
Chapter 9.
Geometric

Precision and
Computat ions

Robustness in

Stefan Schirra

Max-Planck-Institut fiir Informatik
Saarbriicken

Germany

st schirr~mpi-sb, mpg. de

1 I n t r o d u c t i o n

This part gives a concise overview of techniques that have been proposed and
successfully used to attack precision problems in the implementation of geometric
algorithms.

In reference to issues of quality of spatial data in GIS as well as in reference
to implementation issues of geometric data structures and Mgorithms, the terms
precision and accuracy are often used interchangeably. We adopt the terminology
used in [47]. Accuracy refers to the relationship between reality and the measured
data modelling it. Precision refers to the level of detail with which (numerical)
data are represented in a model or in (arithmetic) calculations with the model.

Here, our attention is directed to precision, more precisely, to how to deal
with the notorious problems that imprecise geometric calculations can cause.
Inaccuracy in GIS data is not our main objective. Basically, we assume that
the geometric data to be processed are accurate. Precision problems can make
implementing geometric algorithms very unpleasant [27, 72] even under the as-
sumption of perfectly accurate data, if no appropriate techniques are used to deal
with imprecision. A quite sketchy discussion of dealing with inaccurate data is
given in Section 5.2.

1.1 Precision and Correctness

Geometric algorithms are usually designed and proven to be correct in a com-
putational model that assumes exact computation over the reM numbers. In im-
plementations of geometric algorithms, exact real arithmetic is mostly replaced
by fast finite precision floating-point arithmetic provided by the hardware of
a computer system. For some problems and restricted sets of input data, this

255

approach works well, but in many implementations the effects of squeezing the
infinite set of real numbers into the finite set of floating-point numbers can cause
catastrophic errors in practice. Due to (accumulated) rounding errors many im-
plementations of geometric algorithms crash, loop forever, or in the best case,
simply compute wrong results for some of the inputs for which they are supposed
to work. Figure 1 gives an example.

Fig. 1. Incorrect Delaunay triangulation. The error was caused by precision problems.
The correct Delaunay triangulation is given in Figure 2. Courtesy of J. R. Shewchuk
[1021 •

Conditional tests are critical parts of an implementation, because they de-
termine the control flow. If in every test the same decision is made as if all
computations would have been done over the reals, the algorithm is always in a
state equivalent to that of its theoretical counterpart. In this case, the combina-
torial part of the geometric output of the algorithm will be correct. Numerical
data, however, computed by the algorithm might nevertheless be imprecise.

Rounding and cancellation errors may cause wrong decisions and hence lead
to errors in the combinatorial part of the geometric output as well. Thereby
imprecise calculations can destroy the correctness of the implementation of an
otherwise correct algorithm.

1.2 R o b u s t n e s s a n d S t ab i l i t y

Along with the substitution of real arithmetic by floating-point arithmetic, cor-
rectness is often replaced by robustness. Robustness is a measure of the ability
to recover from error conditions, e.g., tolerance of failures of internal components
or errors in input data.

256

Fig. 2. Correct Delaunay triangulation. Courtesy of J. R. Shewchuk[102].

Often an implementation of an algorithm is considered to be robust if it pro-
duces the correct result for some perturbation of the input, tt is called stable
if the perturbation is small. This terminology has been adopted from numeri-
cal analysis where backward error analysis is used to get bounds on the sizes
of the perturbations. Geometric computation, however, goes beyond numerical
computation. Since geometric problems involve not only numerical but also com-
binatorial data it is not always clear what perturbation of the input, especially
of the combinatorial part, means. Perturbation of the input is justified by the
fact that in many geometric problems the numerical data are real world data
obtained by measuring and hence known to be inaccurate. This is certainly true
for most of the geometric problems in GIS.

1.3 Degene racy

A related problem in the implementation of geometric algorithms is degeneracies.
Theoretical papers on computational geometry often assume the input in general
position and leave the "straightforward" handling of special cases to the reader.
This might make the presentation of an algorithm more readable, but it can
put a huge burden on the implementor, because the handling of degeneracies
is often less straightforward than claimed. Since precision problems are caused
by degenerate and nearly degenerate configurations in the input, degeneracy
is closely related to precision and robustness. Symbolic perturbation schemes
[31, 32, 33, 112, 113] have been proposed to abolish the handling of degeneracies.
Exact computation is a prerequisite for applying these techniques [111]. The
handling of degeneracies and the use of symbolic perturbation schemes are a

257"

point of controversy in the computational geometry literature [15, 99, 100]. For
a discussion of degeneracy we refer the reader to [15] and [99].

Sometimes, the term robustness is also used with respect to degeneracies.
Dey et al. [26] define robustness as the ability of a geometric algorithm to deal
with degeneracies and "inaccuracies" during various numerical computations.
The definition of robustness in [97] is similar.

1.4 A t t a c k s on t h e Prec i s ion P r o b l e m

There are two obvious approaches for solving the precision problem. The first
is to change the model of computation: design algorithms that can deal with
imprecise computation. For a small number of basic problems this approach
has been applied successfully but a general theory of how to design algorithms
with imprecise primitives or how to adopt algorithms designed for exact com-
putation with real numbers is still a distant goal. The second approach is exact
computation: compute with a precision that is sufficient to keep the theoretical
correctness of an algorithm designed for real arithmetic alive. This is basically
possible, at least theoretically, in almost all cases arising in practical geometric
computing. The second approach is very promising, because it allows exact im-
plementations of numerous geometric algorithms developed for real arithmetic
without modifications of these algorithms.

1.5 F l o a t i n g - P o i n t A r i t h m e t i c

Floating-point numbers are the standard substitution for real numbers in sci-
entific computation. In some programming languages the floating-point number
type is even called r e a l [59]. Since most geometric computations are executed
with floating-point arithmetic, it is worth taking a closer took at floating-point
computation. Goldberg [46] gives an excellent overview.

A finite-precision floating-point system has a base B, a fixed mantissa length
I and and an exponent range [emin.,emax].

:t=do.dt do . . . dp-1 * 1~ ~

0 <_ dl < B, represents the number

:t:(d0 + dl " B -1 + d2 " B -2 + " " -1- dp-lB -p+I) " B ~-

A representation of a floating point number is called normalized iff do ¢ 0. For
example, the rational number 1/2 has representations 0.500 * 10 ° or 5.000 * 10 -1
in a floating-point system with base 10 and mantissa length 4 and normalized
representation 1.00 * 2 -1 in a floating-point system with base 2 and mantissa

length 3.
Since an infinite set of numbers is represented by finitely many floating-point

numbers, rounding errors occur. A real number is eMled representable if it is zero
or its absolute value is in the interval [B ~mi" , Bemaxq' l] • L e t r be some real number

258

and f~ be a floating-point representation for r. Then Ir - frl is called absolute
error and Ir - f~ l / t r t is called relat ive error. The relative error of rounding a
representable real toward the nearest floating-point number in a floating-point
system with base B and mantissa length I is bounded by 1/2-B -z, which is called
m a c h i n e epsilon. Calculations can underflow or overflow, i.e., leave the range of
representable numbers.

Fortunately, the times where the results of floating-point computations could
drastically differ from one machine to another, depending on the accuracy of
the floating-point machinery, seem be coming to an end. The IEEE standard
754 for binary floating-point computation [104] is becoming widely accepted by
hardware-manufacturers. The IEEE standard 754 requires that the results of
+, - , - , / and x/- are exactly rounded, i.e., the result is the exact result rounded
according to the chosen rounding mode. The default rounding mode is round
to nearest. Ties in round to nearest are broken such that the least significant
bit becomes 0. Besides rounding toward nearest, rounding toward zero, round-
ing toward c~, and rounding toward - ~ are rounding modes that have to be
supported according to IEEE standard 754.

The standard makes reasoning about correctness of a floating-point compu-
tation machine-independent. The result of the basic operations will be the same
on different machines if both support IEEE standard and the same precision is
used. Thereby code becomes portable.

The IEEE standard 754 specifies floating-point computation in single, single
extended, double, and double extended precision. Single precision is specified
for a 32 bit word, double precision for two consecutive 32 bit words. In single
precision the mantissa length is l = 24 and the exponent range is [-126..t27].
Double precision has mantissa length l = 53 and exponent range [-1022_1023].
Hence the relative errors are bounded by 2 -23 and 2 -52 . The single and double
precision formats usually correspond to the number types f l o a t and double in
C-t-+.

Floating-point numbers are represented in normalized representation. Since
the zeroth bit is always 1 in normalized representation with base 2, it is not
stored. There are exceptions to this rule. D e n o r m a l i z e d numbers are added to
let the floating-point numbers underfiow nicely and preserve the property x -
y = 0 iff x = y. Zero and the denormalized numbers are represented with
exponent emin- Besides these floating point numbers there are special quantities
+ce, - c ~ and NaN (Not a Number) to handle exceptional situations. For example
-1 .0/0 .0 = - c e , NaN is the result of x/L-i " and ~ is the result of overflow in
positive range.

Due to the unavoidable rounding errors, floating-point arithmetic is inher-
ently imprecise. Basic laws of arithmetic like associativity and distributivity are
not satisfied by floating-point arithmetic. Section 13.2 in [83] gives some exam-
ples. Since the standard fixes the layout of bits for mantissa and exponent in the
representation of floating-point numbers, bit-operations can be used to extract
information.

259

2 Geometric Computation

Geometric computing is a combination of numerical and combinatorial compu-
tation.

2.1 Geomet r ic Problems

A geometric problem can be seen as a mapping from a set of permitted input
data, consisting of a combinatorial and a numerical part, to a set of valid output
data, again consisting of a combinatorial and a numerical part. A geometric
algorithm solves a problem if it computes the output specified by the problem
mapping for a given input. For some geometric problems the numerical data of
the output are a subset of the data of the input. Those geometric problems are
called selective. In other geometric problems new geometric objects are created
which involve new numerical data that have to be computed from the input data.
Such problems are called constructive. Geometric problems might have various
facets, even basic geometric problems appear in different variants.

