
Discrete choice models with error structures that are not independent
and identically distributed have received enormous attention in the recent
literature. A detailed synthetic study tests this type of model in a controlled
case. With mixed logit and probit models as the study objects, calibration
was implemented with the use of software available on the Internet. The
controlled situation was built as a simulation laboratory, which generated
databases with known parameters. The effects of various elements were
analyzed: number of repetitions of the simulation, number of observations
in the database, and how the use of Halton sequences improves the mixed
logit calibration. The scale effects on the different models are also discussed.
The results obtained in this specific context lead to some recommenda-
tions for future users of these powerful modeling tools. In particular,
flexible structures require large sample sizes to calibrate the elements of
the covariance matrix.

During the past decade, remarkable advances have been made in the
calibration of discrete choice models that are not independent and iden-
tically distributed (i.e., non-IID). Various model possibilities have
become available, such as the multinomial probit (1), heteroscedastic
extreme value logit (2), and mixed logit (ML) (3), the most popular.
Even though none of these models is really new conceptually, all their
calibration is now feasible computationally, such that it is possible
to take full advantage of their flexibility. Practitioners and researchers
are willing to move from the multinomial logit (MNL) and nested logit
(NL) models, which were the standard until only a few years ago,
toward these more general models—specifically toward ML.

This paper focuses on the ML model, which is becoming popular,
and the probit model, which has been available longer but does not
appear as popular. In both models, the likelihood function cannot be
evaluated directly, and simulation or other approximation methods
must be used. The modeler must weigh various aspects to determine
the model to be used in a specific problem, the number of observations
to collect, and the number of repetitions of the simulation procedure
required. To assess how these key elements influence the estimation
procedure, a simulation experiment was conducted according to the
methodology proposed by Williams and Ortúzar (4) and applied by
Munizaga et al. (5). Both the number of repetitions of the simulation
and the number of observations were varied, and then the model
behavior was analyzed. In addition, analysis was performed on the
behavior of the simpler models (MNL and NL) in the case of a more
complex reality in which non-IID errors are present. Model behavior
was analyzed in three dimensions: capability to recover the indirect

utility function parameters, behavior of the likelihood function, and
prediction capabilities.

The next section describes the differences between and similarities
of ML and probit in theoretical terms, with emphasis on those aspects
that have practical consequences and are worth exploring with the
simulation experiments. Then, a detailed description of the simulation
procedure follows, and the simulation results are presented and ana-
lyzed. Finally, a synthesis of the conclusions of the whole process
is presented.

DIFFERENCES AND SIMILARITIES BETWEEN
MIXED LOGIT AND PROBIT

The ML model (also known as error components or kernel logit) is
built on the basis of an MNL model by including additional error
terms to impose the desired non-IID effects. So the utility function
of alternative i for individual n (Uin) is defined as

where

Vin = deterministic component of utility,
ηin = any density function, and
�in = IID Gumbel error term.

Conditional in η, the choice probabilities are exactly those of the
MNL model. But the choice probability of this model, represented by
the MNL kernel integral over η, does not have a closed mathemati-
cal expression as the MNL or NL models do. Because the choice
probability integral cannot be solved analytically, simulation is used
to evaluate it. The estimation procedure is well described by Train (6)
and, in a complementary paper, by Hensher and Greene (7 ).

On the one hand, it can be said that the ML model is built on the
assumption of additional error terms that may imply a heteroscedastic
and correlated covariance matrix. On the other hand, a multinomial
probit is derived on the assumption that, given a utility function Uin =
Vin + �in, the vector �n = (�1n, . . . , �in, . . . , �Jn)′ distributes multivariate
normal with Σ covariance matrix; only one error term is assumed,
but it can have a general covariance matrix. The probit model does
not have a closed-form expression of the choice probability either, so
it becomes necessary to use approximation or simulation. Presently,
the most used estimation method is probably the simulated maxi-
mum likelihood with the Geweke–Hajivassiliou–Keane (GHK) sim-
ulator (8), which recursively reduces the dimension of the integral
up to an equivalent problem in which repetitions of a truncated uni-
dimensional normal are required. The simulated probabilities are
unbiased, continuous, and differentiable.

The simulations for the probit and ML models have different dimen-
sions analytically (and therefore computationally): the number of
alternatives minus one for the probit model (because it is based on
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utility differences) and the number of random terms plus the basic
Gumbel term for the ML model.

