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Abstract This collection of patterns revives some old wisdom of experienced 
programmers with Sidestep System Calls and explains tactics to 
improve the performance and predictability of multi-threaded 
applications with Locking Categories and Thread-local Memory-Pool. 
They are mined and applied in server applications that provide 
services for a large number of users and for users that are sensible to 
fast response times.

Overview Today, many developers and software architects are shielded from the 
low-level consequences of their doings that they no longer can be 
aware of the performance issues. Several factors have created such a 
situation:

• Low-level programming is "uncool", because often the abstractions 
provided by an operating system are too cumbersome to use 
efficiently.

• Moore's law makes hardware faster and faster.

• Popular high-level languages, tools and libraries provide a lot of 
useful functionality without giving awareness of performance 
implications. And some tool architectures really are slow.

In the early days of mass-market internet, users connected via 
relatively slow modems and the bandwidth of the connection was the 
limiting factor of an application server's performance. Today, 
broadband access is becoming more an more popular and slow 
response times and high latency not only annoy users but also limit 
effeciency in web-based work places.
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Bad performance is particularly a problem for developers creating 
server applications that need to handle either a large number of 
concurrent users or users that expect immediate responses. 

Not only performance, but also predictability of behavior is becoming 
important in a 24x7 operating condition. First, crashes and 
recognizable down-times become less acceptable. Second, multiple 
services on a single machine call for predictable behavior in terms of 
resource utilization, so that one service running under load doesn't 
block another on the same hardware. 

The patterns presented here cover some old folk wisdom with 
Sidestep System Calls and its specialization Locking Categories. In 
addition it introduces a new one for multi-threaded server 
architectures with Thread-local Memory Pool that in turn helps to 
implement Locking Categories more efficient for transient, but 
dynamically allocated objects.
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Sidestep System Calls
Sidestep System Calls

In applications or systems where performance matters, decrease the 
number of system calls made, because they are an order of magnitude 
more expensive than regular function calls within a program. 
Especially on modern hardware with large register sets, caches and 
multiple CPUs, the penalty payed per system call is relatively high. 
Understand how your program behaves with respect to system calls 
and learn how you can reduce the number of system calls required. 
For example, employ mechanisms like buffering, cacheing, or avoid 
unnecessary system calls by improved architectural structure.

Also Known As Buffering, presented as Avoid System Calls at EuroPLoP 2002.

Example Consider you write a simple program counting the occurences of the 
letter 'A' in a file. When you just rely on using Unix system calls 
open() and read() you might end with a solution like this:

/* program 1 */
 #include <fcntl.h>
 int main(int argc,char **argv)
 {
     char c; int counter=0;
     int fd = open(argv[1],O_RDONLY);
     if (fd < 0) return;
     while (read(fd,&c,1) == 1){ if ('A'==c) counter++; }
     printf("number of A's:%d",counter);
 }

when you run this program on a large input it is significantly slower 
than the following program using the stdio library’s fopen() and 
fgetc():

/* program 2 */
 #include <stdio.h>
 int main(int argc,char **argv)
 {
     int c; int counter=0;
     FILE *f =fopen(argv[1],"r");
     if (!f) return;
     while ((c=fgetc(f)) != EOF ){ if ('A'==c) counter++; }
     printf("number of A's:%d",counter);
 }
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On my system timing the programs with /usr/share/dict/words
results in 

program 2                    program 1
 real    0m0.038s             real    0m0.437s
 user    0m0.040s             user    0m0.130s
 sys     0m0.000s             sys     0m0.290s

As you can see the second program using stdio's buffering 
mechanisms is more than 10 times faster than the first one.

Context You are developing an application or a system that expects either very 
high load or stresses the limits of its hardware and operating system.

Problem Omnipotent libraries and naive programmers tend to neglect the 
performance requirements of some applications. On the other hand, 
libraries or programmers can sometimes provide optimizations that 
are useful.