We use two classical geometric problems for illustration, convex hull and
intersection of line segments in two dimensions. In the two-dimensional convex
hull problem the input is a set of points. The numerical part might consist of the
coordinates of the input points; the combinatorial part is simply the assignment
of the coordinate values to the points in the plane. The output might be the
convex hull of the set of points, i.e., the smallest convex polygon containing all
the input points. The combinatorial part of the output might be the sorted cyclic
sequence of the points on the convex hull, given in counterclockwise order. The
point coordinates form the numerical part of the ontput. In a variant of the
problem only the extreme points among the input points have to be computed,
where a point is called is extreme if its deletion from the input set would change
the convex hull. Note that the problem is selective according to our definition
even if a convex polygon and hence a new geometric object is constructed.

In the line segment intersection problem the intersections among a set of line
segments are computed. The numerical input data are the coordinates of the
segment endpoints, the combinatorial part of the input just pairs them together.
The combinatorial part of the output might be a combinatorial embedding of a
graph whose vertices are the endpoints of the segments and the points of inter-
section between the segments. Edges connect two vertices if they belong to the
same line segment l and no other vertex lies between them on t. Combinatorial
embedding means that the set of edges incident to a vertex are given in cyclic
order. The numerical part is formed by the coordinates of the points assigned to
the vertices in the graph. Since the intersection points are in general not part of
the input, the problem is constructive. A variant might ask only for all pairs of
segments that have a point in common. This version is selective.

Line simplification problems in cartography can be selective or constructive
as well, depending on whether only input points are allowed as vertices of the
simplified polyline or not.

260

2.2 Geomet r ic Predica tes

Geometric primitives are the basic operations in geometric algorithms. There is
a fairly small set of such basic operations that cover most of the computations
in a geometric algorithm. Geometric primitives subsume constructions of basic
geometric objects, like line segments or circles, and predicates. Geometric pred-
icates test properties of basic geometric objects. They are used in conditional
tests that direct the control flow in geometric algorithms. Well-known examples
are: testing whether two line segments intersect, testing whether a sequence of
points defines a right turn, or testing whether a point is inside or on the circle
defined by three other points.

Geometric predicates involve the comparison of numbers which are given
by arithmetic expressions. The operands of the expressions are constants, in
practical problems mainly integers, and numerical data of the geometric objects
that are tested. Expressions differ by the operations used, but many geometric
predicates involve arithmetic expressions over + , - , , only, or can at least be
reformulated in such a way.

2.3 Ar i thmet i c Expressions in Geometr ic Predica tes

One can think of an arithmetic expression as a labeled binary tree. Each inner
node is labeled with a binary or unary operation. It has pointers to trees defin-
ing its operands. The pointers are ordered corresponding to the order of the
operands. The leaves are labeled with constants or variables which are place-
holders for numerical input values. Such a representation is called an expression
tree.

The numerical data that form the operands in an expression evaluated in a
geometric predicate in the execution of a a geometric algorithm might be again
defined by previously evaluated expressions. Tracing these expressions backwards
we finally get expressions on numerical input data whose values for concrete
problem instances have to be compared in the predicates. Since intermediate
results are used in several places in an expression we get a directed acyclic graph
(dag) rather than a tree.

Without loss of generality we may assume that the comparison of numericM
values in predicates is a comparison of the value of some arithmetic expression
with zero. The depth of an expression tree is the length of the longest root-to-
leaf path in the tree. For many geometric problems the depth of the expressions
appearing in the predicates is bounded by some constant [111]. Expressions over
input variables involving operations + , - , , only are called polynomial, because
they define multivariate polynomials in the variables. If Mt constants in the ex-
pression are integral, a polynomial expression is called integral. The degree of
a polynomial expression is the total degree of the resulting multivariate poly-
nomial. In [11, 69] the notion of the degree of an expression is extended to
expressions involving square roots. An expression involving operations +, - , , , /
only is called rational.

261

2.4 Geometric Computation with Floating-Point N u m b e r s

In a branching step of a geometric algorithm, numerical values of some expression
given by an expression dag are compared. In the theoretical model of computa-
tion a real-valued expression is evaluated correctly for all real input data, but
in practice only an approximation is computed. The accumulated error in the
numerical calculation might be so large that the truth value of the predicate with
the expressions evaluated with inherently imprecise floating-point computation
is different from the truth value of the predicate with an exact evaluation of the
predicate.

Naively applied floating-point arithmetic can set axioms of geometry out of
order. A classical example is Ramshaw's braided lines (see Figure 3 and [83, 84]).

Y

2 _

. 4 2 - - ' -

3 8 - -

, 3 7 - -

............... S - f

-•-
. I I I t L I i ~ - V - i [- - - T - - ~ x

• 73 .75 .~ , 8 9 .95

Fig. 3. Evaluation of the line equations y = 4.3. x/8.3 and y = 1.4. x/2.7 in a floating-
point system with base 10 and mantissa length 2 and rounding to nearest suggests
that the lines have severM intersection points besides the true intersection point at the
origin.

Rewriting an expression to an expression dag that leads to a numerically
more stable evaluation order can help a lot. Goldberg [46] gives the following
example due to Kahan. Consider a triangle with sides of length a > b > c
respectively. The area of a such a triangle is

V~(~ - a) (s - b) (s - c)

where s = (a + b + c) /2 . For a = 9.0, b = c = 4.53 the correct value of s in
a floating-point system with base 10, mantissa length 3 and exact rounding is
9.03 while the computed value g is 9.05. The area is 2.34, the computed area,
however, is 3.04, an error of nearly 30%. Using the expression

x / (a + (b + c)) . (c - (a - b)). (c + (a - b)) . (a + (b - c))/4

262

one gets 2.35, an error of less than 1%. For a less needle-like triangle with a =
6.9, b = 3.68, and c = 3.48 the improvement is not so drastic. Using the first
expression, the result computed by a floating-point system with base 10, mantissa
length 3 and exact rounding is 3.36. The second expression gives 3.3. The exact
area is approximately 3.11. One can show that the relative error of the second
expression is at most 11 times machine precision [46].

As the example above shows, the way a numerical value is computed can
highly influence its precision. Summation of floating-point numbers is another
classical example. Rearranging the summands helps to reduce imprecision due
to extinction.

2.5 Heuristic Epsilons

A widely used method to deal with numerical inaccuracies is based on the rule
of thumb

If something is close to zero it is zero.

Some trigger-value Cm~gic is added to a conditional test where a numerical value
is compared to zero. If the computed approximation is smaller than gmagic it
is treated as zero. Adding such epsilons is popular folklore. What should the
Cm~gi¢ be? In practice, gmagic is usually chosen as some fixed tiny constant and
hence not sensitive to the actual sizes of the operands in a concrete expression.
Furthermore, the same epsilon is often taken for all comparisons, no matter
which expression or which predicate is being evaluated. Normally, no proof is
given that the chosen ~magi¢ makes sense, e~,~gi~ is guessed and adjusted by
trial and error until the current value works for the considered inputs, i.e., until
no catastrophic errors occur anymore. Yap [114] suggests calling this procedure
epsilon-tweaking.

Adding epsilon is justified by the following reasoning: If something is so close
to zero, then a small modification of the input, i.e., a perturbation of the numeri-
cal da ta by a small amount, would lead to value zero in the evaluated expression.
There are, however, severe problems with that reasoning. The size of the per-
turbation causes a problem. The justification for adding epsilons assumes that
the perturbation of the (numerical) input is small. Even if such a small pertur-
bation exists for each predicate, the existence of a global small perturbation of
the input da ta is not guaranteed. Figure 4 shows a polyline, where every three
consecutive vertices are collinear under the "close to zero is zero" rule. In each

J
J

Fig. 4. A locally straight line

case, a fairly small perturbation of the points exists that makes them collinear.

263

There is, however, no small perturbation that makes the whole polyline straight.
The example indicates that collineaxity is not transitive. Generally, equality is
not transitive under epsilon-tweaking. This might be the most serious problem
with this approach. Another problem is that different tests might require dif-
ferent perturbations, e.g., predicate P1 might require a larger value for input
variable x56 while test P2 requires a smaller value, such that both expressions
evaluate to zero. There might be no perturbation of the input data that leads to
the decisions made by the "close to zero is zero" rule. Finally, a result computed
with "close to zero is zero" is not the exact result for the input data but only
for a perturbation of it. For some geometric problems that might cause trouble,
since the computed output and the exact output can be combinatorialty very
different [t5].

3 E x a c t G e o m e t r i c C o m p u t a t i o n

An obvious approach to the precision problem is to compute "exactly". In this
approach the computation model over the reals is mimiced in order to preserve
the theoretical correctness proof. Exact computation means to ensure that all
decisions made by the algorithm are correct decisions for the actual input, not
only for some perturbation of it. As we shall see, it does not mean that in all
calculations exact representations for all numerical values have to be computed.
Approximations that are suËficiently close to the exact value can often be used
to guarantee the correctness of a decision. Empirically it turns out to be true
for most of the decisions made by a geometric algorithm that approximations
are suffÉcient. Only degenerate and nearly degenerate situations cause problems.
That is why most implementations based on floating-point numbers work very
well for the majority of the considered problem instances and fail only occasion-
ally.

If an implementation of an algorithm does all branchings the saxne way as
its theoretical counterpart, the control flow in the implementation corresponds
to the control flow of the algorithm proved to be correct under the assumption
of exact computation over the reals, and hence the validity of the combinatorial
part of the computed output follows. Thus, for selective geometric problems, it
is sufficient to guarantee correct decisions, since all numerical data are already
part of the input.

For constructive geometric problems, new numerical data have to be com-
puted "exactly". A representation of a real number r should be called exact
only if it altows one to compute an approximation of r to whatever precision,
i.e. no information has been lost. According to Yap [114] a representation of a
subset of the reals is exact if it allows the exact comparison of any two real num-
bers in that representation. This reflects the necessity for correct comparisons
in branchings steps in the exact geometric computation approach. Examples of
exact representations are the representation of rationals by numerator and de-
nominator, where both are arbitrary precision integers, and the representation
of algebraic numbers by an integral polynomial P having root a and an interval

264

that isolates c~ from the other roots of P. Further examples are symbolic and
implicit representations. For example, rather than compute the coordinates of an
intersection point of line segments explicitly, one can represent them implicitly
by maintaining the intersecting segments. Another similar example is the rep-
resentation of a number by an expression dag, which reflects the computation
history. Allowing symbolic or implicit representation can be seen as turning a
constructive geometric problem into a selective one.

