
Page 1 of 11

Copyright 2000 by Software Engineering Research and L&S Computer Technology, Inc.
Appears in Proceedings 2nd International Workshop on Software and Performance, Sept. 2000

ABSTRACT
A pattern is a common solution to a problem that occurs in many
different contexts. Patterns capture expert knowledge about “best
practices” in software design in a form that allows that knowledge
to be reused and applied in the design of many different types of
software. Antipatterns are conceptually similar to patterns in that
they document recurring solutions to common design problems.
They are known as antipatterns because their use (or misuse) pro-
duces negative consequences. Antipatterns document common mis-
takes made during software development as well as their solutions.

While both patterns and antipatterns can be found in the literature,
they typically do not explicitly consider performance conse-
quences. This paper explores antipatterns from a performance per-
spective. We discuss performance problems associated with one
well-known design antipattern and show how to solve them. We
also propose three new performance antipatterns that often occur in
software systems.

1.0 INTRODUCTION
A pattern is a common solution to a problem that occurs in many
different contexts [5]. It provides a general solution that may be
specialized for a given context. Patterns capture expert knowledge
about “best practices” in software design in a form that allows that
knowledge to be reused and applied in the design of many different
types of software.

Patterns address the problem of “reinventing the wheel.” Over the
years, software developers have solved essentially the same prob-
lem, albeit in different contexts, over and over again. Some of these
solutions have stood the test of time while others have not. Patterns
capture these proven solutions and package them in a way that
allows software designers to look-up and reuse the solution in much
the same fashion as engineers in other fields use design handbooks.

The use of patterns in software development has its roots in the
work of Christopher Alexander, an architect. Alexander developed
a pattern language for planning towns and designing the buildings
within them [1]. A pattern language is a collection of patterns that
may be combined to solve a range of problems within a given appli-
cation domain, such as architecture or software development. Alex-
ander’s work codified much of what was, until then, implicit in the
field of architecture and required years of experience to learn.

In addition to capturing design expertise and providing solutions to
common design problems, patterns are valuable because they iden-
tify abstractions that are at a higher level than individual classes and
objects. Now, instead of discussing software construction in terms
of building blocks such as lines of code, or individual objects, we
can talk about structuring software using patterns. For example,
when we discuss using the Proxy pattern [5] to solve a problem, we
are describing a building block that includes several classes as well
as the interactions among them.

Patterns have been described for several different categories of soft-
ware development problems and solutions, including software
architecture, design, and the software development process itself.

Recently, software practitioners have also begun to document anti-
patterns. Antipatterns [2] are conceptually similar to patterns in that
they document recurring solutions to common design problems.
They are known as antipatterns because their use (or misuse) pro-
duces negative consequences. Antipatterns document common mis-
takes made during software development as well as their solutions.
Thus, antipatterns tell you what to avoid and how to fix the problem
when you find it.

Antipatterns are refactored (restructured or reorganized) to to over-
come their negative consequences. A refactoring is a correctness-
preserving transformation that improves the quality of the software.
For example a set of classes might be refactored to improve reus-
ability by moving common properties to an abstract superclass. The
transformation does not alter the semantics of the application but it
may improve overall reusability. Refactoring may be used to
enhance many different quality attributes of software, including:
reusability, maintainability, and, of course, performance. Refactor-
ing is discussed in detail in [4].

Antipatterns address software architecture and design as well as the
software development process itself. Our experience is that devel-
opers find antipatterns useful because they make it possible to iden-

Software Performance AntiPatterns

Connie U. Smith
Performance Engineering Services

PO Box 2640
Santa Fe, New Mexico, 87504-2640

(505) 988-3811
http://www.perfeng.com/

Lloyd G. Williams
Software Engineering Research

264 Ridgeview Lane
Boulder, Colorado 80302

(303) 938-9847
boulderlgw@aol.com

Page 2 of 11

Copyright 2000 by Software Engineering Research and L&S Computer Technology, Inc.
Appears in Proceedings 2nd International Workshop on Software and Performance, Sept. 2000

tify a bad situation and provide a way to rectify the problem. This is
particularly true for performance because good performance is the
absence of problems. Thus, by illustrating performance problems
and their causes, performance antipatterns help build performance
intuition in developers. Patterns, which do not contain performance
problems, may be less useful for building performance intuition,
especially if their performance characteristics are not discussed (as
is typically the case).