Program code runs fastest on modern system if it fits into the 
processor's cache memory and employs no calls or data accesses 
outside the cache, thrashing the cache's content. A major reason for 
calling outside of the current code context is a call to the operating 
system. In addition to thrashing the cache memory, the processor has 
to change its internal mode of operation and raise the privilege level. 
The operating system needs to save the process' execution context 
and establishes the kernel context to perform the OS' call (and vice 
versa on return). Thus this is a relatively costly operation compared 
to a regular in-program function call.

On the other hand, program code that does something useful needs 
to have an external (lasting) effect. This can only be obtained by 
calling the operating system's features.

With many operating systems (especially UNIX) such calls are an 
order of magnitude more expensive than a regular function call within 
the program. In addition often data needs to be passed from the 
process' user address space to or from the OS' address space to 
obtain a desired result (i.e. write the contents of a file).

Whenever the operating system needs to perform input or output (i.e. 
disk, network), the communication aspect with the peripheral units 
adds another order of magnitude overhead. Reducing the number and 
frequency of such expensive system calls can give a program a boost 
in performance and a drop in the usage of system resources.
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How can you minimize the number of operating system calls in your 
program to improve its performance?

In particular you want to address the following forces:

• calling the operating system is expensive, but

• system cannot be avoided completely.

• a process or thread of your system will be interrupted within a 
system call, if a resource is not available, thus giving other threads 
or processes the chance to continue. The overhead for switching to 
and from a process or thread increases the overall performanc 
impact.

• a long running thread or process will be interrupted when its time 
slice is exceeded, even when it is not issuing system calls.

• some libraries provide mechanisms to reduce the number of 
system calls, i.e. by buffering (stdio, iostreams).

• some libraries hide or encapsulate system calls so deeply, that a 
programmer is unaware of the implications using them. 1

Solution The solution is two-fold: There is the technical aspect of using 
mechanisms like buffering and caching to reduce the need to call the 
OS too often. The other is the human aspect of educating 
programmers to understand the implications of their code or of the 
libraries or programming languages they are using.

For the technical aspect of the solution exist several popular 
approaches:

• Buffering input/output operations and issue a system call only when 
a buffer is full or empty (as in stdio or iostream).

• Cacheing of results (see Proxy pattern [GOF][POSA96]). Keep the 
result of an expensive operation in a proxy object and reuse this 
result later on instead of re-issuing the operation on the original 

1. For example, many middleware infrastructures strive to give the 
programmer the illusion of a local call, when a remote procedure call 
happens. Unfortunately, the relative cost of such an external call 
increased with each generation of middleware from RPC, Corba, Java-
RMI, J2EE Beans, SOAP. I wonder who is re-inventing this overhead 
over and over.
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object. An example of such cacheing is the implementation BIND 
named of the Internet domain name service (DNS).

• Architectural approaches as demonstrated, for example, in the 
Thread-local Memory Pool pattern.

The human aspect is approached by writing or reading this pattern. 
In addition you can use tools provided by your development platform 
to learn about the system call behavior of your programs.

For a better understanding of implications imposed by system calls to 
your program use existing tools to monitor your program (for 
example, on UNIX use ps, top, and time), trace the system calls issued 
(e.g., truss or strace), or read the library source code and 
documentation to understand what is really going on under the 
blanket.

Example 
Resolved

Tracing the number of system calls made for our two programs 
results in about 120 system calls for the efficient program 2 and more 
than 400'000 system calls for program 1. No wonder, the naive 
program is an order of magnitude slower.

strace ./program2 /usr/share/dict/words 2>&1 | wc -l 
129 
strace ./program1 /usr/share/dict/words 2>&1 | wc -l 
408889

However, fortunately we humans never need to stop to learn. Look at 
the following program, using the more sophisticated mmap() system 
call for counting the 'A's. This program runs about 4 times faster than 
program 2 and uses only about 25 system calls (the majority used by 
the dynamic library loader on my system).