As suggested in the discussion above, there are different flavours of exact
geometric computation. Franklin's survey [44] already discusses the basics of
many approaches to exact computation. Since the publication of his paper much
progress has been made in improving the efficiency of exact computation (see
[111] for an overview). Thus some of his conclusions have to be revisited.

3.1 Exact Integer and Rational Arithmetic

A number of geometric predicates in basic geometric problems include only inte-
gral expressions in their tests. Thus, if all numerical input data are integers, the
evaluation of these predicates involves integers only. With the integer arithmetic
provided by the hardware only overflow may occur, but no rounding errors. The
problem with overflow in integral computation is abolished if arbitrary precision
integer arithmetic is used. There are several software packages for arbitrary or
multiple precision integers, e.g., BigNum [101], GNU MP [49], LiDIA [68], or the
number type i n t ege r in LEDA I74]. Fortune and Van Wyk [41, 43] report on
experiments with such pacl~ges.

Since the integral input data are usually bounded in size, e.g., by the maximal
representable int , there is not really a need for arbitrary precision integers. In-
teger arithmetic with a fixed precision adjusted to the maximum possible integer
size in the input and to the degree of the integral polynomial expression arising
in the computation is adequate. If the input integers have binary representation
with at most b-bits and if d is the maximum degree and m the maximum number
of monomials of the integral polynomial expressions, then an integer arithmetic
for integers with db + logm + O(1) bits suffices. Usually, m is in O(1). The de-
gree of polynomial expressions in geometric predicates has recently gained more
attention in the design of geometric algorithms. Liotta et al. [69] investigate the
degree involved in some proximity problems in 2- and 3-dimensional space.

Many predicates include only expressions involving operations +, - , , , / . All
the predicates arising in problems like map overlay in cartography and in most
of the problems discussed in textbooks on computational geometry [70, 91, 30,
82, 86, 66, 62, 23, 8] are of this type. Such problems are called rational [111].

A rational number can be exactly stored as a pair of arbitrary precision
integers representing numerator and denominator respectively. Let us call this
exact rational arithmetic. The intermediate values computed in rational problems
are often solutions to systems of linear equations like the coordinates of the
intersection point of two straight lines.

Division can be avoided in rational predicates, e.g., exact rational arithmetic
postpones division. With exact rational arithmetic, numerator and denominator

265

of the result of the evaluation of a rational expression are integral polynomial
expressions in the numerators and denominators of the rational operands. A sign
test for a rational expression can be done by two sign tests for integral polyno-
mial expressions. Hence rational expressions in conditional tests in geometric
predicates can be replaced by tests involving integral polynomial expressions.

Homogeneous coordinates known from projective geometry and computer
graphics can be used to avoid division, too. In homogeneous representation, a
point in d-dirnensional affine space with Cartesian coordinates (x0, x l , . . . , Xd-1)
is represented by a vector (hxo, h X l , . . . , hxd-1, hx~) such that x~ = hx~/hXd for
all 0 < i < d - 1. Note that the homogeneous representation of a point is not
unique; multiplication of the homogeneous representation vector with any A ~ 0
gives a representation of the same point. The homogenizing coordinate hxd is
the common denominator of the coordinates. Homogeneous representation al-
lows division-free representation of the intersection point of two straight lines
given by a- X + b. Y - c = 0 and d. X + e- Y + f = 0. The intersection point can
be represented by homogeneous coordinates (b. f - c. e, a. f - c- d, a . e - b- d).

A test including rational expressions in Cartesian coordinates transforms
into a test including only polynomial expressions in homogeneous coordinates
after multiplication with an appropriate product of homogenizing coordinates.
Since all monomials appearing in the resulting expressions have the same degree
in the homogeneous coordinates, the resulting polynomial is a homogeneous
polynomial. For example, the test a • x0 + b • xl + c = 07, which tests whether
point (x0, xl) is on the line given by the equation a-X + b. Y + c = 0, transforms
into a . hxo + b. hxl + c. hx2 = 0?.

Many geometric predicates that do not obviously involve only integral poly-
nomial expressions can be rewritten so that they do. Above, we have illustrated
this for rational problems. In principal, even sign tests for expressions involving
square roots can be turned into a sequence of sign tests of polynomial expressions
by repeated squaring [14, 69]. Therefore, arbitrary or multiple precision integer
arithmetic is a powerful tool for exact geometric computation, but arbitrary pre-
cision integer arithmetic has to be supplied by software and is therefore much
slower than the hardware-supported fixed precision integer arithmetic. The ac-
tual cost of an operation on arbitrary precision integers depends on the size of
the operands, more precisely on the length of their binary representation. If ex-
pressions of large depth are involved in the geometric calculations the size of the
operands can increase drastically. In the literature huge slow down factors are
reported if floating-point arithmetic is simply replaced by exact rational arith-
metic. Karasick, Lieber, and Nackman [61] report slow-down factors of about
I0 000.

While in most rational problems the depth of the involved rational expres-
sions is a small constant, there are problems where the size of the numbers has
a linear dependence on the problem size. An example is computing minimum
tink paths inside simple polygons [60]. Numerator and denominator of the knick-
points on a minimum link path can have superquadratic bitlength with respect
to the number of polygon vertices [60]. This is by the way a good example of

266

how strange the assumption of constant time arithmetic operations in theory
may be in practice.

Fortune and Van Wyk [41, 43] noticed that in geometric computations the
sizes of the integers are small to medium compared to those arising in computer
algebra and number theory. Multiple precision integer packages are mainly used
in these areas and hence tuned for good performance with larger integers. Con-
sequently Fortune and Van Wyk developed LN [42], a system that generates
efficient code for integer arithmetic with fairly "little" numbers. LN takes an
expression and a bound on the size of the integral operands as input. The gener-
ated code is very efficient if all operands are of the same order of magnitude as
the bound. For much smaller operands the generated code is clearly not optimal.
LN can be used to trim integer arithmetic in an implementation of a geomet-
ric algorithm for special applications. On the other hand, LN is not useful for
generating general code.

For integral polynomial expressions, modular arithmetic [1, 64] is an alter-
native to arbitrary precision integer arithmetic. Let P0,pl , . . . ,Pk-1 be a set of
integers that are pairwise relatively prime and let p be the product of the p~.
By the Chinese remainder theorem there is a one-to-one correspondence be-
tween the integers r with -[2~] _< r < [2 ~] and the k-tupels (r 0 , h , . . . , r k _ l)
with - L ~] < r~ < [9] ' By the integer analog of the Lagrangian interpolation
formula for polynomials [1], we have

r=~risiq.i mod p
i = 0

where r~ = r mod p~, q~ = p/p~, and s~ = q~-i mod p~. Note that s~ exists be-
cause of the relative primality and can be computed with an extended Euclidean
gcd algorithm [64]. To evaluate an expression, a set of relatively prime integers
is chosen such that the product of the primes is at least twice the absolute value
of the integral value of the expression. Then the expression is evaluated modulo
each p~. Finally Chinese remaindering is used to reconstruct the value of the
expression.

Modular arithmetic is frequently used in number theory, but not much is
known about its application to exact geon~mtric computation. Fortune and Van
Wyk [41, 43] compared modular arithmetic with multiple precision integers pro-
vided by software packages for a few basic geometric problems without observing
much of a difference in the performance. Recently, Brhnnimann et al. reported on
promising results concerning the use of modular arithmetic in combination with
single precision floating-point arithmetic for sign evaluation of determinants [9].

Modular arithmetic is particularly useful if intermediate results can be very
large, but the finM result is known to be relatively small. The drawback is that
a good bound on the size of the final result must be known in order to choose
sufficiently many relatively prime integers, but not too many.

267

3.2 Lazy Evaluat ion

The LEA system [7] favors the rule

Why compute something that is never used,

so why compute numbers to high precision, before you know that this precision
is actually needed. Since it is hard to know in advance which precision will be
needed in later decisions, numbers have to be presented in a way that allows
for recomputation with higher precision if the currently available precision is
not sufficient, tn the LEA system, numbers are represented by intervals and
expression dags that reflects their creation history. Initially only a low precision
representation is calculated, representations with repeatedly increased precision
are computed only if decisions can't be made with the current precision.

In LEA, interval arithmetic [71 with floating-point numbers is used to com-
pute rough representations of a number. The interval is then repeatedly re-
fined by redoing the computation along the expression dug with refined intervals
for the operands. If the interval representation can't be refined anymore with
floating-point evaluation, exact rational arithmetic is used to solve the decision
problem.

Another approach based on expression trees is described by Yap and Dub~
[29, 111,114]. In this approach the precision used to evaluate the operands is not
systematically increased, but the increase is demanded by the intended increase
in the precision of the result. The data type r e a l in LEDA [16] also stores the
creation history in expression dags and uses floating-point approximations and
errors bounds as first approximations. The strategy of repeatedly increasing the
precision is similar to [29, 111,114]. In both approaches software-based multiple
precision floating-point arithmetic with a mantissa length that can be arbitrarily
chosen and an unbounded exponent is used to compute representations with
higher precision. Furthermore, both approaches include square root operations
besides +, - , *,/.

The C++-programming language is well suited for using number types that
provide exact computation in a packed form like lazy numbers. Since arithmetic
operators can be overloaded, software-based number types can be used exactly
like ±at and double. Thereby lazy numbers can be used by a programmer exactly
like the built-in number types. The user does not notice that his numbers are
lazy-evaluated.

Lazy evaluation has to detect whether the precision of a computation is
sufficient or not. How this can be done is described in the following subsections.

3.3 F loa t ing-Poin t Fi l ter

Replacing exact arithmetic, on which the correctness of a geometric algorithm
was based, by imprecise finite-precision arithmetic works in practice for most of
the given input data and fails only occasionally. Thus always computing exact
values would putl a burden on the algorithm that. is rarely really needed. The idea

268

of floating-point filters is to filter out those branching steps where a floating-point
computation gives the correct result. Only if it is not certified that the floating-
point evaluation leads to a correct decision is the branching step reevaluated at
a higher cost by calculating the exact value or a better approximation.

