databaseisrelatively constant
(among implementationswith variable magnitude of correlation, this
ratioislarger in cases of more correlation). It can be explained by the
scal e effect when heteroscedasticity is present, which seemsto affect
all the parameters. In the ML model, the common error component
(1) isfixed to acertain value on each repetition of the simulation.
Therefore, the scale factor of the Gumbel distribution is associated to
thee randomtermonly: A=m «@GE. However, for theNL model, even

dismissing heteroscedasticity, it isthe sum of both error components

TABLE 3 Calibration Results for Heteroscedastic and Homoscedastic Databases

Heteroscedastic Database Homoscedastic Database
Probit 10 Probit 10
Parameter Target  MNL NL Rep ML 200Rep  MNL NL Rep ML 200 Rep
Travel cost -0.005  -0.0070 -0.0070  —0.0049 —0.0055 -0.0053 —0.0052 -0.0041 —0.0049
(-11.4) (-11.3) (-10.9) (-11.0) [-1.0] (-8.9 (-8.5) (-8.1) (-9.7)[0.2]
Travel time -0.08 -0.1044 -0.1005 -0.0702 -0.0804 -0.0835 -0.0760 -0.0614 -0.0791
(-36.6) (-32.0) (-30.8) (-31.2)[-0.1] (-315) (-27.9) (-21.9) (-30.8)[0.3]
Accesstime -0.16 -0.2012 -0.1954 -0.1379 -0.1563 -0.1765 -0.1643 -0.1323 —0.1596
(-47.0) (-41.3) (-35.5) (-36.1) [0.9] (-44.9) (-38.8) (-23.7) (-36.7)[0.1]
Income dummy 1.2 1.4928 1.4755 1.0686 1.1776 1.2454 1.2174 0.9998 1.1866
(24.2) (24.0) (21.3) (215)[-04]  (21.1) (20.8) (15.2) (21.8)[-0.2]
o] 0.71 0.8945 0.7458
(24.0) (22.6)
oy 0.91 0.5100 0.7601 0.5441 0.8472
(4.6) (8.4) [-1.6] (5.9 (9.4) [-0.7]
SVT travel 16 14.9 15.1 14.3 14.6 15.8 14.6 15.0 16.1
(20.9) (10.8) (10.3) (10.4) (8.6) 8.2 (7.6) 9.3
SVT access 32 28.7 27.9 28.1 28.4 33.3 31.6 32.3 32.6
(11.2) (11.0) (10.5) (10.6) (8.8) 8.3 (7.7) (9.9
Iterations 5 5 6 3 5 5 7 2
Average log likelihood 0.9347 -0.9343 —-0.9369 -0.9329 -1.0318 -1.0292 -1.0314 -1.0287
CPU time (min) 0.6 0.8 355 425 0.7 0.8 35.2 152.5
NoTE:

8,000 observations.
Average log likelihood = (log likelihood)/(number of observations).
Estimated parameters, (t-values against zero), and [t-values against target].
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that is supposed to be Gumbel distributed, so the scaleissmaller. If
all the alternatives had had the same variance asthe error term, then
the NL scale factor would have been A =t /4/6(c? + ©%).

The prediction capabilities of the different models are evaluated
with the use of the policy scenario reported in Table 4. In several
cases, the model predictions are significantly different from the vir-
tual redlity. Itistheauthors' position that amodel failsto predict the
market shares when the %2 index is larger than the critical value
(% 3555 = 7-815). The MNL failed in seven of 12 cases (excluding the
base case, in which the market shares always are reproduced exactly).
ML reproduces well the behavior of these virtual individuals that
behave exactly according to the model assumptions, as expected, but
itdidfail twice. The behavior of the probit model, which was specified
with the correct covariance matrix in each case, is similar to that of
theML, failing threetimes. Also asexpected, the NL model behaves
better in the homoscedastic case, in which the database was built
with an error structure similar to that of the NL, the only difference
being in some of the probability density functions.

The conclusion of this part of the analysisisthat all modelsfail in
some cases, but those model swhose error structures are more similar
to thereal error structures of the data fail less often. Next, from the
numbersjust below the previous ones, the model predictions can be
compared, just as could be donein areal-data case (when the under-
lying reality is not known). The ML was used as abasis, so these
numbersreveal how different the MNL, NL, and probit predictions
arefrom the ML predictions. Surprisingly, most predictions are not
significantly different.