Both models are subject to identifiability restrictions that have
been studied and are now well known (9). Apart from the traditional
identifiability restrictions that apply to all discrete choice models
because the decisions are determined by utility differences, some
special conditions must be imposed in the deviated covariance matrix
to ensure identifiability of the additional parameters.

Also related to this subject is the scale effect. All discrete choice
models must be scaled to become identifiable. For MNL models, the 

calibrated parameters are scaled by a factor equal to π that can-
not be identified. This effect also appears in the ML and probit case.
For the probit model, the exact factor depends on how the covari-
ance matrix is normalized. However, for the ML model, it is unclear.
The problem for the specific model presented is discussed in the
following section.

DESCRIPTION OF SIMULATION EXPERIMENTS

The simulation experiments were implemented as a realistic case on
the basis of transport mode choice in which only the values of the
explanatory variables and the chosen option were available in the esti-
mation process, and they were consistent with the random utility
maximization theory. The error distribution assumed was consistent
with ML in the case of correlation between alternatives.

The data sets were generated by computing the simulated choice for
each observation as the alternative that has the largest utility (Uin).
Those utilities were calculated as the sum of the observable component
Vin (sum of the taste parameters times the corresponding attributes) and
the error terms sampled according to the selected distributions. The
attributes, generated by pseudo random sampling, were travel cost,
travel time, and access time for each of four modes (car, bus, metro,
and taxi) and a binary dummy variable for high income added to the
car utility. The time and cost attributes were normally distributed, with
mean and variance taken from a real database. The parameters of the
utility function, also taken from models fitted to real data, were −0.005
for cost, −0.08 for travel time, and −0.16 for access time. The magni-
tude of the variances of the error terms was chosen to achieve a rea-
sonable balance between the number of individuals who would change
the chosen option due to the error term and those who would not.

The focus was on a case in which bus and metro (underground) are
considered similar alternatives, which is the classic reason to expect
correlation among modes from unobservable effects. To build the
stochastic part of the utility function, the nested ML specification
proposed by Brownstone and Train (3) was used; it includes an error
�i IID Gumbel (0, λ) and an error µn distributed normal (0, σ2

µ) that
captures the potential correlation in nest n. This specification leads
to a correlated and heteroscedastic covariance matrix:
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This matrix is heteroscedastic because the variance of µn is added to
that of the IID Gumbel term of the MNL kernel. Also implemented
was the homoscedastic case by inclusion of an additional IID normal
(0, σ2

µ) term for the nonnested alternatives to make the covariance
structure equivalent to that of the NL model. (This additional term
is difficult to justify because it does not have a direct theoretical
interpretation.)

Model performance was tested in terms of ability to recover the
known taste parameters and correlation and in terms of prediction
capabilities. Recovery of the taste parameters was evaluated by using
the classical statistical indicators of t-test and confidence interval
and by considering the scale effects. In some cases, the scale effect
is clear and can easily be incorporated to allow direct comparisons
between the calibrated parameters and the values used to generate the
data. However, in other cases, the scale effect cannot be isolated, which
makes comparisons more difficult. Those cases are highlighted.

A response analysis was carried out by implementation of some
changes in the variables for level of service that represent policy
changes and evaluation of the model predictions in those modified
scenarios. The reference used to make comparisons is the simulated
behavior—obtained as the predictions of the simulator—in the same
modified scenario. For this case, the simulator used the known taste
parameters and the modified variables for level of service. The predic-
tions of two models calibrated with the same database also can be com-
pared. The adequate tool for these comparisons is the χ2 test (10), 

calculated as , where N̂i is the number of indi-χ2 2
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viduals that choose alternative i according to the prediction made by
the model and Ni is the number of individuals choosing alternative
i according to the simulator.

MODEL ESTIMATION AND 
ANALYSIS OF RESULTS

With the data sets generated as described and with observations of
the chosen option and the attribute values for the complete choice set,
the choice models were estimated through maximum likelihood using
GAUSS software (11). An algorithm was implemented to estimate
probit models in GAUSS using the simulated maximum likelihood
(12) approach with the GHK simulator (1, 8) for the choice proba-
bilities. The ML code (13) developed by Train was downloaded from
his web page (14). The two available procedures for generating
random numbers were used: pseudo random numbers and quasi-
random numbers (Halton sequences). The use of pseudo random num-
bers is the usual procedure to obtain random draws. Quasi-random
numbers are a deterministic series that covers the integration domain



in a more efficient way. One of these series is a Halton sequence. It
is proposed as the way to make draws when estimating an ML model;
Williams and Ortúzar provide an informative discussion on the use
of Halton sequences (4). The MNL and NL models calibrated were
also implemented in GAUSS with the use of a custom code that is
very easy to program.