Filter techniques allow the use of high speed floating-point arithmetic. A
filter simply computes a bound on the error of the floating-point computation
and compares the absolute value of the coInputed result to the computed error
bound. If the error bound is smaller, the computed approximation and the exact
value have the same sign. Error bounds can be computed a priori if specific
information on the input data is available, e.g., if all input data are integers
from a bounded range, e.g., the range of integers representable in a computer
word. Such so-called static filters require only little additional effort at run time,
just one additional test per branching, plus the refined reevaluation in the worst
case. Dynamic filters compute an error bound on the fly parallel to the evaluation
in floating point arithmetic. Since they take the actual values of the operands
into account and not only bounds derived from the bounds on the input data,
the estimates for the error involved in the floating-point computation can be
much tighter than in a static filter. Thus dynamic filters can let more floating-
point calculations pass the filter but at the cost of the online error computation.
In the error computation one can put emphasis on speed or on precision. The
former makes arithmetic operations more efficient while the latter lets more
floating-point computations pass a test.

Note the difference between static filters and heuristic epsilons. If the com-
puted approximate value is larger than the error bound or em~gi~ respectively, the
behavior is identical. The program continues based on the assumption that the
computed floating-point value has the correct sign. If, however, the computed
approximate value is too small, the behavior is completely different. Epsilon-
tweaking assumes that the actual value is zero, which might be wrong, while a
floating-point filter invokes a more expensive computation, which finally leads
to a correct decision.

Mehlhorn and N/iher use the following easily computable error bounds for in-
tegral expressions evaluated in floating-point arithmetic in their implementation
of the Bentley-Ottmann plane sweep algorithm for computing the intersections
among a set of line segments in the plane [71]. It assumes that neither overflow
nor underflow occurs. Let E be an integral expression. E is also used to denote
the value of E while/) is used to denote the value of the expression when eval-
uated with floating point arithmetic, i.e., all operations are replaced by their
floating point counterparts.

Mehlhorn and N£her [71] define the measure r u e s (E) and the index i n d (E)
of a polynomial expression E such that

IE, - Et <_ i n d (E) " cprec " r u e s (E) .

269

where gprec is the machine precision of the floating-point system used. Both the
index and the measure are easily computable by the following rules.

t] mes(E) ind! E)
float f # 0

f l oa t 0 , 2-~0 f'l I
E1 ! E2 2. max(mes(E1),mes(E2))l(1 + ind(E1) + ind(E2))/2]
Et . E2 ,, mes(Ei) . mes(E2) [1:/2 + ind(Ei) + ind(E2)]

If a filter fails, a refined filter can be used. A refined filter might compute
a tighter error bound or use floating-point arithmetic with higher precision and
thereby get better approximations and smaller error bounds. This step can be
iterated. Composition of more azld more refined filters leads to a lazy evaluation
strategy. Finally, if necessary, exact arithmetic can be used. Such lazy evaluation
strategies are called adaptive, because they do not compute more precisely than
needed.

For orientation predicates and incircle tests in two- and three-dimensional
space Shewchuk [102, 103] presents such a lazy evaluation strategy. It uses an
(exact, if neither underflow nor overflow occurs) representation of sums and prod-
ucts of floating-point numbers as a symbolic sum of double precision floating-
point numbers. Computation with numbers in this representation, called ex-
panded doubles in [102], is based on the interesting results of Priest [92, 93]
and Dekker [25] on extending the precision of floating-point computation. An
adapted combination of these techniques allows one to reuse values computed in
previous filtering steps in later filtering steps.

For integral expressions scalar products delivering exactly rounded results
can be used in filters to get best possible floating-point approximations, as sug-
gested by Ottmann et al. [87].

3.4 Interval Ar i thmet i c

Approximation and error bound define an interval that contains the exact value.
Interval arithmetic [2, 79, 80] is another method to get an interval with this
property. In interval arithmetic real numbers are represented by intervals, whose
endpoints are floating-point numbers. The interval representing the result of an
operation is computed by floating-point operations on the endpoints of the inter-
vals representing the operands. For example, the lower endpoint of the interval
representing the result of an addition is the sum of the lower endpoints of the
intervals of the summands. Since this floating-point addition might be inexact,
either the rounding mode is changed to rounding toward -cx~ before addition or
a correction term is subtracted. For interval arithmetic, rounding modes toward

and toward -oo are very useful. See, for example, [81, 105] for applications
of interval methods to geometric computing. The combination of exact rational
arithmetic with interval arithmetic based on fast floating-point computation has
been pioneered by Karasick, Lieber and Nackman [61] to geometric computing.

A refinement of standard interval arithmetic is so-called affine arithmetic
proposed by Comba and Stolfi [22]. While standard interval arithmetic assumes

270

that the unknown values of operands and subexpressions can vary independently,
affine arithmetic keeps track of first-order dependencies and takes these into
account. Thereby error explosion can often be avoided and tighter bounds on
the computed quantities can be achieved. An extreme example is computing
x - x where for x some interval [x.lo, x.hi] is given. Standard interval arithmetic
would compute the interval [x.lo- x.hi, x . h i - x.lo], while affine arithmetic gives
the true range [0, 0].

3.5 E x a c t Sign of D e t e r m i n a n t

Many geometric primitives can be formulated as sign computations of determi-
nants. The classical example of such a primitive is the orientation test, which
in two-dimensional space determines whether a given sequence of three points
is a clockwise or a counterclockwise turn or whether they are collinear. Another
example is the incircle test used in the construction of Voronoi diagrams of
points.

Recently some effort has been focused on exact sign determination. Clarkson
[21] gives an algorithm to evaluate the sign of a determinant of a d × d matrix
with integer entries using floating-point arithmetic. His algorithm is a variant of
the modified Graham-Schmidt orthogonatization. In his variant, scaling is used
to improve the conditioning of the matrix. Since only positive scaling factors
are used, the sign of the determinant does not change. Clarkson shows that only
b+O(d) bits are required, if all entries are b-bit integers. Hence, for small dimen-
sional matrices his algorithm can be used to evaluate the sign of its determinant
with fast hardware floating-point arithmetic.

Avnaim et al. [4] consider determinants of small matrices with integer entries,
too. They present algorithms to compute the sign of 2 × 2 and 3 × 3 matrices with
b-bit integer entries using precision b and b + 1 only, respectively. BrSnnimann
and Yvinec [10] extend the method of [4] to d × d matrices and compare it with
a variant of Clarkson's method.

3.6 Cer t i f i ed Eps i lons

While the order of two different numbers can be found by computing sufficiently
close approximations, it is not so straightforward to determine whether two
numbers are equal or, equivalently, whether the value of an expression is zero.
/.From a theoretical point of view arithmetic expressions arising in geometric
predicates are expressions over the reals. Hence the value of an expression can
in general get arbitrarily close to zero if the variable operands are replaced by
arbitrary real numbers. In practice the numerical input data originate from a
finite, discrete subset of the reals, namely a finite subset of the integers or a finite
set of floating-point numbers, i.e., a finite subset of the rational numbers. The
finiteness of such input excludes arbitrarily small absolute non-zero values for
expressions of bounded depth. There is a gap between zero and other values that
a parameterized expression can take on. A separation bound for an arithmetic
expression E is a lower bound on the size of this gap. Besides the finiteness

271

of the number of possible numerical inputs, the coarseness of the input data
can generate a gap between zero and other values taken on. A straightforward
example is integral expressions. If all operands are integers the number 1 is
clearly a separation bound.

Once a separation bound is available it is clear how to decide whether the
value of an expression is zero or not. Representations with repeatedly increased
precision are computed until either the error bound on the current approximation
is less than the absolute value of the approximation or their sum is less than the
separation bound. In the phrasing of interval arithmetic, it means to refine the
interval until either 0 or the separation bound are not contained in the interval.

How can we get separation bounds without computing the exact value or an
approximation and an error bound? Most geometric computations are on linear
objects and involve only basic arithmetic operations over the rational numbers.
In distance computations and operations on nonlinear objects like circles and
parabolas, square root operations are used as well. For the rational numerical
input data arising in practice, expressions over the operations +, - , * , / , x/- take
on only algebraic values.

Let E be an expression involving square roots. Furthermore we assume that
all operands are integers. We use a (E) to denote the algebraic value of expression
E. Computer algebra provides bounds for the size of the roots of polynomials
with integral coefficients. These bounds involve quantities used to describe the
complexity of an integral polynomial, e.g., degree, maximum coefficient size, or
less well-known quantities like height or measure of a polynomial. Once an inte-
gral polynomial with root a (E) is known the root bounds from computer algebra
give us separation bounds. In general, however, we don't have a polynomial hav-
ing root a (E) at hand. Fortunately, all we need to apply the root bounds are
bounds on the quantities involved in the root bounds. Upper bounds on these
quantities for some polynomial having root a (E) can be derived automatically
from an expression E. Mignotte discusses identification of algebraic numbers
given by expressions involving square roots in [75].

The measure of a polynomial [76] can be used for automatic derivation of a
root bound. Table I gives the rules for (over)estimating measure and degree of an
integral polynomial having root a(E). We have a(E) : 0 or [a(E)[_> M(E) -1.
This bound is easily computable but very- weak [14].

Other recursive formulas for an expression involving square root operations
leading to separation bounds are given in [111]. Here, a bound on the maximum
absolute value of the coefficients of an integral polynomial is used. The rules are
given in Table 2. By a result of Cauchy, (h(E) + 1) -~ is a separation bound, i.e.,
a(E) = 0 or a(E) >_ (h(E) + 1) -1.