While both patterns and antipatterns can be found in the literature,
they typically do not explicitly consider performance conse-
quences. It is important to document both design patterns that lead
to systems with good performance and to point out common perfor-
mance mistakes and how to avoid them. This is a supplement to
software performance engineering that will improve the architec-
tures and designs of software developers.

This paper explores antipatterns from a performance perspective.
We discuss performance problems associated with one well-known
design antipattern and show how to solve them. We also propose
three new performance antipatterns that often occur in software sys-
tems.

While their emphasis is different, both patterns and antipatterns
address common software problems and their solutions. The
emphasis in the patterns community, however, is on quality
attributes, such as reusability or maintainability, other than perfor-
mance. As the use of patterns and antipatterns becomes more wide-
spread, it is vital to also identify those that are likely to have good
performance characteristics. We propose antipatterns for perfor-
mance problems that we encounter in many different contexts but
have the same underlying pathology. Because we find them so
often, it is important to document these antipatterns so developers
will be able to recognize them before they occur, and select appro-
priate alternatives.

2.0 RELATED WORK
Antipatterns are derived from work on patterns. As noted in the
introduction, this work is aimed at capturing expert software design
knowledge. There is a large body of published work on patterns
including [5], [3], and the proceedings of the Pattern Languages of
Program Design (PLoP) conferences. While there is occasional
mention of performance considerations in the work on patterns, the
principal focus is on other quality attributes, such as modifiability
and maintainability.

Meszaros [6] presents a set of patterns that address capacity and
reliability in reactive systems such as telephony switches. Petriu
and Somadder [7] extend these patterns for use in identifying and
correcting performance problems in distributed layered client-
server systems with multi-threaded servers.

Smith [10] presents a set of principles for constructing responsive
software systems. While they were published before the work on
software patterns began and presented with a different focus, they
can be viewed as performance patterns.

Antipatterns extend the notion of patterns to capture common
design errors and their solution. The most extensive work on this

topic is by Brown, et. al. [2]. Their work, like the work on patterns
however, focuses principally on quality attributes other than perfor-
mance.

This paper extends the work on antipatterns to explicitly address the
performance of software architectures and designs. It presents three
common performance mistakes made in software architectures. The
first antipattern, the “god” class, was proposed by other authors as a
problem with software quality. We show how it also leads to poor
performing software. We propose three additional antipatterns that
also cause poor performance. They may also have other negative
impacts on other quality attributes, but they are not addressed here.
Additional performance antipatterns appear in a forthcoming book
by the authors.

Each of the antipatterns is defined in the following sections using
this standard template:

• Name: the section title
• Problem: What is the recurrent situation that causes nega-

tive consequences?
• Solution: How do we avoid, minimize or refactor the anti-

pattern?

3.0 THE “GOD” CLASS
This antipattern is known by various names, including the “god”
class [8] and the “blob” [2]. Both Reil and Brown, et. al. discuss the
impact of this phenomenon on quality attributes such as modifiabil-
ity and maintainability. The presence of a “god” class in a design
also has a negative impact on performance.

3.1 Problem
A “god” class is one that performs most of the work of the system,
relegating other classes to minor, supporting roles. A design con-
taining a “god” class is usually easy to recognize. It typically has a
single, complex controller class (often with a name containing
Controller or Manager) that is surrounded by simple classes
that serve only as data containers. These classes typically contain
only accessor operations (operations to get() and set() the
data) and perform little or no computation of their own. The “god”
class obtains the information it needs using the get() operations
belonging to these data classes, performs some computation, and
then updates the data using their set() operations.

The following (very) simplified example illustrates the effects of a
“god” class. Consider an industrial process control application in
which it is necessary to control the status of a valve (open or
closed). Figure 1 shows a fragment of the class diagram for a possi-
ble design for this application. The Controller class in Figure 1
behaves like a “god” class. The Valve class has no intelligence. It
simply reports its status (open or closed) and responds to
open() and close() operation invocations. The Controller
does all of the work; it requests information from the Valve,
makes decisions, and tells the Valve what to do.

The Controller class is tightly coupled to the Valve class and
requires extra messages to perform an operation, as shown by the
following code fragment.