SYNTHESIS AND CONCLUSIONS

This paper has considered the most flexible and powerful models of
the discrete choice family and, to analyze their empirical behavior,
reviewed tests of them that were conducted in several ways. Even
though the numerical resultsreported here comefrom observing the
implementation in aparticular case (synthetic data, small choice set,
and parsimonious specification), the authors believe that they have

TABLE 4 Difference Between Predicted and Simulated Values
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varied therelevant parameters enough to make the resulting informa-
tion apiece of empirica evidencevaluableto users. Themore relevant
findings are synthesized below.

The number of repetitions generally used in practice for imple-
menting ML and probit models by simulated maximum likelihood
seems adequate, but many more observationsthan usually are avail-
able seemto berequired to be ableto recover acorrelated error struc-
ture adequately. In acontext like the oneimplemented in this study, it
issuggested that 8,000 observations are enough to recover correlation
properly. Thiswarning isimportant for the use of flexible modelswith
small sample sizes because erroneous conclusions could be obtained
about the covariance structure if too much information is demanded
from the data.

The use of Halton sequences to generate quasi-random numbers
improvesthe efficiency of the ML model calibration process. Com-
pared with thetraditiona method, the ML model process needed fewer
repetitions to obtain the same quality of estimations and prediction
capabilities, and the behavior of the log likelihood was more stable.

An unstable behavior of thelog likelihood function was observed
that makes application of the likelihood ratio test misleading. The
averagelog likelihood did not increase monotonically with the num-
ber of repetitions, and it stabilized at different levelsfor probit, MLR,
and MLH.

In all the results reported here, the probit model underestimated
the correlation. It might be a coincidence; it might be something to
do with the probability distribution assumptions. This subject should
beinvestigated further.

ML models are subject to a scale effect that depends on how the
model recovers correlation and do not depend only on the natural cor-
relation present in the database. As a consegquence, comparing the
calibrated parameters with parameters calibrated with other models
isdifficult. Something similar happenswith the MNL and NL when
the database is not homoscedastic. The model s somehow manageto
estimate parameters that include a scale, but the authors cannot asso-
ciatethat scalewith aparticular variance. Fortunatdy, theratio between
parameters does not have ascaleincluded, so SV Ts can be compared
directly.

Heteroscedastic Database Homoscedastic Database

MNL NL Probit ML MNL NL Probit ML
Policy Scenario x* () x* () X () X X () x* () x* () X
Base: no change 0.0 (0.0 0.0 (0.0) 0.4(0.3) 0.0 0.0 (0.0) 0.0 (0.0) 0.5(0.4) 0.0
Car: cost T100% 102 (1.7) 10.6 (1.7) 9.0(0.9) 6.0 1.8(0.1) 1.8(0.1) 0.7 (1.6) 25
Car: cost T100% / access time T150% 9.7 (1.8) 9.8(1.9) 7.5(0.7) 5.7 2.5(0.8) 0.9(0.1) 0.8(0.5) 1.4
Bus: cost T100% / accesstime | 50% 43(3.7) 3.4(1.0) 1.2(0.6) 14 34.3(7.9) 11.8(0.1) 11.9(0.8) 11.4
Bus: cost | 50%/ travel time T100% 10.4 (1.0) 6.6(0.2) 34(2.2) 8.0 11.6 (4.4) 5.4 (0.0) 135 (2.3) 5.4

Metro: cost T 50% / travel time | 70%

Car: accesstime T50% 9.0(3.1) 8.2(2.5) 4.0(19) 5.2 9.2(13) 8.3(0.7) 15(2.4) 6.0
Car: cost T100%/ travel time . 50% 1.9(3.7) 3.4(0.5) 33(L0) 2.6 4.2(13.0) 5.0(0.2) 49(35) 6.6

Bus: access T 100% / travel time T50%
Metro: cost | 50%

NoOTE:

x?index of difference between the model predictions and the simulated market shares.
(x?) index of difference between the model predictions and the ML model predictions.

Bold typeface numbers mean the model fails to predict the correct market shares.
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Theresultsof calibrating asimplemodel (likethe MNL) toamore
complex reality indicate that even though the model failsto predict,
it doesnot fail dramatically; and in some cases, its predictions might
not be significantly different from those obtained with the correct
model (in thiscase, ML).
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