#include <unistd.h> 
#include <fcntl.h> 
#include <sys/mman.h> 
int main(int argc,char **argv) 
{ 

char c; int counter=0; 
long l=0; const char *s; 
int fd = open(argv[1],O_RDONLY); 
if (fd < 0) return; 
l=lseek(fd,0,SEEK_END); 
s=mmap(0,l,PROT_READ,MAP_PRIVATE,fd,0); 
if (s == MAP_FAILED) return; 
while (l--){ if ('A'==*s++) counter++; } 
printf("number of A's:%d",counter); 

}
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On my system I get the following timing:

real    0m0.009s 
user    0m0.010s 
sys     0m0.000s

Known Uses The technical aspect of this pattern is omnipresent in many libraries 
dealing with input or output, among them are stdio, iostream or 
Java's buffered streams that can improve performance of a solution 
dramatically as shown in the example.

However, as stated above, the opposite is also true, for libraries or 
middleware hiding from the programmers the huge performance 
impacts of using distributed components.

The human aspect today falls short, but this pattern is a step in 
educating you the reader to take care.

Consequences The pattern implies the following benefits:

• reducing the effective number of system calls made can improve the 
performance of your program, if it needs so.

• libraries or your own Wrapper Facades [POSA2000] to system calls 
can implement buffering or cacheing and provide a more convenient 
API than bare-bone operating system calls. In addition higher-level 
error handling can be easier to deal with than the operating system’s 
abstractions.

• learning the implications of your deeds can make you a better 
programmer

However, the Sidestep System Calls pattern also has its liabilities:

• Complex mechanisms for buffering or caching are error prone if 
implemented yourself and can be hard to maintain. Libraries take 
time time to mature in that respect.

• Premature optimization or optimization without need can lead to 
obscure and hard to maintain programs. Often the speed of a 
program is a neglectable today.

• It can be hard to retro-fit an existing system to employ significant 
fewer system calls.
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• Error handling can be more fine grained and deal with individual 
situations, if you program on a system call level. Thus your program 
can behave better that just saying “sorry” to the user. On the other 
hand, doing good and failure resistent error handling on the level of 
system calls can increase complexity of your code heavily.

• Sometimes avoiding system calls can make an application more 
fragile or hard to debug. One example that happened to me was 
writing a log file with a large in-program buffer. The contents of the 
log file itself never showed where the application really crashed, 
because in case of the crash the relevant log data has not been written 
to disk. 

See Also Locking Categories: locks are implemented by system calls, therefore 
minimizing the number of locks needed is a special case of Sidestep 
System Calls.

Thread-local Memory Pool minimizes the use of locks required for 
allocating and deallocating objects.
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Locking Categories

When programming multi-threaded systems, thread-safety is 
omnipresent. However, locking any object or method that might be 
shared somewhen carries not only the danger of deadlocks but also 
even if deadlock-free, the dread of poor performance. Good locking 
strategies as the one suggested by this pattern are therefore needed. 
This pattern gives you categories of objects to look for, so that you can 
carefully minimize the need for locking.

Also Known As This pattern was named Minimize Locking when presented at 
EuroPLop 2002.

Example Consider an application server, that keeps user sessions and serves 
request within individual threads. Each shared resource, that such a 
server uses, needs to be secured by locks. Otherwise, the threads 
running in parallel might access such a shared resource in an 
inconsistent state. 

One such shared resource is the session manager object, that keeps 
a list of active user sessions. Each request handling thread will obtain 
the session for a request from the session manager. Such a session 
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can be newly instantiated by the session manager. In turn the 
manager modifies its list of sessions. A request of a returning user will 
get its already existing session object from the session list by the 
session manager. Multiple requests occur in parallel, therefore the 
session manager must use a lock to serialize access by request 
threads.

Another shared resource our server provides is its current 
configuration in a server configuration object. This object holds all 
configuration data of the server like the URL to process. It is 
initialized on server start-up and never changes later on. Threads 
processing requests need to access the server configuration object to 
obtain the URL of the server, because it must be rendered to the reply. 
Caution will tell you also to use locks for the server configuration 
object, because it is accessed simultaneously.

Each request processing thread builds up its output in a reply object 
that resembles an in memory buffer, before the result is sent over the 
network back to the client. Such a reply buffer will only be accessed 
by an single request processing thread and never used by another 
thread.