Page 3 of 11

Copyright 2000 by Software Engineering Research and L&S Computer Technology, Inc.
Appears in Proceedings 2nd International Workshop on Software and Performance, Sept. 2000

void openValve() {
 status currentStatus;

 currentStatus = theValve->getStatus();
 if (currentStatus != open)
 theValve->open();
}

To open a valve, the controller must first request the valve’s status,
then check to see that it is not open and, finally, tell the valve to
open. This operation requires two messages to open the valve, one
to get the status and one to invoke the open() operation.
Moreover, if the definition of status is changed in Valve, a cor-
responding change must be made in all of the applicable operations
in Controller.

The open() and close() operations in Valve simply set the
appropriate value of status.

The solution can be refactored to reduce both the coupling between
Controller and Valve and the number of messages required to
perform an operation by moving the status check to the Valve
class. Figure 2 shows the refactored class diagram.

Now, the status check is in the Valve class (close to the data
needed to perform the check). The openValve() operation in
Controller is simply:

void openValve() {
 theValve->open();
}

and the open() operation in Valve becomes:

void open() {
 if (status != open)
 status = open;
}

There is also a variant of the “god” class that, rather than perform-
ing all of the work, contains all of the system’s data [8]. The func-
tions are then assigned to other classes. When one of the function

classes needs data to perform an operation, it obtains it from the
“god” class via a get() operation and, if data needs to be updated,
the function class updates it using a set() operation. Even though
the data is encapsulated by accessor functions, the data form of the
“god” class is the moral equivalent of global data or the common
block in FORTRAN.

Both forms of the “god” class are the result of poorly distributed
system intelligence. A good rule of thumb when designing object-
oriented systems is to keep related data and behavior in the same
place. Both types of “god” class violate this heuristic by assigning
behavior to one class and the data needed to provide that behavior
to another.

A “god” class may creep into a design in several different ways.
Behavioral “god” classes are often the result of a procedural design
that masquerades as an object-oriented one. “God” classes are also
often introduced while upgrading a legacy system to an object-ori-
ented design. A behavioral “god” class may be created when devel-
opers attempt to capture the central control mechanism in the
original, procedural design. On the other hand, if the original sys-
tem contained a large, global data structure, it is likely to appear as
a data “god” class in the new design.

From a performance perspective, a “god” class creates problems by
causing excessive message traffic. In the behavioral form of the
problem, the excessive traffic occurs as the “god” class requests and
updates the data it needs to control the system from subordinate
classes. In the data form, the problem is reversed as subordinates
request and update data in the “god” class. In both cases, the num-
ber of messages required to perform a function is larger than it
would be in a design that assigned related data and behavior to the
same class.

The effect of a “god“ class on message traffic is shown clearly in a
case study presented by Sharble and Cohen [9]. They present two
designs for an “Object-Oriented Brewery.” One (Design 1) was pro-
duced using a data-driven design technique and contains a behav-
ioral “god” class. The other (Design 2) was produced using a
responsibility-driven technique and corresponds to an appropriately
refactored version of Design 1. The difference in the number of
messages required by each design for various scenarios is shown in
Figure 3.

Sharble and Cohen were concerned with design metrics, such as
coupling and cohesion, and not performance. They used message
counts as a complexity measure. Viewed from a performance per-
spective, however, their data dramatically illustrates the perfor-
mance impact of a “god” class..

As Figure 3 shows, the number of messages required to accomplish
a function is greater in every case for the design containing the
“god” class – sometimes by a factor of two or more. This excessive
message traffic can degrade performance and is especially problem-
atic in distributed systems where an object of the “god” class exe-
cutes on a different node than objects of its subordinate classes.

3.2 Solution
The solution to the “god” class problem is to refactor the design to
distribute intelligence uniformly across the top-level classes in the

Figure 1: A “god” Class

Figure 2: Refactored Solution

...
openValve()
closeValve()
...

Controller

status : enum

getStatus()
open()
close()

Valve

...
openValve()
closeValve()
...

Controller

status : enum

open()
close()

Valve

Page 4 of 11

Copyright 2000 by Software Engineering Research and L&S Computer Technology, Inc.
Appears in Proceedings 2nd International Workshop on Software and Performance, Sept. 2000

application. It is important to keep related data and behavior
together. An object should have most of the data that it needs to
make a decision. Beware of either: 1) an object that must request
lots of data from other objects and then update their states with the
results, or 2) a group of objects that must access a common object
to get and update the data that they deal with.

This solution to the “god” class problem embodies the locality prin-
ciple [Smith, 1988; Smith, 1990] because an algorithm and the data
that it requires are localized in the same object.