The specification of each model was as similar as possible to the
specification used to generate the data for each case. The determin-
istic component of the utility function always was the same, including
mode constants, travel time, access time, and cost parameters as well
as an income dummy variable for the car alternative. The error struc-
tures used for generating the data are presented in Equations 2 and 3.
It is important to make clear how this error structure was specified for
calibration purposes, because it affects the scale of the model param-
eters. For the MNL model, the covariance matrix is as shown in Equa-
tion 4, in which neither correlation nor heteroscedasticity is allowed.
The scale parameter λMNL is not identifiable, and the taste parameters
calibrated will have that factor included. Scaling and identifiability
issues can be discussed only because the data are synthetic; it would
not be feasible when using real data. The normalization strategy that
warranties identifiability is trivial for the MNL model but more
difficult in complex error structures.

Because λ = π , if the variance is σ2 = π2/6, then λ will be equal
to unity.

In the case of NL, the covariance matrix is as described in Equa-
tion 5. This model is homoscedastic but allows capturing correla-
tion by the structural parameter ϕ that can be estimated. As in the
MNL case, the scale parameter λNL is nonidentifiable and will be
incorporated into the taste parameters calibrated.

In the case of ML, both cases used to generate the data can be imple-
mented: homoscedastic and heteroscedastic. In the heteroscedastic
case, the covariance matrix of Equation 2 also can be written as in
Equation 6, in which the variance of the Gumbel error is written in
terms of the scale parameter λML. The variance of the common error
component (σ2

µ ) is introduced to capture correlation; it can be esti-
mated within the model calibration process but will be subject to the
scale effect σ̂µ = λMLσµ. That variance is associated with only one
additional error term (µn), so the dimension of the simulation required
to calibrate the model is equal to one. The homoscedastic case
described by Equation 3 has three additional error terms (µcar, µn, and
µtaxi), so the dimension of the simulation required is three. But all three
error terms have the same variance (to achieve homoscedasticity),
so in this case also, only σ2

µ is calibrated.
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In the probit case, the heteroscedastic and homoscedastic structures
can also be accommodated. The heteroscedastic matrix is shown in
Equation 7. It is written in terms of the independent alternatives error
variance σ 2

b and the covariance σ 2
µ . To be able to calibrate the model,

the basic scale must be fixed. This was accomplished by setting σ 2
b

to its known value. In doing this, the scale is forced to be equal to
unity, which simplifies comparisons. In the homoscedastic case, the
only difference is that the entire diagonal will be equal to the terms
at the center of the matrix.

Number of Repetitions

Because ML and probit models require simulation to be estimated,
the authors wanted to examine the behavior of the estimates when
varying the number of repetitions of the simulation procedure and
also when using Halton sequences in the ML model. Here, a database
of 4,000 hypothetical individuals was used and a choice made among
four alternatives. The error structure is that shown in Equation 3
(homoscedastic), with a correlation of 0.5 for Alternatives 2 and 3. The
number of simulation repetitions for the estimation procedure was
varied from five to 1,000. In this case, the dimension of the simulation
for the probit model is three (four modes), equal to the dimension of
the ML (three additional error terms).

The more relevant parameters of the calibration results are reported
in Table 1 for the probit model and for the ML model calibrated with
pseudo random numbers (MLR) and with quasi-random numbers
(MLH). A “target value” reference is included for comparison—that
is, the original parameter (the one used to generate the data), scaled
appropriately. Because the covariance structure is known, the scale
parameter can be calculated in this case, as demonstrated in the pre-
vious section. The subjective value of time (SVT) is calculated as
the ratio between time and cost parameters; the scale cancels out. The
t-value for the SVT is calculated with a formula derived from a Taylor
expansion (15).