In [17] Canny considers isolated solutions of systems of polynomial equations
in several variables with integral coefficients. He gives bounds on the absolute
values of the non-zero components of an isolated solution vector. The bound
depends on the number of variables, the maximum total degree d of the multi-
variate integral polynomials in the system and their maximum coefficient size c.
Although Canny solves a much more general problem, his bounds can be used to

272

integer n
E1 + E~
E1 - E2
El " E2
E~ / E2

M(E) deg(E)
tnl

2d~g(E~)d~(E2) M (E~)d~g(E2) M(E2)d~g(E~)
2d~g(E~)d~g{~2) M (E1)d~g(E2) M(E2)a~g(E~)

M(E1)a~g(E2)M(E2)deg(Et)
M(EJd~g(E2)M(E2)d~g(ED

M(E1)

1
deg(EJ . deg(E2)
deg(EJ . deg(E2)
deg(E1) . deg(E2)
deg(E 0 • deg(E2)

2. deg(EJ

Table 1. Automatic derivation of separation bounds for expressions involving square
roots based on the measure of a polynomial

integer n
E1 + E2
E1 - - E2
E1 - E2
El~E2

h(E) d(E)
bl

(h(El)2 l+d(El)) d(E2) (h(E2) %/1 J- d(E2)) d(El)
(h(EJ21+a(E,))~(ED(h(EJv~ +~(EJ) d(ED

i(h(Z~) V~ + ~(~Tj)) ~(~)(h(E~) v~ ~)~(~)
(h(E~)v~ + d-(~Tj)/(~)(h(E~)v~ + ~--J~7~)) ~(~I)

h(Et)

1
d(E1), d(E2)
d(E1), d(E2)
d(EJ . d(E2)
d(EJ . d(E2)

2. d(E1)

Table 2. Recursive formulas for quantities h(E) and d(E) of an arithmetic expression
involving square roots.

get fairly good separation bounds for expressions involving square roots. Canny
shows tha t the absolute value of a component of an isolated solution of a sys-
tem of n integral polynomial equations in n variables is either zero or at least
(3dc) -~d" [17, 18].

Based on the structure of an expression E given by an expression tree, a
system of polynomial equations can be built which has an isolated solution vector
with a(E) as a component. The system of polynomial equations consists of a
system P(E) in nE variables X 1 , . . . , X n ~ and a distinct equation of the form
X z = PE(X1, . . . ,X ,~) . The variables correspond to subexpressions of E , the
variable XE represents the value of E.

At the basis of recurs±on we have the distinct polynomial only. If E = E1 ±E2
then 7) (E) is the union of the systems 7)(El) and 7)(E2) and the distinct equation
becomes XE = PEt(.. .) ± PE~(...). Variables are renamed appropriately. The
recurs±on step is completely analogous if E = E~ - E2.

If E = El~E2 the system 7)(E) contains the union of the systems 7)(E1) and
7)(E2). Fur thermore the equation

Xno~" PZ~(...)= FZl(--.)

is added. I t uses a new variable Xne w and is based on the distinct equations for
the subexpressions. The new distinct equation becomes XE = Xnew. If E = V ~

273

the procedure is similar. The new equation is

2
Xnew : P E (. , .) .

The distinct equation is XE = Xnew again.
If the system resulting from an expression tree has maximum degree dE,

maximum coefficient size cE, and nE equations, (3dEcE)--nEd~ E is a separation
bound for E. Note that nE -- 1 is the number of square root and division opera-
tions involved in E. There are alternative ways to derive a system of polynomial
equations for an expression E. One could also introduce a new variable and a
new equation for each operation. That would guarautee degree at most 2 but
result in a system with more equations and variables.

Recently Burnikel et al.[12] have shown that

_>

where k(E) is the number of (distinct) square root operations in E and the
quantities u(E) and l(E) are defined as given in Table 3. Note that u(E) and
l(E) are simply the numerator and denominator of an expression obtained by
replacing in E all + by - and all integers by their absolute value. If E is division-

free and o~(E) is non-zero, then a (E) > u(E) 1-:~(E)-~.

IE1 ± E2 tu(E1)" I(E2) + l(E1) . u(E2) l(E1) . t(E2) t
I E1. E2 t u(E1), u(E~) l(E1).l(E2)]
I El/E2 ~(Zl). t(E~) F(E1). u(E~) I
L ETI 1

Table 3. Recursive formulas for quantities u(E) and l(E) of an arithmetic expression
involving square roots.

This bound as well as the bound given in [111] involve square root operations.
Hence they are not easily computable. In practice one computes ceilings of the
results to get integers [111] or maintains integer bounds logarithmically [12, 16].
The Real/Expr-package [28, 88] and the number type r e a l [16] in LEDA provide
exact computation (in C++) for expressions with operations +, - , . , / and v/- and
initially integral operands, using techniques described above. In particular, the
recent version of the r e a l s in LEDA [74] uses the bounds given in [12].

Note the difference between separation bounds and emagics in epsilon tweak-
ing. In epsiton-tweaking a test for zero is replaced by the test]/~l < emagic ? "

With separation bounds it becomes tel < s e p (E) - Eerror? where sep(E) is a
separation bound and Eerro~ is a bound on the error accumulated in the eval-
uation of E. The difference is that the latter term is self-adjusting, it is based

274

on an error bound, and justified; it is guaranteed that the result is zero, if the
condition is satisfied. While ~m~gic is always positive, it might happen that the
accumulated error is so large that 8ep(E) - Eerror is negative. Last but not least,
the conclusion is different if the test is not satisfied. Epsilon-tweaking concludes
that the number is non-zero if it is larger than Cmagic while the use of separation
bounds allows this conclusion only if ILl > sep(E) + Eerro~.

4 Geometric Computation with Imprecision

In this section we briefly discuss the basic aspects of the design and implemen-
tation of geometric algorithms for calculations with imprecision.

4.1 I m p l e m e n t a t i o n wi th Imprecise Pred ica tes

Imprecise arithmetic cannot guarantee correct evaluation of a geometric predi-
cate. It can lead to wrong decisions and wrong results. But even if the result is
not the exact result for the considered problem instance, it can be meaningful.
An algorithm that computes the exact result for a very similar problem instance
can be sufficient for an application, since the input data are known not to be ex-
act either. This observation motivates the definition of robustness and stability
given in Section 1.2. In addition to the existence of a perturbation of the input
data, for which the computed result is correct, Fortune's definition of robustness
and stability [37] requires in addition that the implementation of an algorithm
would compute the exact result, if all computations were precise.

The output of an algorithm might be useful although it is not a correct out-
put for any perturbation of the input. In some situations it might be feasible to
allow perturbation of the output as well. For example, for some applications it
might be sufficient that the output of a two-dimensional convex hull algorithm is
a nearly convex polygon while other applications require convexity. Sometimes
the requirements on the output are relaxed to allow "more general" perturba-
tions of the input data. Robustness and stability are then defined with respect
to the weaker problem formulation. For example, Fortune's and Milenkovic's
line arrangement algorithm [40] computes a combinatorial arrangement that is
realizable by pseudolines but not necessarily by straight lines. Shewchuk [102]
suggests calling an algorithm quasi-robust if it computes useful information but
not a correct output for any perturbation of the input.

For many implementations of geometric primitives it is easy to show that the
computed result is correct for some perturbation of the input. The major problem
in the implementation with imprecise predicates is their combination. The basic
predicates evaluated in an execution of an algorithm operate on the same set of
data and and hence they might be dependent. The results of dependent geometric
predicates might be mutually exclusive, i.e., there might be no small perturbation
leading to correctness for all predicates. Hence an algorithm might get into an
inconsistent state, a state that could not be reached from any input with correct
evaluation. A relaxation of the problem sometimes helps. An illegal state can be

275

a legal state for a similar problem with weaker restrictions, e.g., a state illegal
for an algorithm computing an arrangement of straight lines could be legal for
arrangements of pseudolines. Although an inconsistent state cannot be reached
from any legal input it can still contain useful information.

Avoiding inconsistencies among the decisions is a primary goal in achieving
robustness in implementations with imprecise predicates. Consistency is a non-
issue if an algorithm never evaluates a basic predicate whose outcome is implied
by the results of previous evaluations of basic predicates. Such an algorithm is
called parsimonious [37, 65].

It can be hard to achieve consistency with previous evaluations. For example,
checking whether the outcome of an orientation test is implied by previous tests
on the given set of points is as hard as the existential theory of the reals [37].

For the incremental construction of Voronoi diagrams of points Sugihara et
al. show how consistency with previous decisions can be forced [107, 108]. Their
algorithm is extremely (quasi-)robust. Some "meaningful" output is computed
even if the results of all numerical comparisons are chosen at random. Mean-
ingful means that the computed result is guaranteed to have some topological
properties of a Voronoi diagram.

For some basic geometric problems there are stable, robust, or quasirobust
implementations of geometric algorithms. Li and Milenkovic [67], Guibas et
al. [53, 52], and Kawaguchi et al. [19] consider the convex hull problem in two
dimensions, Barber [6] considers convex hulls and related problems, Hopcraft,
Hoffmann, and Karasick [57] and Hopcroft and Kahn [58] consider intersection
of polygons and convex polyhedra respectively. Fortune and Milenkovic [40] and
Milenkovic [77] consider line arrangements. Fortune [39] considers the Delauney
triangulation of point sets in two-dimensional space and Dey et al. [26] in three-
dimensional space. For modelling polygonal regions in the plane Milenkovic [77]
uses a technique called data normalization to modify the input such that it can be
processed with imprecise arithmetic. Pullar [94] describes possible applications
of these techniques to GIS. Su~hara and Iri present a solid modelling system
free from topological errors [109].

The techniques used in these algorithms are fairly special and it seems un-
likely that they can be easily transferred to other geometric problems. A general
theory showing how to implement geometric algorithms with imprecise predi-
cates is still a distant goal.

4.2 Epsilon G e o m e t r y

An interesting theoretical framework for the investigation of imprecision in geo-
metric computation is epsilon geometry introduced by Guibas, Salesin, and Stolfi
[52]. Instead of a boolean value~ an epsilon predicates returns a real number that
gives some information "how much" the input satisfies the predicate. In epsiton
geometry the size of a perturbation is measured by a non-negative real num-
ber. Only the identity has size zero. If an input does not satisfy a predicate,
the "truth value" of an epsilon predicate is the size of the smallest perturbation
producing a perturbed input that satisfies the predicate. If the input satisfies

276

a predicate, the "truth value" is the non-positive number 0 if the predicate is
still satisfied after perturbing with any perturbations of size at most -~. In [52]
epsilon predicates are combined with interval arithmetic. Imprecise evaluations
of epsilon predicates compute a lower and an upper bound on the "truth value"
of an epsilon predicate. Guibas, Salesin, and Stolfi compose basic epsilon predi-
cates to less simple predicates. Unfortunately epsilon geometry has been applied
successfully only to a few basic geometric primitives [52, 53]. Reasoning in the
epsilon geometry framework seems to be difficult.

4.3 Axiomat ic Approach

In [97, 98] Schorn proposes what he calls the axiomatic approach. The idea is to
investigate which properties of primitive operations are essential for a correctness
proof of an algorithm and to find algorithm invariants that are based on these
properties only.