The performance gain for the refactored solution will be:

where Ts is the processing time saved, Ms is the number of messages

saved and O is the overhead per message. The amount of overhead
for a message will depend on the type of call, for example a local
call will have less overhead than a remote procedure call.

4.0 EXCESSIVE DYNAMIC ALLOCATION
With dynamic allocation, objects are created when they are first
accessed (a sort of “just-in-time” approach) and then destroyed
when they are no longer needed. This can often be a good approach
to structuring a system, providing flexibility in highly dynamic situ-
ations. For example, in a graphics editor, creating an instance of a
shape (such as a circle or rectangle) when it is drawn and destroying
the instance when the shape is deleted may be a very useful
approach. Excessive Dynamic Allocation, however, addresses fre-
quent, unnecessary creation and destruction of objects of the same
class.

4.1 Problem
Dynamic allocation is expensive. Reil [8] describes an object-ori-
ented approach to designing a gas station in which, when your car
needs gasoline, you pull over to the side of the road, buy a piece of
land, build a gas station (which, in turn builds pumps, and so on),
and fill the tank. When you’re done, you destroy the gas station and
return the land to its original state. Clearly, this approach only
works for the wealthy (and patient!). You certainly do not want to
use this approach if you need gas frequently.

The situation is similar in object-oriented software systems. When
an object is created, the memory to contain it (and any objects that
it contains) must be allocated from the heap and any initialization
code for the object and the contained objects must be executed.
When the object is no longer needed, necessary clean-up must be
performed and the reclaimed memory must be returned to the heap
to avoid “memory leaks.” While the overhead for creating and
destroying a single object may be small, when a large number of
objects are frequently created and then destroyed, the performance
impact may be significant.

The sequence diagram in Figure 4 illustrates Excessive Dynamic
Allocation. This example is drawn from a call-processing applica-
tion in which, when a customer lifts the telephone handset (an
offHook event), the switch creates a call object to manage the
call. When the call is completed (an onHook event), the call
object is destroyed. (Details of the call processing are in the
sequence diagram referenced by handleCall, which is not
shown here.)

While constructing a single Call object may not seem excessive, a
Call is a complex object that contains several other objects that
also must be created. In addition, a switch can receive hundreds of
thousands of offHook events each hour. In a case like this, the

Figure 3: Message Counts for Scenarios (from [9])

A
dd

 to
In

ve
nt

or
y

B
ot

tle
 a

B
at

ch

C
le

an
 a

C
on

ta
in

er

C
re

at
e

a
B

at
ch

C
re

at
e

a
V

at

C
re

at
e

a
R

ec
ip

e

M
on

ito
r

a
B

at
ch

R
ec

or
d

a
D

ai
ly

R
ea

di
ng

S
ch

ed
ul

e
a

T
ra

ns
fe

r

T
ra

ns
fe

r
a

B
at

ch

0

10

20

30

40

50

60

70

Design 1

Design 2

N
um

be
r

of
 M

es
sa

ge
s

Scenario

Ts Ms O×=

Page 5 of 11

Copyright 2000 by Software Engineering Research and L&S Computer Technology, Inc.
Appears in Proceedings 2nd International Workshop on Software and Performance, Sept. 2000

overhead for dynamically allocating call objects adds substantial
delays to the time needed to complete a call.

The cost of dynamic allocation, C, is:

where N is the number of calls, depth is the number of contained
objects that must be created when the class is created, sc and sd are

the service time to create the object and to destroy the object
respectively, and S is sc + sd.

Figure 5 shows the cost of Excessive Dynamic Allocation for some
typical values of depth and S, the sum of the creation and destruc-
tion time. The figure shows how the overhead for dynamic alloca-
tion increases as the number of calls increases. Note that the graph
shows the total service time for dynamic allocation regardless of the
number of processes handling these calls. Calls are multi-processed
so the response time depends on the number of processes and on
contention delays among them. Reducing the service time, how-
ever, also reduces the response time.

4.2 Solution
There are two possible solutions to problems introduced by Exces-
sive Dynamic Allocation.

The first is to “recycle” objects rather than create new ones each
time they are needed. This approach pre-allocates a “pool” of
objects and stores them in a collection. New instances of the object
are requested from the pool and unneeded instances are returned to
it. This approach is useful for systems that continually need many
short-lived objects (like the call processing application). You pay
for pre-allocating the objects at system initialization but reduce the
run-time overhead to simply passing a pointer to the pre-allocated
object. This is an application of the processing versus frequency

principle – we minimize the product of the amount of processing
times the frequency that it is performed [Smith, 1988; Smith, 1990].
Returning unused objects to the pool eliminates garbage collection
overhead and possible memory leaks.