The results for the probit model estimation indicate that the
parameters stay stable, even for a low number of repetitions. SVT is
systematically overestimated and the correlation systematically under-
estimated. The taste parameters—and consequently the SVT—are
quite stable, whereas correlation is detected with increasing accuracy
as the number of repetitions of the simulation increases.
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At first glance, the point estimates of the ML parameters seem to
vary more than the probit parameters with the number of repetitions
of the simulation. However, in this case, the scale effect is present
in a curious manner. The scale factor depends on only the Gumbel part
of the error variance. This database was built in such a way that the
total variance is equal to π2/6 such that the scale parameter λ should
be equal to unity if an MNL model were calibrated; however, in the
ML case, λ will depend on how much of that variance can be associ-
ated to the Gumbel term. Because in this case ρ = 0.5, the scale factor
is equal to and the target values are the original taste parameters
times that factor. However, the calibrated parameters are affected by
a scale effect that depends on the magnitude of the correlation actu-
ally calibrated by the model. When the number of repetitions is too
small, the model cannot capture correlation effects, the Gumbel term
explains almost all the variance, and the scale factor is almost one
(not , as it should be). The ML parameters reported in Table 1
indicate that the empirical ratio between the calibrated and true param-
eters varies from an average of 0.7 to an average of 1.0, whereas the
corresponding correlation parameters detected vary from less than 0.03
to more than 1.2. So the scale effect is variable, related to the balance
between the Gumbel (independent) and the normal (common to induce
correlation) components of the error term.

As Table 1 shows, in the case of probit, the smaller values of com-
puting time were not obtained for the lower number of repetitions.
An unstable behavior makes the process converge in more iterations,
and even though each of those iterations take less time, the imple-
mentation with five repetitions took more total time to converge than
that with 10 and even 25 repetitions.

As for the implementations with pseudo random numbers (MLR)
and Halton random numbers (MLH), the values obtained from both
are very close, including the statistics. However, in terms of corre-
lation coefficient recovery, 50-repetition MLH has a behavior equiv-
alent to 500-repetition MLR in terms of the confidence interval and
the t-statistic against the target value.

In terms of processing time, in this implementation the use of
Halton sequences appeared to improve efficiency for a moderate num-
ber of repetitions (25 to 250). As this number increased, the pseudo
random number implementation was faster; the reason is that, when
the number of repetitions is too high, the Halton sequences imple-
mentation requires a huge amount of memory to store the series, which
could cause a lack of efficiency in the process. The processing time
for probit was notoriously longer than that for either ML implemen-
tation. Of course, that is a result of this particular implementation,
and more efficient codes probably are available to estimate both ML
and probit; it is not known what the relation would be with processing
time in those implementations. However, these values correspond
to easily accessible codes.

As for model capacity to detect correlation, Figure 1 illustrates that
the probit model can obtain biased punctual parameters. Even when
the number of repetitions was increased, the parameters stabilized in
a value different from the real parameter. However, the confidence
intervals appear appropriate (the real parameter is contained in the
interval) starting from 50 repetitions. With an MLR, the σµ estimation
is appropriate from 100 repetitions. In general, the confidence interval
for this parameter is adequate, but it presents a peculiar behavior for
50 repetitions (a check showed that it was not an error) in which the
t-values are particularly high. When MLH is used, the parameter that
captures correlation is unbiased. When the number of repetitions is
increased, the parameter becomes stable, taking a value very close to
the real parameter. In terms of number of repetitions, this behavior

2

2
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is achieved earlier than in the MLR implementation (25 repetitions
versus 100).

Because the objective function in this optimization process is the
(simulated) log likelihood, examination of its behavior was consid-
ered important. (Figure 2). A curious situation is observed for the
probit model, because the highest value in the average log likelihood
was obtained for 50 repetitions (−1.04472); it decreases with addi-
tional repetitions and stabilizes at a value lower than the maximum
(−1.04519 for 1,000 repetitions). The MLH achieved log likelihood
values larger than −1.045 for 25 repetitions, nearing −1.044 as they
increased. In contrast, the MLR reached values greater than −1.045
starting from 250 repetitions.

To take this comparison a step further, the prediction capabilities
of the models are evaluated by means of the response analysis; results
are reported in Figure 3. The probit model achieved values under the
critical value (χ2

95%,3 = 7.815) starting from 10 repetitions and quickly
stabilized at very low values, near 3.5. In contrast, the MLH achieved
values under the critical value for at least 25 repetitions, whereas MLR
did it from 200 repetitions. The MLH stabilized at 5.4 (100 repetitions)
and the MLR at 5.8 (500 repetitions). In that sense, probit and MLH
behave better than MLR.