Context You are developing a multi-threaded (server) application that requires 
access to shared resources. 

Problem One common solution to the situation where several threads access a 
shared resource (i.e. an object) is to provide a lock, that must be 
acquired for every access to this object (for example, via java's 
synchronized keyword).

Without locking you cannot guarantee that your system runs 
correctly, because a thread might read inconsistent information from 
the shared resource while another one is updating this information. 
This can result in your system crashing or misbehaving.

However, using locks for each access to a potentially shared object 
can be very expensive: instead of a memory access, you need a system 
call to acquire a lock before you access the object and release the lock 
by another system call after you are done.2 As we have learned from 
Sidestep System Calls this can result in bad performance.

2. On a multi-processor hardware, lock acquisition needs to synchronize all 
processors and caches, making it especially expensive.
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Many operating systems provide read-write locks, that allow multiple 
simultaneous threads read an object preventing all others to write at 
the same time. Read-write locks promise increase in parallelism. This 
pays off, when you only rarely update a shared object.

How can you implement a multi-threaded system, that does not pay the 
performance penalty of too many locks?

In particular you want to address the following forces:

• You must protect a shared mutable resource by a lock, so that all 
threads have a consistent image of it. Neglecting locks will lead to 
systems that crash.

• Excessive use of locks not only is expensive, but can also lead to 
race conditions or deadlocks, when locks are applied without a 
clear and working strategy (see also Thread-Safe Interface pattern 
[POSA2000]).

• Using read-write-locks allows you better sharing of a resource read 
mostly, but still requires a system call per acquire and release.

• Lock acquisition and release are expensive operations, especially 
on multi-processor hardware and can be hard to implement 
correctly (see Double-Checked Locking pattern [POSA2000]).

• You have decided that a simpler single-threaded design like shown 
in the Reactor pattern [POSA2000] cannot meet the goals of 
performance and system utilization.

• Read-only objects can be accessed by multiple threads in parallel 
without requiring locks.

• Objects allocated on the heap, that are only used by a single thread 
still require obtaining a lock by the memory management library, 
because the heap memory itself is a shared global resource. Only 
stack-allocated objects are really local to the thread and require no 
locks at all.

Solution There is no boilerplate solution to build a system just using the 
minimal number of lock acquisitions and releases. However, this 
pattern represents an engineering strategy to create a system, that 
uses a less locks than a naive design might come up with.
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In a server application you can classify your objects into three 
categories:

• transient objects that will ever only be used by a single thread, i.e. 
those that are only useful during the processing of a single request 
(see the Reply Buffer object in our example). Objects allocated on 
the stack are examples of such objects. The Thread-local Memory 
Pool pattern allows for efficient allocation of transient heap objects 
without locking.

• shared objects that are used by several threads, potentially in 
parallel and thus require locks. The session manager of our 
example definitely is a such a shared object.

• read-only shared objects that are created by a single-threaded or 
contention-free initialization phase (i.e. according to Eager 
Acquisition pattern [Kircher Jain]) and do not change their 
statelater on, like the server configuration object. Thus, they can 
be employed by several threads in parallel without the need for 
locks, not even read-write locks.

To minimize the overall locking overhead, you can strive to optimize 
the number of objects in the shared category. Too many shared 
objects might result in too many locks to acquire and release, even 
when good parallelism is won. Too few shared objects (e.g. one) might 
limit throughput, because of contention for the lock of these objects. 
Your goal must be have no objects unnecessarily in the shared 
category.

Access to shared objects should be implemented using the Thread-
Safe Interface pattern and if you are using C++ by the Scoped Locking 
idiom [POSA2000].

Configuration objects, that are initialized on system startup but later 
on not changed, fall in the category read-only shared. They can 
provide flexible, data-driven operation of your system, without the 
need to sychronize their access during normal system operation. 
Having such objects pre-allocated and initilized is shown in Eager 
Acquisition as opposite to what Lazy Acquisition pattern [Kircher 
Jain] and Double Checked Locking Optimization pattern [POSA2000] 
talk about.
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Structure You will have the following types of components in your resulting 
system:

Initializer running only at system startup in a single thread. An 
Initializer sets up all read-only shared objects. It might also initialize 
shared objects.3

Worker Threads are started after the Initializer is done. You will have 
multiple, for example in a thread pool as shown in Leader/Followers 
[POSA2000].