The second approach uses sharing to eliminate the need to create
new objects. An example of this is the use of the Flyweight pattern
[5] to allow all clients to share a single instance of the object. An
example of this application of the Flyweight pattern to alleviate
Excessive Dynamic Allocation in the ICAD example (Section 5)
appears in [12].

Figure 4: Excessive Dynamic Allocation

theCaller theSwitch

aCall
«create»

aReceiver

offHook

handleCall

onHook

release

disconnect

«destroy»

C N sc sd+()
depth
∑⋅=

Figure 5 Cost of Excessive Dynamic Allocation

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11

Number of Calls (Thousands)

T
o

ta
l S

er
vi

ce
 T

im
e Depth=3, S=.001

Depth=5, S=.001

Depth=10, S=.001

Depth=3, S=.005

Depth=5, S=.005

Depth=10, S=.005

Page 6 of 11

Copyright 2000 by Software Engineering Research and L&S Computer Technology, Inc.
Appears in Proceedings 2nd International Workshop on Software and Performance, Sept. 2000

The first improvement approach affects the cost in Figure 5 by
reducing the service time, S, to the time to allocate/return an object
from the pool, and changing the depth to 1 because the pre-allo-
cated objects already have created the subordinate objects. The
improvement for the second approach is similar.

5.0 CIRCUITOUS TREASURE HUNT
Do you remember the child’s treasure hunt game that starts with a
clue which leads to a location where the next clue is hidden, and so
on until the “treasure” is finally located? The antipattern analogy is
typically found in database appl.ications. Software retrieves data
from a first table, uses those results to search a second table,
retrieves data from that table, and so on until the “ultimate results”
are obtained.

5.1 Problem
The impact on performance is the large amount of database pro-
cessing required each time the “ultimate results” are needed. It is

especially problematic when the data is on a remote server and each
access requires transmitting all the intermediate queries and their
results via a network and perhaps through other servers in a multi-
tier environment.

The computer-aided design case study originally described in [Wil-
liams, 1998] illustrates this antipattern. The ICAD application
allows engineers to construct and view drawings that model struc-
tures, such as aircraft wings. A model is stored in a relational data-
base and several versions of the model may exist within the
database.

Figure 6 shows a portion of the ICAD class diagram with the rele-
vant classes. A model consists of elements which may be: beams,
which connect two nodes; triangles, which connect three nodes; or
plates, which connect four or more nodes. A node is defined by its
position in three-dimensional space (x, y, z). Additional data is
associated with each type of element to allow solution of the engi-
neer’s model.

This example focuses on the DrawMod scenario in which a model
is retrieved from the database and drawn on the screen. Figure 7
shows a sequence diagram for this scenario. A typical model con-
sists of 2000 beams and 1500 nodes (a single node may be con-
nected to up to 4 beams). The software first finds the model id, then
uses it to find the beams, and repeats the sequence of steps to:
retrieve each beam row, use the node number from the beam row to
find then retrieve the node row which contains the “ultimate
results” – the node coordinates. This information is then used to
draw the model. For a typical DrawMod scenario there are 6001
database calls: 1 for the model, 2000 for beams, and 4000 for the
nodes.

A large number of database calls causes the most serious perfor-
mance problems in systems with remote database accesses; because
of the cost of the remote access, the processing of the query, and the
network transfer of all the intermediate results.

Another instance of the antipattern is also found in object-oriented
systems where operations have large “response sets.” In this case,
one object invokes an operation in another object, that object then
invokes an operation in another object, and so on until the “ultimate
result” is achieved. Then each operation returns, one by one, to the
object that made the original call.

The performance impact is the extra processing required to identify
the final operation to be called and invoking it, especially in distrib-
uted object systems where objects may reside in other processes
and on other processors. When the invocation causes the intermedi-
ate objects to be created and destroyed the performance impact is
even greater. This behavior also has poor memory locality because
each context switch may cause the working set of the called object
to be loaded. The working sets of intermediate objects may need to
be re-loaded later when the return executes.