Number of Observations

This section reviews how NL, ML, and probit models behave when
the sample size is varied. The databases were generated assuming
homoscedasticity and correlation (as in Equation 3). In this particu-
lar case, NL is as appropriate as NML or probit to represent the cor-
relation structure. To estimate the probit model, the GHK simulator
with 10 repetitions was used and for the ML, 200 Halton repetitions
(following recommendations from previous studies, even though it
was found here that it would be possible to work with a lower num-
ber). Estimation results are reported in Table 2. The target values for
the taste parameters reported include scaling for ML (calculated as
described in the previous section). For both probit and NL models,
the scale factor is equal to unity, so the target values are directly the
taste parameters used for generating the database. The target value
for the structural parameter of the NL model (ϕ) was calculated 
as with ρ equal to 0.5 (a direct result of the covariance
matrix presented in Equation 5).

The NL model recovers the structural parameter well, even for small
sample sizes; a sample size under 8,000 NL has some difficulty
reproducing certain parameters (e.g., travel cost). The results for the
probit model show that, peculiarly, quite good results are obtained for
the smallest sample size. Excluding this special case, the estimations
improved when the sample size was increased, especially in regard
to correlation. But the estimate of the standard deviation of the com-
mon stochastic term that causes correlation remained below the tar-
get value, even for a rather high sample size (16,000 observations).
In Figure 4, correlation is underestimated. In the case of ML, the stan-
dard deviation of the additional stochastic term appears to be well
estimated and significantly different from zero, independent of the
number of observations. An important effect of the sample size on
the confidence interval of the parameters was observed. Apart from the
confidence intervals for the parameters associated with correlation
(Figure 4), the confidence intervals for the SVT can be derived from
values in Table 2. They include the target value in all cases, but it is
acceptable in terms of wideness only in the cases of 4,000 or more
observations.

1 − ρ
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FIGURE 1 Confidence interval for correlation parameter versus number of repetitions.

FIGURE 2 Average log likelihood versus repetitions.
FIGURE 3 �2 index of difference between predicted and observed
(simulation) values.

FIGURE 4 Confidence interval for the correlation parameter.
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For synthesis, sample size is an important variable in the model
capacity to recover the parameters, especially those associated with
correlation. This finding corroborates the results of Munizaga and
Ortúzar (16 ), who recommend the use of 8,000 observations to
obtain an interesting combination between statistical significance of
the parameters and a good recovery within the confidence interval.

In general, for convergence analysis with a variable sample size, the
use of flexible models that allow correlation does not present great
difficulties or a particularly excessive use of resources for samples
of a moderate size. In that sense, the probit model behaved better here
than the ML (probit with 10 repetitions, MLH with 200 repetitions),
but as in the previous section, the processing times are presented
and commented only for completeness because they depend on the
particular implementation.

Homoscedasticity and Heteroscedasticity

The nested ML model is naturally heteroscedastic but can be forced to
homoscedasticity, whereas the traditional NL model is homoscedastic
by construction. Probit models can accommodate both cases easily.
To illustrate the differences, a case was implemented with 8,000 obser-
vations with a correlation coefficient equal to 0.5 between the bus and
metro alternatives, where σµ = σ�. The heteroscedastic (Equation 2)
and homoscedastic (Equation 3) databases were used.

The MNL, NL, probit, and ML estimation results are listed in
Table 3. The probit and ML model parameters can be compared directly
with the target values, because the probit covariance matrix was nor-
malized in a way that the scale parameter is equal to unity, and the
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ML parameters were properly scaled to allow that comparison. They
were divided by the known scale parameter, and enough repetitions
and observations were used to make sure that correlation was well
detected by the model, so the variable scale effect mentioned earlier
was not present.

The MNL and NL parameters also can be compared directly with
the targets in the homoscedastic case because they are affected by a
factor of 1.0. However, the total variance is different for the differ-
ent alternatives in the heteroscedastic case, so it is not known how
the NL and MNL parameters will be affected by scale effects. Table 3
lists the parameter estimates for each model, the t-statistic against
zero, and the t-test for the reference value of the parameter for the
ML model. For the NL, the reference value of ϕ is calculated from the
simulated correlation.