Shared Objects represent shared resources with an associated lock 
(perhaps a read-write lock) used by Worker Threads.

Read-only Shared Objects represent shared resources that do not 
change after the Initializer is done.

Transient Object corresponds to objects created (and destroyed!) by 
a thread that is never passed across the thread’s boundary while it is 
in use.

Dynamics To allow for read-only shared objects your system needs to be working 
accordig to the following phases:

• Initializer started and initializing (1 active thread):

• initialize read-only shared objects

• initialize shared objects

• initialize Thread-Local Memory Pool (optional, see next pattern)

• initialzie Worker Threads in a Thread Pool

3. The Initializer is not shown in the diagram of the example.

Initializing
Working

Wait for WorkersRe-Initilize

stop

re-initialize

finished
[All worker threads stopped]
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• start normal operation:

• start Worker Threads in the Thread Pool.

• within each thread: create, use and destroy transient objects and 
access read-only shared objects without locks.

• stop normal operation for re-initilization:

• stop threads, each thread will release its transient objects.

• wait until threads are finished and only one active performing the 
re-initialization remains.

• re-create/re-initialize shared and shared read-only objects

• stop the entire system.

Providing a means of re-initialization without completely stopping the 
system can be a daunting task. You need to provide a means to stop 
all threads in the thread pool and enter a mode where only one active 
thread remains that is used for re-initialization. However, it might 

Shared
Readonly
Shared

task

Initializer

Transient

Worker
Thread

acquire lock

release lock

no locking
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much easier and sufficient to just simply kill and restart the system. 
For example, stopping the worker threads might take a long time, 
when some threads are waiting for I/O to complete and cannot be 
interrupted in this state. Killing the process by brute force, the 
operating system guarantees that all threads and I/O is stopped. 
However, active users of your system might have some inconvenience.

An alternative solution for re-initialization, outside the scope of this 
pattern, is to take read-only shared object as almost read-only and 
provide them with a read-write lock. So re-initialization needs to 
obtain a write lock on these objects before changing. Such a solution 
significantly increases the number of locks and lays the burden on 
the worker thread’s code to obtain and release the read locks often. 
Otherwise the re-initialization cannot take place when worker threads 
are running.

Implementation To implement the Locking Categories several activities are needed:

1 First, you have to keep an eye on what locking behavior your system 
will require or actually has. A careful analysis might come up with 
objects in each locking category.

2 Implement the Initialzer, that allocates and initializes all shared and 
read-only shared objects. Often an application server provides such 
an initializer in a generic form, where configuration data actually tells 
what objects to create and how to set up their state.

3 Implement your shared objects. Add a lock to each such object and 
use the Thread-Safe Interface pattern [POSA2000] to clearly 
distinguish external operations, that can be called from different 
threads and that acquire the lock from the internal ones that assume 
the lock is already acquired. Nevertheless, be careful in your design 
and try to minimize the chance that a Worker Thread needs to keep 
several locks of different shared objects. This will increase the chance 
for deadlocks. In such cases, a helpful strategy is to always acquire 
such locks in the same order and to release all held locks if you 
cannot obtain the next one needed. The trylock operation usually is 
used in these cases.

4 You might be unfamiliar with the category of read-only shared 
objects, that are pre-allocated during initialization (see Eager 
Acquisistion pattern [Kircher Jain]). For example, the Server 
Configuration object is allocated and preset by the Initializer and later 
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on only accessed in a non-mutating way. However, you must clearly 
document such behavior and if you are providing a framework using 
such read-only shared objects, ensure that framework users do not 
introduce mutating operations when deriving new subclasses 
instantiated by the Initializer as read-only shared objects. One 
solution to avoid application of mutating operations on read-only 
shared objects is to provide read-only adaptors to the pre-allocated 
objects. After initialization, the read-only shared objects are only 
accessed via these adapters ensuring the non-mutability.