The class diagram in Figure 6 shows a simple example. Suppose
that the model data has been retrieved from the database and is now

Figure 6: ICAD Classes and Associations

Model

TriangleNode Beam Plate

Element

modelID : int

node1 : int
node2 : int
node3 : int
…

nodeNo : int
x : int
y : int
z : int
…

node1 : int
node2 : int
…

nodes[] : int
…

elementNo : int

draw()

draw()
draw()

draw()
draw()

1..N

2

3

4..N

Page 7 of 11

Copyright 2000 by Software Engineering Research and L&S Computer Technology, Inc.
Appears in Proceedings 2nd International Workshop on Software and Performance, Sept. 2000

contained within each object. Then the model object must deter-
mine (from the association to Beam, probably a table of pointers)
each Beam object to call, and each Beam must determine (from
the association to Nodes) which Node objects to call. The Model
calls the first Beam operation, then the Beam calls 2 Node opera-
tions, and so on.

5.2 Solution
If you find the database access problem early in development, you
may have the option of selecting a different data organization. For
example, the DrawMod database could store the node coordinates
(x, y, z) in the beam table. The sequence diagram for the alternative
database design is in Figure 8. With the node coordinates in the
beam row, the database call to find and retrieve nodes is unneces-
sary and is omitted. For a typical DrawMod scenario with 2000
beams, there will be 4000 fewer database calls.

In general the number of calls saved will be:

where cs is the total number of calls saved, aj is number of associ-

ated objects in the level below for each object in this level, for
every object j between the object originally containing the “ultimate
result” (the leaf class), and the object containing the “first clue” (the
root class). For example, for the leaf class (node) aj is 2 nodes per

beam, and for the intermediate class (beam) aj is 2000 beams per

model, so cs is 4000.

There are some potential disadvantages to reorganizing the Draw-
Mod data in this way. Optimizing the data organization for one sce-
nario may de-optimize it for other scenarios. To determine the
appropriateness of each alternative, the performance engineer will
need to analyze the performance impact on other scenarios that use
the database. It is unwise to optimize the database organization for a
single scenario if it has a detrimental affect on all other scenarios;
you want the “globally optimal” solution for the key performance
scenarios. You evaluate the overall performance by revising each
scenario that is affected by the change and comparing the model
solutions. Details are beyond the scope of this discussion.

For distributed systems, if you cannot change the database organi-
zation, you can reduce the number of remote database calls by
using the Adapter pattern [5] to provide a more reasonable interface
for remote calls. The Adapter would then make all the other (local)
database calls required to retrieve the “ultimate result” return only
those results to the remote caller. This reduces the number of
remote calls and the amount of data transferred, but does not reduce
the database processing.

For designs with large response sets, an alternative is to create a
new association that leads directly to the “ultimate result.” For
example, in Figure 6 we would add an association between the
Model class and the Node class. In the DrawMod scenario, this
would reduce the number of operations called from 6000 (2000

Figure 7: DrawMod Example of Circuitous Treasure Hunt

: ICAD

: Model

: Database : Beam : Node : Node

«create»

open()

find(modelID)

find(modelID, beams)

sort(beams)

loop *[each beam]

retrieve(beam)

find(modelID, node1, node2)

retrieve(node1)

retrieve(node2)

«create»

«create»

«create»

draw()

draw()

draw()

draw()

close()

draw()

cs aj
j rootpath∈

∏=

Page 8 of 11

Copyright 2000 by Software Engineering Research and L&S Computer Technology, Inc.
Appears in Proceedings 2nd International Workshop on Software and Performance, Sept. 2000

Beam calls plus 4000 Node calls) to 1500 (the number of Nodes
per Model). The performance impact is substantial if these are
remote calls that are made via middleware such as Corba or
DCOM.

6.0 THE ONE LANE BRIDGE
On the south island of New Zealand there is a highway that has a
one lane bridge that is even shared with a train. It isn’t a problem
there because there is light traffic in that part of the country. It
would be a problem though if it were in downtown Los Angeles.

6.1 Problem
The problem with a One Lane Bridge is that traffic may only travel
in one direction at a time, and if there are multiple lanes of traffic
all moving in parallel, they must merge and proceed across the
bridge, one vehicle at a time. This increases the time required to
get a given number of vehicles across the bridge and can also cause
long back-ups.