The ML model allows all the taste parameters used to generate
the database to recover properly, as expected and indicated by the
t-statistic, which is less than 1.96 in all cases (Table 3, t-value against
target). In these results, the relationship between the NL estimates
and the ML estimates in the heteroscedastic case are highlighted. The
ratio between both parameters in each database is relatively constant
(among implementations with variable magnitude of correlation, this
ratio is larger in cases of more correlation). It can be explained by the
scale effect when heteroscedasticity is present, which seems to affect
all the parameters. In the ML model, the common error component
(µ) is fixed to a certain value on each repetition of the simulation.
Therefore, the scale factor of the Gumbel distribution is associated to 
the � random term only: λ = π . However, for the NL model, even

dismissing heteroscedasticity, it is the sum of both error components

6σ�

TABLE 3 Calibration Results for Heteroscedastic and Homoscedastic Databases

Heteroscedastic Database Homoscedastic Database

Probit 10 Probit 10
Parameter Target MNL NL Rep ML 200 Rep MNL NL Rep ML 200 Rep

Travel cost −0.005 −0.0070 −0.0070 −0.0049 −0.0055 −0.0053 −0.0052 −0.0041 −0.0049
(−11.4) (−11.3) (−10.9) (−11.0) [−1.0] (−8.9) (−8.5) (−8.1) (−9.7) [0.2]

Travel time −0.08 −0.1044 −0.1005 −0.0702 −0.0804 −0.0835 −0.0760 −0.0614 −0.0791
(−36.6) (−32.0) (−30.8) (−31.2) [−0.1] (−31.5) (−27.9) (−21.9) (−30.8) [0.3]

Access time −0.16 −0.2012 −0.1954 −0.1379 −0.1563 −0.1765 −0.1643 −0.1323 −0.1596
(−47.0) (−41.3) (−35.5) (−36.1) [0.9] (−44.9) (−38.8) (−23.7) (−36.7) [0.1]

Income dummy 1.2 1.4928 1.4755 1.0686 1.1776 1.2454 1.2174 0.9998 1.1866
(24.1) (24.0) (21.3) (21.5) [−0.4] (21.1) (20.8) (15.2) (21.8) [−0.2]

φ 0.71 0.8945 0.7458
(24.0) (22.6)

σµ 0.91 0.5100 0.7601 0.5441 0.8472
(4.6) (8.4) [−1.6] (5.9) (9.4) [−0.7]

SVT travel 16 14.9 15.1 14.3 14.6 15.8 14.6 15.0 16.1
(10.9) (10.8) (10.3) (10.4) (8.6) (8.2) (7.6) (9.3)

SVT access 32 28.7 27.9 28.1 28.4 33.3 31.6 32.3 32.6
(11.1) (11.0) (10.5) (10.6) (8.8) (8.3) (7.7) (9.4)

Iterations 5 5 6 3 5 5 7 2

Average log likelihood 0.9347 −0.9343 −0.9369 −0.9329 −1.0318 −1.0292 −1.0314 −1.0287

CPU time (min) 0.6 0.8 35.5 42.5 0.7 0.8 35.2 152.5

NOTE:
8,000 observations.
Average log likelihood = (log likelihood)/(number of observations).
Estimated parameters, (t-values against zero), and [t-values against target].



that is supposed to be Gumbel distributed, so the scale is smaller. If
all the alternatives had had the same variance as the error term, then
the NL scale factor would have been λ = π

The prediction capabilities of the different models are evaluated
with the use of the policy scenario reported in Table 4. In several
cases, the model predictions are significantly different from the vir-
tual reality. It is the authors’ position that a model fails to predict the
market shares when the χ2 index is larger than the critical value
(χ 2

95%,3 = 7.815). The MNL failed in seven of 12 cases (excluding the
base case, in which the market shares always are reproduced exactly).
ML reproduces well the behavior of these virtual individuals that
behave exactly according to the model assumptions, as expected, but
it did fail twice. The behavior of the probit model, which was specified
with the correct covariance matrix in each case, is similar to that of
the ML, failing three times. Also as expected, the NL model behaves
better in the homoscedastic case, in which the database was built
with an error structure similar to that of the NL, the only difference
being in some of the probability density functions.

The conclusion of this part of the analysis is that all models fail in
some cases, but those models whose error structures are more similar
to the real error structures of the data fail less often. Next, from the
numbers just below the previous ones, the model predictions can be
compared, just as could be done in a real-data case (when the under-
lying reality is not known). The ML was used as a basis, so these
numbers reveal how different the MNL, NL, and probit predictions
are from the ML predictions. Surprisingly, most predictions are not
significantly different.