5 Transient objects are only created and used by one Worker Thread. If 
they are allocated on the stack (as it is possible in C++ compared to 
Java) there is no locking overhead at all. However, heap allocation of 
transient objects requires locks for allocation and release of the 
memory (see Thread-local Memory Pool to sidestep these locks). 

Known Uses SYNLOGIC’s server application framework WebDisplay employs the 
strategy presented by Locking Categories. WebDisplay uses read-only 
shared objects heavily to avoid locking. It uses locks for its session list 
manager and individual session objects. Each request context object, 
most strings, Anythings [EPLOP1998] and iostream objects are 
transient objects thus not requiring locks.

TAO distinguishes between stack, heap and synchronized objects, 
which kind of falls in the three categories. 

Apache Tomcat does something similar with request/session/
application objects.

Variants For the sake of simplicity this pattern talks about multi-threaded 
systems with process-internal shared resources, but almost 
everything also applies to multi-process systems with external shared 
resources (e.g. shared memory or files). The Apache httpd server (up 
to 1.3.x) initializes itself on start-up creating read-only shared objects 
representing its configuration and then spawns further child 
processes for request processing. The child processes inherit the 
read-only shared objects from their parent and if they never change 
data, the operating system effectively keeps only one copy of the 
according memory pages.

See Also A special case as well as an implementation option for making heap 
objects of the category transient is the Thread-local Memory Pool.
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Eager Acquisition [KircherJain] shows consequences of up-front 
initialization.

Thread-Safe Interface [POSA2000] is a good strategy to implement 
objects in category shared.

Consequences The pattern implies the following benefits:

• you cannot avoid the need for all locks in a multi-threaded system, 
but following the guidelines of the pattern you might be able to reduce 
the number of locks during request processing close to the minimum.

• the object categories give you a model to work with while designing 
your system. Thus you can strive to minimize the number of locks by 
reducing the number of shared objects.

• With read-only shared and transient objects, that do not need locks 
you can effectively reduce the number of locks required.

However, the Locking Categories pattern also has its liabilities:

• Even with the clear distinction of the object categories, multi-
threaded programming is hard. Without care it is easy to implement 
chances for deadlocks or race conditions. 

• Implementing an on-the-fly re-configuration in a safe way can be 
beyond the abilities of your threading architecture and you might 
need to introduce locks you tried to get rid of by using read-only 
shared objects.

• Your application might not easily fit with the three categories and you 
end up with too many objects in the category shared. Then this 
pattern might be of little help. Too many shared objects, might be a 
sign of a poor design strategy, that might lead to deadlocks and race 
conditions, when a thread needs to lock several objects to perform an 
operation. 

• On the other hand, using only a few large grained shared objects 
employed by many worker threads can serialization of worker 
threads, thus eliminating performance gains by multi-threading.
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Thread-local Memory Pool

If you are implementing Locking Categories you might be confronted 
with transient objects that require dynamic memory management, 
such as strings. However, heap memory is a global shared resource, 
so heap management requires locks to protect its data structures. A 
universal memory manager can not be aware that memory will only 
be used and freed by the thread requesting it. Thread-local Memory 
Pool shows you a way out of this dilemma, by implementing your own 
allocators for each thread and using them for transient objects. 
Access to allocators is implemented using the Thread-Specific Storage 
pattern [POSA2000], so that classes and programmers usually do not 
need to deal with the issue of having different allocators.

Example Your multi-threaded web application server uses a thread per request 
architecture with thread pool. During request processing your code 
creates more and more of the web page content. To be able to give a 
definitive size of the result you first collect the page content in a string 
buffer (reply object). However, this string grows and might require 
frequent re-allocation resulting in locking overhead, even though it 
can be categorized as transient, that wouldn’t need any locks by itself.

Context You are applying the Locking Categories with transient objects that 
require dynamic memory management in a multi-threaded system. 
Your implementation language allows you to implement your own 
memory management features, like C++.