The software analogy to the One Lane Bridge is a point in the exe-
cution where one, or only a few, processes may continue to execute
concurrently. All other processes must wait. It frequently occurs in
applications that access a database. Here, a lock ensures that only
one process may update the associated portion of the database at a
time. It may also occur when a set of processes make a synchronous
call to another process that is not multi-threaded; all of the pro-
cesses making synchronous calls must take turns “crossing the
bridge.”

The sequence diagram in Figure 9 illustrates the database variant of
the One Lane Bridge antipattern. Each order requires a database
update for each item ordered. The structure selected for the data-
base assigns a new order-item number to each item and inserts all
items at the end of the table. If every new update must go to the
same physical location, and all new items are “inserted,” then the
update behaves like a One Lane Bridge because only one insert may
proceed at a time; all others must wait. There is also a second prob-
lem in that these inserts are costly because they must update a data-
base index for each key on the table.

Similar problems occur when the database key is a date/time stamp
for an entity, or any key that increases monotonically. We have also
seen this problem for periodic archives where processing must halt
while state information is transferred to long term storage.

6.2 Solution
With vehicular traffic, you alleviate the congestion caused by a One
Lane Bridge by constructing multiple lanes, constructing additional
bridges (or other alternatives), or re-routing traffic.

The analogous solutions in the database update example above
would be:

• use an algorithm for assigning new database keys that
results in a “random” location for inserts,

• use multiple tables that may be consolidated later, or
• use another alternative such as pre-loading “empty” data-

base rows and selecting a location to update that minimizes
conflicts.

Figure 8: Refactored DrawMod Scenario

: ICAD

: Model

: Database : Beam : Node : Node

«create»

open()

find(modelID)

find(modelID, beams)

sort(beams)

loop *[each beam]

retrieve(beam)

«create»

«create»

«create»

draw()

draw()

draw()

draw()

close()

draw()

Page 9 of 11

Copyright 2000 by Software Engineering Research and L&S Computer Technology, Inc.
Appears in Proceedings 2nd International Workshop on Software and Performance, Sept. 2000

For example, an alternative for assigning date-time keys is to use
multiple “buckets” for inserts and use a hashing algorithm to assign
new inserts to the “buckets.”

Reducing the amount of time required to cross the bridge also helps
relieve congestion. One way to do this is to find alternatives for per-
forming the update. For example, if the update must change multi-
ple tables, it would be better to select a different data organization
in which the update could be processed in a single table.

For the database example above, the magnitude of the improvement
depends on the intensity of new item orders and the service time for
performing updates. The relationship is:

where RT is the residence time (elapsed time for performing the
update), S is the service time for performing updates, and X is the
arrival rate.

Figure 10 shows a comparison of the residence time for various
arrival rates for two different service times. The first curve assumes
the service time for the update is 10 milliseconds (thus the arrival
rate of update requests must be less than 100 requests per second),
and shows how the residence time increases as the arrival rate
approaches the maximum. The second curve shows the improve-
ment if the update service time is reduced by 1 millisecond! The
figure illustrates the improvement achievable by reducing the ser-
vice time (the time required to cross the bridge). If you change the
structure of the database so that you update in multiple locations so
fewer processes wait for each update, this is equivalent to reducing
the arrival rate and the figure also shows the relative benefit of this
alternative.

Figure 10 also illustrates the relative importance of the One Lane
Bridge antipattern: if the intensity of requests for the service is
high, it may be a significant barrier to achieving responsiveness and
scalability requirements.

This solution to the One Lane Bridge problem embodies the shared
resources principle [Smith, 1988; Smith, 1990] because responsive-
ness improves when we minimize the scheduling time plus the
holding time. Holding time is reduced by reducing the service time
for the One Lane Bridge and by re-routing the work.

7.0 SUMMARY AND CONCLUSIONS
This paper has explored antipatterns from a performance perspec-
tive. We show the performance consequences of a recognized anti-
pattern, introduce three new antipatterns with negative performance
consequences, and quantify their impact on performance.

The value of both antipatterns and their predecessor, patterns, is
that they capture expert software design knowledge. This value has
been amply demonstrated by their acceptance within the develop-
ment community. One serious shortcoming of both patterns and
antipatterns has been their lack of focus on performance issues.
While some authors focused on performance [Meszaros, 1996; Pet-
riu and Somadder, 1997], most have considered it as an after-
thought, if at all. Demonstrating the performance characteristics of
patterns and antipatterns is vital so that developers using them in
designing software can select alternatives that will meet their per-
formance goals.