SYNTHESIS AND CONCLUSIONS

This paper has considered the most flexible and powerful models of
the discrete choice family and, to analyze their empirical behavior,
reviewed tests of them that were conducted in several ways. Even
though the numerical results reported here come from observing the
implementation in a particular case (synthetic data, small choice set,
and parsimonious specification), the authors believe that they have

6 2 2σ σμ� +( ).
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varied the relevant parameters enough to make the resulting informa-
tion a piece of empirical evidence valuable to users. The more relevant
findings are synthesized below.

The number of repetitions generally used in practice for imple-
menting ML and probit models by simulated maximum likelihood
seems adequate, but many more observations than usually are avail-
able seem to be required to be able to recover a correlated error struc-
ture adequately. In a context like the one implemented in this study, it
is suggested that 8,000 observations are enough to recover correlation
properly. This warning is important for the use of flexible models with
small sample sizes because erroneous conclusions could be obtained
about the covariance structure if too much information is demanded
from the data.

The use of Halton sequences to generate quasi-random numbers
improves the efficiency of the ML model calibration process. Com-
pared with the traditional method, the ML model process needed fewer
repetitions to obtain the same quality of estimations and prediction
capabilities, and the behavior of the log likelihood was more stable.

An unstable behavior of the log likelihood function was observed
that makes application of the likelihood ratio test misleading. The
average log likelihood did not increase monotonically with the num-
ber of repetitions, and it stabilized at different levels for probit, MLR,
and MLH.

In all the results reported here, the probit model underestimated
the correlation. It might be a coincidence; it might be something to
do with the probability distribution assumptions. This subject should
be investigated further.

ML models are subject to a scale effect that depends on how the
model recovers correlation and do not depend only on the natural cor-
relation present in the database. As a consequence, comparing the
calibrated parameters with parameters calibrated with other models
is difficult. Something similar happens with the MNL and NL when
the database is not homoscedastic. The models somehow manage to
estimate parameters that include a scale, but the authors cannot asso-
ciate that scale with a particular variance. Fortunately, the ratio between
parameters does not have a scale included, so SVTs can be compared
directly.

TABLE 4 Difference Between Predicted and Simulated Values

Heteroscedastic Database Homoscedastic Database

MNL NL Probit ML MNL NL Probit ML
Policy Scenario χ2 (χ2) χ2 (χ2) χ2 (χ2) χ2 χ2 (χ2) χ2 (χ2) χ2 (χ2) χ2

Base: no change 0.0 (0.0) 0.0 (0.0) 0.4 (0.3) 0.0 0.0 (0.0) 0.0 (0.0) 0.5 (0.4) 0.0

Car: cost ↑100% 10.2 (1.7) 10.6 (1.7) 9.0 (0.9) 6.0 1.8 (0.1) 1.8 (0.1) 0.7 (1.6) 2.5

Car: cost ↑100% / access time ↑150% 9.7 (1.8) 9.8 (1.9) 7.5 (0.7) 5.7 2.5 (0.8) 0.9 (0.1) 0.8 (0.5) 1.4

Bus: cost ↑100% / access time ↓ 50% 4.3 (3.7) 3.4 (1.0) 1.2 (0.6) 1.4 34.3 (7.9) 11.8 (0.1) 11.9 (0.8) 11.4

Bus: cost ↓ 50% / travel time ↑100% 10.4 (1.0) 6.6 (0.2) 3.4 (2.2) 8.0 11.6 (4.4) 5.4 (0.0) 13.5 (2.3) 5.4
Metro: cost ↑ 50% / travel time ↓ 70%

Car: access time ↑50% 9.0 (3.1) 8.2 (2.5) 4.0 (1.9) 5.2 9.2 (1.3) 8.3 (0.7) 1.5 (2.4) 6.0

Car: cost ↑100% / travel time ↓ 50% 1.9 (3.7) 3.4 (0.5) 3.3 (1.0) 2.6 4.2 (13.0) 5.0 (0.2) 4.9 (3.5) 6.6
Bus: access ↑ 100% / travel time ↑50%
Metro: cost ↓ 50%

NOTE:
χ2 index of difference between the model predictions and the simulated market shares.
(χ2) index of difference between the model predictions and the ML model predictions.
Bold typeface numbers mean the model fails to predict the correct market shares.



The results of calibrating a simple model (like the MNL) to a more
complex reality indicate that even though the model fails to predict,
it does not fail dramatically; and in some cases, its predictions might
not be significantly different from those obtained with the correct
model (in this case, ML).
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