One of the algorithms considered in [97] is computing a closest pair of a
set of points S by plane sweep [54]. Instead of a closest pair, the distance
(is of a closest pair is computed. In his implementation Schorn uses distance
functions d(p,q), d~(p,q), dy(p,q), and d~(p,q) on points p = (p~,pv) and
q = (q~, qy) in the plane. In an exact implementation these functions would com-
pute V/(p~ - q~)2 + (py _ qy)2 p~ _q~, py _qy, and qv -py , respectively. Schorn
lists properties for these functions that are essential for a correctness proof: First,
they must have some monotonicity properties, d~ must be monotone with respect
to the x-coordinate of its first argument, i.e., [p~ > p~ ~ d~(p,q) > d~(p',q)]
holds, and inverse monotone in the x-coordinate of its second argument, i.e.

' ' d / [q~ ~ q~ ~ d~(p,q) >_ d~(p,q')] holds. Similarly, [qy ~ qy ~ dy(p,q) >> y(p,q)]
and [qy > q~ ~ d~(p, q) > dy(p, q')] must hold for dv and d~, respectively. Sec-
ond, d:~, dy, and d~ must be "bounded by d", more precisely, ~Px >_ qx ~ d(p, q) >
d~(p,q)], [p~ >__ qy ~ d(p,q) >_ dy(p,q)], and [p~ <_ qy ~ d(p,q) > d~(p,q)] must
hold. Finally, d must be symmetric, i.e., d(p, q) = d(q, p). These properties, called
axioms in [97] are sufficient to prove that for the ~ computed by Schorn's plane
sweep implementation

(~ = min d(s, t)
s,t~S

holds. No matter what d, d~, dy. and d~ are, as long as they satisfy all axioms,
min~,~es d(s, t) is computed by the sweep. In particular, if exact distance func-
tions could be used, the correct distance of a closest pair would be computed.
Schorn uses floating-point implementations of the distance functions d, d~, du,
and d~. He shows that they have the desired properties and that they guarantee
a relative error of at most 8gprec in the computed approximation for 5s, where
~p~¢¢ is machine precision.

F~rther geometric problems to which the axiomatic approach is applied in
[97] to achieve robustness are: finding pairs of intersecting line segments and
computing the winding number of a point with respect to a not necessarily
simple polygon. The latter involves point in polygon testing as a special case,
which is also discussed in [36].

277

5 Related Issues

5.1 Round ing

The complexity, e.g., the bit-length of integers, of numerical data in the output
of algorithms for constructive geometric problems is usually higher than that
of the input data. Thus piping geometric computations can result in expensive
arithmetic operations. If the cost caused by increased precision resulting from
cascaded computation is not tolerable, precision must be decreased by rounding
the geometric output data. The goal in rounding is not to deviate too much from
the original data both with respect to geometry and topology while reducing the
precision. Rounding geometric objects is related to simultaneous approximation
of reals by rationals [106]. However, rounding geometric data is more complicated
than rounding numbers and can be very difficult [78], because combinatorial a~d
numericM data have to be kept consistent.

An intensively studied example is rounding an arrangement of line segments,
the underlying geometric structure of cartographic maps. Greene and Yao [50]
were the first to investigate rounding line segments consistently to a regular grid.
Note that simply rounding each segment endpoint to its nearest grid point can
introduce new intersections and hence significantly violate the original topology.
Greene and Yao break line segments into polylines such that all endpoints lie
on the grid and the topology is largely preserved. Largely means, incidences
not present in the original arrangement might arise, but it can be shown that
no additional crossings are generated. Currently the most promising structure
is "snap-rounding", also called "hot-pixel" rounding, introduced by Greene and
Hobby. A pixel in the regular grid is called hot if it contains an endpoint of an
original line segment or an intersection point of the originat segments. In the
rounding process all line segments are snapped to the pixel center, cf. Fig. 5.
Snap-rounding is used in [55, 51, 48]. Rounding can be done as a postprocessing
step after exact computation, but it can also be seen as part of the problem and
be incorporated into the algorithmic solution as e.g. in [51] and [48].

. r . i

 ill i
Fig. 5. Snap-rounding line segments

278

5.2 Inaccura te Da ta

Cartographic data are inherently inaccurate. Sometimes, they can nevertheless
be treated as exact. In preprocessing and postprocessing steps, input and output
data respectively might have to be "cleaned up". For example, in map overlay,
spurious or sliver polygons [20] have to be removed that result from the overlay
of objects which are identical in the real world but not in the overlaid maps.
Treating inaccurate data as exact works (with exact geometric computation) as
long as the input data are consistent. If not, we are in a situation similar to
computation with imprecision. An algorithm might get into states it was not
supposed to get in and which it therefore cannot handle. This similarity has led
researchers to advocate imprecise computation and to attack both inconsisten-
cies arising from imprecise computation and inconsistencies due to inaccurate
data uniformly. In this approach, however, it is not clear whether errors in the
output are caused by precision problems during computation or inaccuracies in
the data. Source errors and processing errors become indistinguishable. Exact
computation, on the other hand, assures that inconsistencies are due to faulty
data. But knowing that an error was caused by a source error does not at all tell
you how to proceed.

The alternative to treating possibly inaccurate data as exact is to incorpo-
rate uncertainty into the problem statement and to develop and use algorithms
solving the resulting problems (exactly). Goodchild [47] gives an overview on
approaches to incorporate inaccuracy and uncertainty in cartographic data in
GIS. For example, tolerance regions can be added to geometric objects to model
inaccuracy and uncertainty in the data, see e.g. [35]. Inaccuracies in the position
of points can be modelled by epsilon circles, inaccuracies in lines by a Perkal
epsilon band [90].

Pullar discusses consequences of using tolerance circles to point coincidence
and point clustering problems [95]. Similar to point coincidence under the "close
to zero is zero" rule, transitivity is a problem, cf. Fig. 6, if points are considered
as coincident if their tolerance regions overlap. In [95] clustering of points is
considered to solve the coincidence problem.

Fig. 6. Points with circular tolerance regions. An obvious clustering would be
{{p~,..., p,}, {p~,..., p~}}.

279

Enhancing tolerance regions with a probability distribution leads to a bet-
ter model of uncertainty. An example of this approach is modelling coordinates
x l , . . • , X d of a point position which is known to be possibly inaccurate by proba-
bility distributions X1, . . . , X~ such that the mean of X~ is at x~. As with compu-
tation with imprecision, a lot of research on modelling and handling uncertainty
in geometric data is still needed.

5.3 Geometr ic Algor i thms in a Library

The purpose of a library is to provide reusable software components. Reusability
requires generality. The components must be usable in or adaptable to various
applications. Generality as such is not sufficient. The components must not only
be adaptable, they must also lead to efficient solutions.

Library components should come with a precise description what they com-
pute and for which inputs they are guaranteed to work. Correctness means that
a component behaves according to such a specification. Clearly, correctness in
the sense of reliability should be beyond question for geometric algorithms and
primitives in a library. However, by far not all implementations of geometric
algorithms are correct. Many implementations of geometric algorithms pretend
to solve a geometric problem, but for a not-clearly-specified set of problems
instances they don't. Due to missing or improper handling of special cases or
just incorrect coding of complicated parts and especially to precision problems,
many implementations of geometric algorithms disappoint the user occasionally
by unexpected failures, break downs, or computing garbage.

Exactness should not be confused with correctness in the sense of reliability.
There is nothing wrong with approximation algorithms or approximate solutions
as long as they do what they profess to do. Correctness can have unlike appear-
ances: An algorithm handling only non-degenerate cases can be correct in the
above sense. Also, an algorithm that guarantees to compute the exact result only
if the numerical input data are integral and smaller than some given bound can
be correct as well as an algorithm that computes an approximation to the exact
result with a guaranteed error bound. Correctness in the sense of reliability is a
must tbr (re-)usability and hence for a geometric algorithms library.

A good library is more than just a collection of reusable software. It provides
reliable, reusable components that can be combined in a fairly seamless way.
Due to the composition problem with imprecise predicates described in Section
4.1, even stable, imprecise predicates are not very useful as library components.
Building a library upon exact geometric predicates is much easier. With exact
predicates, algorithms developed under the real computation model can be im-
plemented in a straightforward way. A redesign that deals with imprecision in
the predicates is not necessary. Exact basic predicates can simplify the task of
implementing approximation algorithms as well. For input data that are known
to be inaccurate, exactness is not so important. Correctness in the sense of re-
liability is then the primary goal, not exactness, but currently exact geometric
computation seems to be the safest way to reach it.

280

Among the library and workbench efforts in computational geometry [3, 45,
63, 24, 74, 85] the XYZ-Geobench and LEDA deserve special attention concern-
ing precision and robustness. In XYZ-Geobench [85, 96] the axiomatic approach
to robustness, described in section 4.3, is used. In LEDA [73, 74] arbitrary pre-
cision integer arithmetic is combined with the floating-point filter technique to
yield efficient exact components for rational problems. Recently, in Europe and
the US, new projects called CGAL (Computational Geometry Algorithms Li-
brary) [34, 89] and GeomLib [5] have been started. The goal of both projects
is to enhance the technology transfer from theory to practice in geometric com-
puting by providing reliable, reusable implementations of geometric Mgorithms.

6 Conclusion

In his book on randomization and geometry [82] Mulmuley writes

Dealing with the finite nature of actual computers is an art that requires
infinite patience.

Nevertheless, the precision problem is almost ignored and left to the implementor
in the textbooks on computational geometry, for sake of simplicity and readabil-
ity of presentation. The emphasis is on understanding an algorithm and their
correctness over the reals rather than on implementation issues of these algo-
rithms. More than a half page description of the precision problems is hardly
given.

Despite a lot of research having been done on the precision and robust prob-
lem, no satisfactory general-purpose solution has been found. There is no con-

sensus in the geometry literature on how to deal with precision problems. Some
researchers want to use fast floating-point arithmetic exclusively and hence in-
vestigate design and implementation of algorithms with imprecise predicates.
Others prefer exact geometric computation, because it allows fairly straightfor-
ward implementation of geometric algorithms designed for the real RAM model
[91] and sometimes because they want to use perturbation schemes. Exact geo-
metric computation seems to be the more prazticM approach to reach reliability,
especially if number packages supporting exact geometric computation [29, 13]
are available. However, there need not be a consensus. Both approaches have
their merits.

