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Abstract—Ensuring the availability of enterprise IT systems
is a challenging task. The factors that can bring systems down
are numerous, and their impact on various system architectures
is difficult to predict. At the same time, maintaining high
availability is crucial in many applications, ranging from
control systems in the electric power grid, over electronic
trading systems on the stock market to specialized command
and control systems for military and civilian purposes.

The present paper describes a Bayesian decision support
model, designed to help enterprise IT systems decision makers
evaluate the consequences of their decisions by analyzing
various scenarios. The model is based on expert elicitation
from 50 academic experts on IT systems availability, obtained
through an electronic survey.

The Bayesian model uses a leaky Noisy-OR method to weigh
together the expert opinions on 16 factors affecting systems
availability. Using this model, the effect of changes to a system
can be estimated beforehand, providing decision support for
improvement of enterprise IT systems availability.
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Bayesian networks, Noisy-OR, Expert elicitation

I. INTRODUCTION

Maintaining high enterprise IT systems availability is a
high priority throughout many industries. In a frequently
cited report from 1998, IBM Global Services report that
unavailable systems cost American businesses $4.54 billion
in 1996, due to lost productivity and revenues [1]. The report
goes on to list average costs per hour of downtime ranging
from airline reservations at $89.5 thousand to brokerage
operations at $6.5 million (all in 1998 dollars). A vivid
reminder of the financial sector’s sensitivity occurred when
the Nordic and Baltic stock markets were forced to close
down for 5 hours on June 4 2008 due to the trading sys-
tem Saxess being down. This outage prevented transactions
worth approximately 20 billion SEK (ca e2 billion) [2].

While useful in some contexts, cost estimates do not al-
ways accurately reflect the criticality of systems availability.
This is often the case for IT systems supporting emergency
response, police and military operations, etc. In a recent
Gartner report, it is therefore recommended that investments
to ensure high availability in such systems are justified using
qualitative measures of the impact on the population affected
[3]. The same line of reasoning applies to information and

control systems serving critical infrastructure, such as the
electric power grid, railway transportation, water supply etc.

Citing the data on average downtime costs referred to
above, Marcus and Stern [4] observe that not all losses
are easy to quantify, in particular when they are partly
composed of opportunity costs, as in the case of brokerage
services. However, this is not to denigrate the importance
of availability, as they go on to list some indirect costs
that can be brought about by system outages: (i) poor
customer satisfaction, (ii) bad publicity, (iii) plummeting
stock price (while [5] suggests that this effect is actually
small), (iv) legal liabilities, (v) worsened employee morale
and (vi) an impact to external reputation.

Yet another measure on the importance of systems avail-
ability is stakeholder polling. In a recent survey, 178 enter-
prise IT system executives and practitioners from Sweden
and the German-speaking countries were asked to assess
future prioritization of various system qualities (in the sense
of ISO-9126 [6]) in their companies. On a five point Likert
scale, 48.9% of respondents gave availability the highest
mark, making it the most highly prioritized system quality
in the survey [7]. A Gartner report, based on surveys
conducted in 2007 and 2008, notes consistent findings and
concludes that ”[t]he overall proportion of mission-critical
IT services continues to increase, along with the cost of
business downtime” [8].

A. Outline

The remainder of the paper is structured as follows:
Section II contrasts the present contribution with some
related work. Section III introduces Bayesian networks,
survey methodology in general, and the particular methods
employed for learning Bayesian networks from experts.
Section IV is the locus of the main contribution. Here, the
results of the expert survey are described, and the resulting
Bayesian model for assessment of Enterprise IT systems
availability is built. An example of its usage is presented
in section V. A discussion of the strengths and weaknesses
of the contribution then ensues in section VI, followed by
some concluding remarks in section VII.



II. RELATED WORK

A general and widely cited description of IT systems
availability is found in [4], where the authors present an
”availability index” describing the relationship between var-
ious availability-increasing measures and their costs. The
presented availability index gives guidance on improving
systems availability, but it is not empirically validated in
a structured way. The present contribution partially aims
to address this by taking [4] as the basis for the survey
questions, as discussed in section III-B.

In [9] the authors present an approach for analytical ser-
vice availability assessment, mapping dependencies between
low-level ICT infrastructure and high-level services. The
mapping, however, does not give a detailed description of the
supporting ICT infrastructural elements, nor any weighting
of how each element impacts the service availability. In
[10] a similar mapping is presented, but here the focus is
the impact of ICT infrastructure availability upon business
processes, rather than upon availability assessment as such.