Problem Even when you try to minimize locking you face the challenge that 
object-oriented programming often requires you to allocate objects on 
the heap, i.e. using std::operator new(). Unfortunately the 
programs heap is a resource shared by all threads and thus dynamic 
memory management requires locks, even when needed by transient 
objects. Especially data objects like strings suffer from frequent 
allocation or reallocating of buffer space on the heap, even if the 
object itself is placed on the stack in C++. 

How can you alleviate this situation with transient objects needing 
heap allocation without paying the penalty of aquiring and releasing 
the memory management lock?
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In particular you want to address the following forces:

• heap memory is a global shared resource. allocating and releasing 
memory each requires locks on its management data structures.

• you do not want to pay the price of locking overhead for objects 
used only by a single thread.

• objects that are passed up the call chain need to be allocated 
dynamically and cannot be allocated just on the stack.

Solution Implement your own memory manager that provides a memory pool 
for transient objects in each thread. Access the individual memory 
manager by using Thread-Specific Storage [POSA2] so that 
programmers automatically access the right one. These thread-local 
memory managers do not require locks for their management data 
structures. 

If you have classes that will be instantiated in transient thread-local 
fashion as well as shared objects you also need to keep track which 
allocator was used for a specific instance. You wrap the global heap 
manager with the same interface as your thread-local allocators.

Dynamics The dynamics are similar to Locking categories. Just the Initializer 
needs to be extended to set up the thread-local memory pools and 
their references in thread-local storage when setting up the worker 
threads.

Implementation Implement thread-local memory pools following these guidelines

1 Define the API for allocators. For example:

class Allocator  { 
public: 

Allocator(long allocatorid); 
virtual ~Allocator(); 
void *Calloc(int n, size_t size) 
void *Malloc(size_t size) { return Alloc(size);} 
virtual void  Free(void *vp) = 0; 
static Allocator *Current(); 
static Allocator *Global(); 

protected: 
//!hook for allocation of memory 
virtual void *Alloc(u_long allocSize) = 0; 

};

2 We implement the auxiliary methods like Calloc, based on the hook 
method Alloc. Note this code is simplified neglegting error conditions.



Some Performance Patterns
void *Allocator::Calloc(int n, size_t size) 
{ 

void * ret = Alloc(n*size); 
if (ret && n*size>0) memset(ret,0,n*size); 
return ret; 

}

3 Implement the interface using the regular global (malloc) allocator, so 
that at least one is available as a default global allocator to use.

class GlobalAllocator: public Allocator { 
public: 
GlobalAllocator(); 
virtual ~GlobalAllocator() {} 
virtual void  Free(void *vp) { ::free(vp);} 
protected: 
static Allocator *getInstance(); //Singleton 
virtual void *Alloc(u_long allocSize)  
{ return ::malloc(allocSize);} 
};

Access the global allocator in Allocator::Global() using the 
GlobalAllocator’s Singleton [GHJV95] implementation:

Allocator* Allocator::Global()  
{ return GlobalAllocator::getInstance();}

4 Implement an allocator with a allocation strategy suited to your 
application that is largely independent of the global allocator. One 
example is using a pool of pre-allocated memory. The GNU malloc 
library implements a strategy using the mmap system call with 
anonymous files for getting memory chunks (so-called arenas) 
outside the process heap-space. For brevity, we leave out the messy 
details of pooled memory management and just give the class 
declaration:

class PoollAllocator: public Allocator { 
public: 
PoolAllocator(); 
virtual ~PoolAllocator() {} 
virtual void  Free(void *vp) ; 
protected: 
virtual void *Alloc(u_long allocSize) ; 
};

5 Extend your system’s initializer with code to set up a memory pool for 
each thread. Each pool will allocate its initial pool space from global 
heap memory using Eager Acquisition [KircherJain]. If the worker 
threads are also managed in a fixed sized pool, you can get a stable, 
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predictable memory footprint of your system, if you choose the 
memory pool sizes are big enough for normal operation.