Practitioners often ask for the impossible. Algorithms computing exact or
at least highly accurate results are requested to be competitive in performance
to algorithms that sometimes crash or exhibit otherwise unexpected behavior.
Efficiency is compared for inputs that all of them handle. That is somewhat
unfair. It should be clear that one has to pay for the detection of degenerate
and nearly degenerate situations, but it should Mso be clear, that one gets much
more.

Surely, this survey is incomplete and biased. Most of the presentation is de-
voted to exact geometric computation. Implementation with imprecise primitives
has gained less attention here, because it lacks generality and its application is

281

much less straightforward. Related surveys on the problem of precision and ro-
bustness in geometric computat ion are given by Fortune [38], Hoffmann [56],
and Yap [110]. Franklin [44] especially discusses cartographic errors caused by
precision problems.

Acknowledgements

Work on these notes was partially supported by the E S P R I T IV LTR Project

No. 21957 (CGAL).

R e f e r e n c e s

1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

2. G. Alefeld and J. Herzberger. Introduction to Interval Computation. Academic
Press, New York, 1983.

3. F. Avn~im. C++GAL: A C++ Library for Geometric Algorithms, 1994.
4. F. Avnaim, :I.D. Boissonnat, O. Devillers, F.P. Preparata, and M. Yvinec. Eval-

uating signs of determinants using single precision arithmetic. Technical Report
2306, INRIA Sophia-Antipotis, 1994.

5. J.E. Baker, R. Tamassia, and L. Vismara. GeomLib: Algorithm engineering for a
geometric computing library, 1997. (Preliminary report).

6. J.L. Barber. Computational geometry with imprecise data and arithmetic : Phd
Thesis. Technical Report CS-TR-377-92, Princeton University, 1992.

7. M.O. Benouamer, P. Jaitlon, D. Michelueci, and J-M. Moreau. A "lazy" solution
to imprecision in computational geometry. In Proe. of the 5th Canad. Conf. on
Comp. Geom., pages 73-78, 1993.

8. :I.D. Boissonnat and M. Yvinec. Algorithmic Geometry. Cambridge University
Press, Cambridge, UK, 1997.

9. H. Br5nnimann, I.Z. Emiris, V.Y. Pan, and S. Pion. Computing exact geometric
predicates using modular arithmetic with single precision. In Proe. 13th Annu.
ACM Sympos. Comput. Geom., pages 174-182, 1997.

10. H. Br5nnimann and M. Yvinec. Efficient exact evaluation of signs of determinants.
In Proc. 13th Annu. ACM Sympos. Comput. Geom, pages 166-173, 1997.

11. C. Burnikel. Exact Computation of Voronoi Diagrams and Line Segment Inter-
sections. PhD Thesis, Universit£t des Saarlandes, Saarbriicken, Germany, 1996.

12. C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. A strong and easily
computable separation bound for arithmetic expressions involving square roots.
In Proc. of the 8th ACM-SIAM Syrup. on Discrete Algorithms, pages 702-709,
1997.

13. C. Burnikel, J. K5nemann, K. Mehlhorn, S. N£her, S. Schirra, and C. Uhrig. Exact
geometric computation in LEDA. In Proceedings of the 11th ACM Symposium on
Computational Geometry, pages C18-C19, 1995.

14. C. Burnikel, K. Mehlhorn, and S. Schirra. How to compute the Voronoi diagram
of line segments: Theoretical and experimentM results. In ESA94, pages 227-239,
t994.

15. C. Burnikel~ K. Mehlhorn, and S. Schirra. On degeneracy in geometric compu-
tations. In Proc. of the 5th ACM-SIAM Syrup. on Discrete Algorithms, pages
16-23, 1994.

282

16. C. Burnikel, K. Mehlhorn, and S. Schirra. The LEDA class real number. Tech-
nical Report MPI-I-96-1-001, Max-Planck-Institut flit Informatik, 1996.

17. J.F. Canny. The Complexity of Robot Motion Planning. PhD Thesis, 1987.
18. J.F. Canny. Generalised characteristic polynomials. J. Symbolic Computation,

9:241-250, 1990.
19. Wei Chen, Koichi Wada, and Kimio Kawaguchi. Parallel robust algorithms for

constructing strongly convex hulls, tn Proc. 12th Annu. ACM Sympos. Comput.
Geom., pages 133-140, 1996.

20. N.R. Chrisman. The accuracy of map overlays: a reassessment. In D.J. Peu-
quet and D.F. Marble, editors, Introductory Readings in Geographic Information
Systems, pages 308-320. Taylor & Francis, London, 1990.

21. K. L. Clarkson. Safe and effective determinant evaluation. In Proc. 33rd Annu.
IEEE Sympos. Found. Comput. Sci., pages 387-395, 1992.

22. J.L.D. Comba and J. Stolfi. Affine arithmetic and its applications to computer
graphics, 1993. Presented at SIBGRAPI'93, Recife (Brazil), October 20-22.

23. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry. Springer Verlag, 1997.

24. P. de Rezende and W. Jacometti. Geolab: An environment for development of al-
gorithms in computationM geometry. In Proc. 5th Canad. Conf. Comput. Geom.,
pages 175-180, W'aterloo, Canada, 1993.

25. T.J. Dekker. A floating-point technique for extending the available precision.
Numerische Mathematik, 18:224 - 242, 1971.

26. T.K. Dey, K. Sugihara, and C.L. Bajaj. Delaunay triangulations in three di-
mensions with finite precision arithmetic. Computer Aided Geometric Design,
9:457-470, 1992.

27. D. Douglas. It makes me so CROSS. In D.J. Peuquet and D.F. Marble, editors,
Introductory Readings in Geographic Information Systems, pages 303-307. Taylor

Francis, London, 1990.
28. T. Dub4, K. Ouchi, and C.K. Yap. Tutorial for tteal/Expr package. 1996.
29. T. Dub6 and C.K. Yap. A basis for implementing exact computational geometry.

extended abstract, 1993.
30. H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Verlag, 1986.
31. H. Edelsbrunner and E. Mficke. Simulation of simplicity: A technique to cope with

degenerate cases in geometric a/gorithms. ACM Trans. on Graphics, 9:66-104,
1990.

32. I. Emiris and J. Canny. A general approach to removing degeneracies. In Pro-
ceedings of the 32nd IEEE Symposium on Foundations of Computer Sience, pages
405-413, 1991.

33. I. Emiris and J. Canny. An efficient approach to removing geometric degeneracies.
In Proe. of the 8th ACM Syrup. on Computational Geometry, pages 74-82, 1992.

34. A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Sch6nherr. The
CGAL kernel : a basis for geometric computation. In Ming C. Lin and Di-
nesh Manocha, editors, Applied Computational Geometry : Towards Geometric
Engineering (WACG96), pages 191-202. Springer LNCS 1148, 1996.

35. S. Fang and B. Brfiderlin. Robustness in geometric modeling - tolerance based
methods. In Proc. Workshop on Computational Geometry CG'91, pages 85-102.
Springer Verlag LNCS 553, 1991.

36. A. R. Forrest. Computational geometry in practice. In 1%. A. Earnshaw, edi-
tor, Fundamental Algorithms for Computer Graphics, volume Ft7 of NATO ASI,
pages 707-724. Springer-Verlag, 1985.

283

37. S. Fortune. Stable maintenance of point-set triangulations in two dimensions. In
Proceedings of the 30th IEEE Symposium on Foundations of Computer Sience,
pages 494-499, 1989.

38. S. Fortune. Progress in computational geometry. In R. Martin, editor, Directions
in Geometric Computing, pages 81 - 128. Information Geometers Ltd., 1993.

39. S. Fortune. Numerical stability of algorithms for 2D Delaunay triangulations and
Voronoi diagrams. Int. J. Computational Geometry and Applications, 5:193-213,
1995.

40. S. Fortune and V. Milenkovic. Numerical stability of algorithms for line ar-
rangements. In Proc. of the 7th ACM Symp. on Computational Geometry, pages
334-341, 1991.

41. S. Fortune and C. van Wyk. Efficient exact arithmetic for computational geome-
try. In Proc. of the 9th ACM Syrup. on Computational Geometry, pages 163-172,
1993.

42. S. Fortune and C. van Wyk. LN user manual, 1993.
43. S. Fortune and C. Van Wyk. Static analysis yields efficient exact integer arith-

metic for computational geometry. ACM Transactions on Graphics, 15(3):223-
248, 1996.

44. W.R. Franklin. Cartographic errors symptomatic of underlying algebra problems.
In Proc. International Symposium on Spatial Data Handling~ volume 1~ pages 190-
208, Ziirich, 20-24 August 1984.

45. G.-J. Giezeman. PIaGeo, a library.for planar geometry, and SpaGeo, a library for
spatial geometry, 1994.

46. D. Goldberg. What every computer scientist should know about floating-point
arithmetic. A CM Computing Surveys, pages 5-48, 1991.

47. M.F. Goodchild. Issues of quality and uncertainty. In J.C. Muller, editor, Ad-
vances in Cartography, pages 113-139. Elsevier Applied Science, London, 1991.

48. M. Goodrich, L. Guibas, J. Hershberger, and P. Tanenbaum. Snap rounding
line segments efficiently in two and three dimensions. In Proe. 13th Annu. ACM
Sympos. Comput. Geom., pages 284-293, 1997.

49. T. Granlund. GNU MP, The GNU Multiple Precision Arithmetic Library, 2.0.2
edition~ June 1996.

50. D. Greene and F. Yao. Finite resolution computational geometry. In Proe. of
the 27th IEEE Symposium on Foundations of Computer Science, pages 143-152,
1986.

51. L. Guibas and D. Marimont. Rounding arrangements dynamically. In Proc. l t th
Annu. ACM Sympos. Comput. Geom., pages 190-199~ 1995.

52. L. Guibas, D. Salesin, and J. Stolfi. Epsilon geometry: Building robust algorithms
from imprecise computations. In Proe. of the 5th A CM Syrup. on Computational
Geometry, pages 208-217, 1989.

53. L. Guibas, D, Salesin, and J. Stolfi. Constructing strongly convex approximate
hulls with inaccurate primitives. In Proc° SIGAL Syrup. on Algorithms, pages
261-270, Tokyo, 1990.