The work presented here goes beyond merely describing the char-
acteristics of architectural or design antipatterns, however. The
Excessive Dynamic Allocation, Circuitous Treasure Hunt, and One
Lane Bridge antipatterns document common performance mistakes
and provide solutions for them. While these antipatterns may mani-

Figure 9: Database Contention Example

{location = PC}

aCustomer

{location = Mainframe}

theDatabase

{location = Mainframe}

anOrderProcess

checkOut

queryDB

{location = WebServer}

anOrderTaker

updateDB

enterOrder

triggerOrderProcess

ack

loop *[each item]

RT S
1 XS–
-----------------=

Page 10 of 11

Copyright 2000 by Software Engineering Research and L&S Computer Technology, Inc.
Appears in Proceedings 2nd International Workshop on Software and Performance, Sept. 2000

fest themselves in a variety of ways (for example the One Lane
Bridge problem may be caused by either database collisions or syn-
chronization delays) the manifestations have a common underlying
cause.

The solutions to these antipatterns embody sound, well-accepted
performance principles [Smith, 1988; Smith, 1990]. These princi-
ples are similar to patterns in that they provide guidelines for creat-
ing responsive software. The antipatterns presented here provide a
complement to the performance principles by illustrating what not
to do and how to fix a problem when you find it. A simple analogy
from electrical engineering would be using examples of series and
parallel circuits (i.e., patterns) to illustrate how to build proper cir-
cuits and an example of a short circuit (i.e., an antipattern) to show
what to avoid. Feedback from students in our classes indicates that
both types of example are needed to instill performance intuition.

More work is needed on both patterns and antipatterns that includes
their impact on performance as well as other quality attributes. We
are continuing to identify other performance-related patterns and
antipatterns. Many of these are described in a forthcoming book.

8.0 REFERENCES

[1] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacob-
son, I. Fiksdahl-King, and S. Angel, A Pattern Lan-
guage, New York, NY, Oxford University Press, 1977.

[2] W. J. Brown, R. C. Malveau, H. W. McCormick III,
and T. J. Mowbray, AntiPatterns: Refactoring Soft-

ware, Architectures, and Projects in Crisis, New York,
John Wiley and Sons, Inc., 1998.

[3] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
and M. Stal, Pattern-Oriented Software Architecture:
A System of Patterns, Chichester, England, John Wiley
and Sons, 1996.

[4] M. Fowler, Refactoring: Improving the Design of
Existing Code, Reading, MA, Addison-Wesley Long-
man, 1999.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-Ori-
ented Software, Reading, MA, Addison-Wesley, 1995.

[6] G. Meszaros, "A Pattern Language for Improving the
Capacity of Reactive Systems," in Pattern Languages
of Program Design 2, J. M. Vlissides, J. O. Coplein
and N. L. Kerth, ed., Reading, MA, Addison-Wesley,
1996, pp. 575-591.

[7] D. Petriu and G. Somadder, "A Pattern Language For
Improving the Capacity of Layered Client/Server Sys-
tems with Multi-Threaded Servers," Proceedings of
EuroPLoP'97, Kloster Irsee, Germany, July, 1997.

[8] A. J. Riel, Object-Oriented Design Heuristics, Read-
ing, MA, Addison-Wesley, 1996.

Figure 10: Performance Impact of the One Lane Bridge

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

20 50 80 98 99.5 99.87 110 111

Arrival rate

R
es

id
en

ce
 t

im
e

 S= 0.010

S = 0.009

Page 11 of 11

Copyright 2000 by Software Engineering Research and L&S Computer Technology, Inc.
Appears in Proceedings 2nd International Workshop on Software and Performance, Sept. 2000

[9] R. C. Sharble and S. S. Cohen, "The Object-Oriented
Brewery: A Comparison of Two Object-Oriented
Development Methods," Software Engineering Notes,
vol. 18, no. 2, pp. 60-73, 1993.

[10] C. U. Smith, "Applying Synthesis Principles to Create
Responsive Software Systems," IEEE Transactions on
Software Engineering, vol. 14, no. 10, pp. 1394-1408,
1988.

 [11] C. U. Smith, Performance Engineering of Software
Systems, Reading, MA, Addison-Wesley, 1990.

[12] L. G. Williams, C. U. Smith, “Performance Engineer-
ing of Software Architectures,” Proceedings Workshop
on Software and Performance, Santa Fe, NM, Oct.
1998.