6 Use Thread-specific Storage for keeping the pointers to the thread-
local memory pools you initialize. Access these allocators in 
Allocator::Current() like the following:

Allocator::Current() 
{ 

Allocator *current =  
(Allocator *)pthread_getspecific(ALLOCATOR_KEY); 

if (current) return current; 
return Allocator::Global(); //fallback 

}

7 For classes that are only used to create transient objects implement 
operator::new() and operator::delete() to use allocator 
Storage::Current(). Classes that have both use for shared objects 
as well as for transient objects and that are instantiated often enough 
to have recognizable locking overhead in the transient case, you need 
to keep track which allocator was used, so that a deletion of an 
instance asks the correct allocator to reclaim its memory.

8 Classes that manage their own buffers internally, may need to be 
explicitely given the allocator to use. For example, our string class 
is used both for transient strings and also for strings in shared 
objects. Thus, provide class String with an additional Allocator*
parameter and use that allocator for managing the Strings buffer.

class String { 
public: 
String(Allocator *a=Storage::Current()):fAllocator(a){} 
// all the uses of the Allocator are left for the reader 
to imagine 
private: 
Allocator *fAllocator; 
}

Note that the default allocator used is Storage::Current(). This way a 
developer does not need to care about allocators and does not need to 
specify the extra parameter.

Now, all transient string objects can use the thread-local pool 
allocator without incurring the overhead of a lock required by the 
default operator::new()/malloc() implementation.



Some Performance Patterns
Known Uses SYNLOGIC’s WebDisplay implement Thread-local Memory Pools and 
greatly benefited from the performance boost by reducint the number 
of locks used during multi-threaded processing.

Apache’s http server version 1.3.x implements this pattern in a multi-
process manner. Such a multi-process single-threaded server is an 
extreme variant of this pattern where the thread-local memory pool is 
trivially provided by the generic memory manager, but sharing objects 
is the complex case using shared memory system calls.

GNU’s glibc's malloc implementation, goes in the direction minimizing 
locks for memory allocator access by using a clever schema of arenas 
(corresponds to a pool) and creating new arenas for each thread on 
the fly. However, because it cannot assign an arena strictly to a single 
thread the design is complicated and thus each arena requires its 
own lock. A thread uses thread local storage to keep its last used 
arena and a trylock call to that arena's lock. In addition the new 
arenas are obtained from the system by the use of mmap, so the 
orignal process' heap (the main arena) is still a single shared resource 
always using a lock. So with multi-threading and without mmap GNU 
malloc will acquire and release a lock for every call (malloc or free) to 
the allocator.

RogueWave ATS (application tuning system) reduces locking 
overhead, but its memory manager is not backed by application 
design. It might be better than the default memory manager, but still 
needs some locking when freeing memory, because it might have been 
allocated by a different thread. From an outside view, its 
implementation strategy looks similar to the modern glibc’s malloc.

Consequences The pattern implies the following benefits:

• You save the cost of acquiring and releasing the lock for each object 
allocation and deallocation for transient objects. This is especially 
true for strings or similar transient data objects (e.g. Anything 
[EPLOP1998]).

• Pre-allocating memory pools allows a stable memory footprint of your 
server, if pool size is adjusted accordingly. Such a stable memory 
footprint gives better predictability and monitoring capabiltiy.
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However, the Thread-local Memory Pool pattern also has its 
liabilities:

• Implementing your own memory management is an advanced 
programming topic and might lead to headaches if you make errors.

• Thread-local Memory Pools require discipline. For example, if an 
object allocated thread-locally is passed to another thread, that 
deletes it, you easily get a crash. Such errors are very hard to detect.

• Using non-standard memory management can be error prone or at 
least bloat interfaces for classes requiring it. Use it only for classes 
where you know, that this optimization is worth the complexity.

• Tuning parameters of your memory pools (like the initial size, the 
increment when it overflows) might be too complicated.

• Pre-allocating memory pools wastes resources, if the pool size is too 
generous or most of your threads do not fill the pool’s memory.

See Also Thread-Local Memory Pools use Eager Acquisition [KircherJain] for 
the pool memory.

Locking Categories is a prerequisite organization schema of your 
system, so that you can decide what objects are candidates that 
might profit from a thread-local memory pool.
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