54. K. Hinrichs, J. Nievergelt, and P. Schorm An all-round sweep algorithm for 2-
dimensional nearest-neighbor problems. Aeta Informatica, 29:383-394, 1992.

55. J.D. Hobby. Practical line segment interscetion with finite precision output. Tech-
nical Report 93/2-27, Bell Laboratories (Lucent Technologies), 1993.

56. C.M. Hoffmann. The problem of accuracy and robustness in geometric computa-
tion. IEEE Computer, pages 31-411 March 1989.

284

57. C.M. Hoffmann, J.E. Hopcroff, and M.S. Karasick. Towards implementing ro-
bust geometric computations. In Proe. of the 4th ACM Syrup. on Computational
Geometry, pages 106-117, 1988.

58. J.E. Hopcroft and P.J. Kahn. A paradigm for robust geometric algorithms. Al-
gorithmica, 7:339-380, 1992.

59. K. Jensen and N. Wirth. PASCAL- User Manual and Report. Revised for the
ISO Pascal Standard. Springer Verlag, 3rd edition, 1985.

60. S. Kahan and J. Snoeyink. On the bit complexity of minimum link paths: Su-
perquadratic algorithms for problems solvable in linear time. In Proe. 1Pth Annu.
ACM Sympos. Comput. Geom., pages 151-158, 1996.

61. M. Karasick, D. Lieber, and L.R. Nackman. Efficient Delaunay triangulation
using rational arithmetic. ACM Transactions on Graphics, 10(1):71-91, 1991.

62. R. Klein. Algorithmische Geometric. Addison-Wesley, 1997. (in German).
63. A. Knight, J. May, M. McAffer, T. Nguyen, and J.-R. Sack. A computational

geometry workbench. In Proc. 6th Annu. ACM Sympos. Comput. Geom., page
370, 1990.

64. D.E. Knuth. The Art of Computer Programming Vol. 2: Seminumerieal Algo-
rithms. Addison-Wesley, 2nd edition, 1981.

65. Donald E. Knuth. Axioms and Hulls, volume 606 of Lecture Notes in Computer
Science. Springer-Verlag, Heidelberg, Germany, 1992.

66. M.J. Laszlo. Computational geometry and computer graphics in C++. Prentice
Hall~ Upper Saddle River, N J, 1996.

67. Z. Li and V. Milenkovic. Constructing strongly convex hulls using exact or
rounded arithmetic. Algorithmica, 8:345-364, 1992.

68. LiDIA -Group, Fachbereich Informatik Institut ffir Theoretische Informatik TH
Darmstadt. LiDIA Manual A library for computational number theory, 1.3 edi-
tion, April 1997.

69. G. Liotta, F. Preparata, and R. Tamassia. Robust proximity queries: An illus-
tration of degree-driven algorithm design. In Proc. 13th Annu. ACM Sympos.
Comput. Geom., pages 156-165, 1997.

70. K. Mehlhorn. Data Structures and Algorithms 3: Multi-dimensional Searching
and Computational Geometry. Springer Verlag, 1984.

71. K. Mehlhorn and S. N£her. Implementation of a sweep line algorithm for the
straight line segment intersection problem. Technical Report MPI-I-94-160, Max-
Planck-Institut ffir Informatik, 1994.

72. K. Mehlhorn and S. N£her. The implementation of geometric algorithms. In 13th
World Computer Congress IFIP94, volume 1, pages 223-231. Elsevier Science
B.V. North-Holland, Amsterdam, 1994.

73. K. Mehlhorn and S. N£her. LEDA, a platform for combinatorial and geometric
computing. Communications of the ACM, 38:96-102, 1995.

74. K. Mehlhorn, S. N£her, and C. Uhrig. The LEDA User manual, 3.5 edition, 1997.
cf. http ://www. mpi-sb, mpg. de/LEDh/leda, html.

75. M. Mignotte. Identification of algebraic numbers. Journal of Algorithms, 3:197-
2O4, 1982.

76. M. Mignotte. Mathematics for Computer Algebra. Springer Vertag, 1992.
77. V. Milenkovic. Verifiable implementations of geometric algorithms using finite

precision arithmetic. Artificial Intelligence, 37:377-401, 1988.
78. V. Milenkovic and L. R. Nackman. Finding compact coordinate representations

for polygons and polyhedra. ~n Proc. 6th Annu. ACM Sympos. Comput. Geom.,
pages 244-252, 1990.

285

79. R.E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, N J, 1966.
80. R.E. Moore. Methods and Applications of Interval Analysis. SIAM, Philadelphia,

1979.
81. S.P. Mudur and P.A. Koparkar. Interval methods for processing geometric objects.

IEEE Computer Graphics and Applications, 4(2):7-17, 1984.
82. K. Mulmuley. Computational Geometry : An Introduction through Randomized

Algorithms. Prentice Hall, Englewood Cliffs, N J, 1994.
83. J. Nievergelt and K. H. Hinrichs. Algorithms and Data Structures : with Appli-

cations to Graphics and Geometry. Prentice Hall~ Englewood Cliffs, N J, 1993.
84. J. Nievergelt and P. Schorn. Das R£tsel der verzopften Geraden. Informatik

Spektrum, (11):163-165, 1988. (in German).
85. J. Nievergett, P. Schorn, M. de Lorenzi, C. Ammann, and A. Br/ingger. XYZ:

Software for geometric computation. Technical Report 163, Institut fiir Theorische
Informatik, ETH, Z/irich, Switzerland, 1991.

86. J. O'Rourke. Computational geometry in C. Cambridge University Press, Cam-
bridge, 1994.

87. T. Ottmann, G. Thiemt, and C. Ullrich. Numerical stability of geometric al-
gorithms. In Proc. of the 3rd ACM Symp. on Computational Geometry, pages
119-125, 1987.

88. K. Ouchi. Real/Expr: Implementation of exact computation, 1997.
89. M. Overmars. Designing the computational geometry algorithms library CGAL.

In Ming C. Lin and Dinesh Manocha, editors, Applied Computational Geometry :
Towards Geometric Engineering (WACG96), pages 53-58. Springer LNCS 1148,
1996.

90. J. Perkal. On epsilon length. Bulletin de l'Acad~mie Polonaise des Sciences,
4:399-403, 1956.

91. F. Preparata and M.I. Shamos. Computational Geometry. Springer Verlag, 1985.
92. D.M. Priest. Algorithms for arbitrary precision floating point arithmetic. In lOth

Symposium on Computer Arithmetic, pages 132 - 143. IEEE Computer Society
Press~ 1991.

93. D.M. Priest. On Properties of Floating-Point Arithmetic: Numerical Stability and
the Cost of Accurate Computations. PhD Thesis, Department of Mathematics,
University of California at Berkeley, 1992.

94. D. Pullar. Spatial overlay with inexact numerical data. In Proc. of Auto-Carto
10, pages 313-329, 1991.

95. D. Pullar. Consequences of using a tolerance paradigm in spatial overlay. In Proc.
of Auto-Carto 11~ pages 288-2969 1993.

96. P. Schorn. An object-oriented workbench for experimental geometric computa-
tion. In Proc. 2nd Canad. Conf. Comput. Geom., pages 172-175, 1990.

97. P. Schorn. Robust Algorithms in a Program Library for Geometric Algorithms.
PhD Thesis, Informatik-Dissertationen ETH Z~irich, 1991.

98. P. Schorn. An axiomatic approach to robust geometric programs. J. Symbolic
Computation~ 16:155-165, 1993.

99. P. Schorn. Degeneracy in geometric computation and the perturbation approach.
The Computer Journal, 37(1):35-42, 1994.

100. R. Seidel. The nature and meaning of perturbations in geometric computations.
In STACS9g, 1994.

101. B. Serpette, J. Vuillemin, and J.C. Hero6. BigNum, a portable and efficient pack-
age for arbitrary-precision arithmetic. Technical Report 2~ Digital Paris Research
Laboratory, 1989.

286

102. 3. R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust
geometric predicates. Technical Report CMU-CS-96-140, School of Computer
Science, Carnegie Mellon University, 1996.

103. J. R. Shewchuk. Triangle: Engineering a 2D quMity mesh generator and delaunay
triangulator. In Ming C. Lin and Dinesh Manocha, editors, Applied Computational
Geometry : Towards Geometric Engineering (WACG96), pages 203-222, 1996.

104. IEEE Standard. 754-1985 for binary floating-point arithmetic. SIGPLAN, 22:9-
25, 1987.

105. K.G. Suffern and E.D. Fackerell. Interval methods in computer graphics. Com-
puters ~J Graphics, 15(3):331-340, 1991.

106. K. Sugihara. On finite-precision representations of geometric objects. J. Comput.
Syst. Sci., 39:236-247, 1989.

107. K. Sugihara. A simple method for avoiding numerical errors and degeneracies in
Voronoi diagram construction. IEICE Trans. Fundamentals, E75-A(4):468-477,
1992.

108. K. Sugihara and M. Iri. Construction of the Voronoi diagram for over 105 genera-
tors in single-precision arithmetic. In Abstracts 1st Canad. Conf. Comput. Geom.,
page 42, 1989.

109. K. Sugihara and M. Iri. A solid modelling system free from topological inconsis-
tency. Journal of Information Processing, 12(4):380-393, 1989.

110. C. K. Yap. Robust geometric computation. In J. E. Goodman and J. O~Rourke,
editors, CRC Handbook in Computational Geometry. CRC Press. (to appear).

111. C. K. Yap and T. Dub6. The exact computation paradigm. In D.Z. Du and
F. Hwang, editors, Computing in Euclidean Geometry, pages 452-492. World Sci-
entific Press, 1995. 2nd edition.

112. C.K. Yap. A geometric consistency theorem for a symbolic perturbation scheme.
In Proe. of the 4th A CM Syrup. on Computational Geometry, pages 134-141, 1988.

113. C.K. Yap. Symbolic treatment of geometric degeneracies. J. Symbolic Comput.,
10:349-370, 1990.

114. C.K. Yap. Towards exact geometric computation. Computational Geometry:
Theory and Applications, 7(1-2):3-23, 1997. Preliminary version appeared in Proc.
of the 5th Canad. Conf. on Comp. Geom., pages 405-419, (1993).

287