An effort to identify factors impacting software reliability
is presented in [11]. The article includes the identification of
32 factors involved in the software development process, all
of which impact software reliability. A ranking based on em-
pirical research from 13 companies working with software
development is presented, highlighting the most important
factors influencing the software reliability. However, only the
software development phase is addressed – how to ensure
availability once systems already taken into service is not
mentioned.

The application of Bayesian networks for information
system quality analysis is proposed and applied in [12]. In
this paper, an enterprise architecture evaluation framework
for the analysis of information systems modifiability is
presented. An expert survey was conducted in order to create
a Bayesian model, the details of which are found in [13]. The
present paper is similar in method, but focuses on availability
rather than modifiability.

III. METHOD

A. Bayesian networks

Friedman et al. [14] describes a Bayesian network, B =
(G,P ), as a representation of a joint probability distribution.
The first component G is a directed acyclic graph consisting
of vertices, V , and edges, E, i.e. G = (V,E). The vertices
denote a domain of random variables X1, . . . , Xn, also
called chance nodes. Each chance node, Xi, may assume
a value xi from the finite domain V al(Xi). The edges
denote causal dependencies between the nodes, i.e. the
causal relations between the nodes. Whenever an edge goes
from a node Xi to a node Xj , Xi is said to be a causal parent
of Xj . The second component P of the network B, describes
a conditional probability distribution for each chance node,
P (Xi), given the set of its causal parents Pa(Xi) in G. It

is now possible to write the joint probability distribution of
the domain X1, . . . , Xn using the chain rule of probability,
in the product form:

P (X1, ..., Xn) =
n∏

i=1

P (Xi|Pa(Xi)) (1)

In order to specify the joint distribution, the respective
conditional probabilities that appear in the product form
must be defined. The component P describes the distribution
for each possible value xi of Xi, and pa(Xi) of Pa(Xi),
where pa(Xi) is the set of values of Pa(xi). These condi-
tional probabilities are represented in matrices, here forth
called Conditional Probability Distributions (CPDs). Using
a Bayesian network, it is possible to answer questions such
as: what is the probability of variable X being in state x1

given that Y = y2 and Z = z1.
In the general case, the relations between variables de-

scribed by the conditional probability matrices can be ar-
bitrarily complicated conditional probabilities. The model
presented in this paper uses only a single rather simple
relation, leaky Noisy-OR, described in section III-C.

More comprehensive treatments on Bayesian networks
can be found in e.g. Neapolitan [15], Jensen [16], Shachter
[17] and Pearl [18].

B. Expert elicitation

Expert elicitation is the process where a person’s knowl-
edge and beliefs about one or more uncertain quantities
are formulated into a joint probability distribution [19], i.e.
the act of parameter estimation through the use of domain
experts. This approach is generally used when available
datasets are sparse in comparison with the number of nodes
that need to be parameterized [20]. Using a well-structured
process for expert elicitation is important in order to mini-
mize the bias of the domain expert. A rough outline of such
an elicitation process is given in [21]:

1) Select and motivate the expert
2) Train the expert
3) Structure the questions
4) Elicit and document the expert judgments
5) Verify the results
In the following, we detail how each of these steps were

carried out in the present study.
1) Select and motivate the expert: The selection of

respondents in the present survey was based upon aca-
demic publications. To identify respondents, searches were
performed in major publishing databases (Springer and
Elsevier), in professional societies databases such as the
IEEE and in pure indexing databases such as SCOPUS.
The search criteria involved combinations of topic-words
such as ”availability”, ”reliability” and ”dependability” with
research area delimitations such as ”information system”,
”IT system” and ”corporate IT”. The resulting selections



of articles were then manually screened, based on title and
abstract (if sufficient) or full content (if necessary) to de-
termine whether the authors should be invited to participate
or not. Whenever several co-authors to a single paper were
encountered, no distinction was made between them (all
or none were invited). The searches were limited in time
to the past decade, i.e. only publications from 1999 and
onward were selected. In all, 154 authors of journal articles,
298 authors of conference articles and 11 authors of edited
volumes were invited to participate, i.e. a grand total of 463
experts.

As the experts consulted in this study were widely ge-
ographically spread, a mail survey was used [22]. Another
reason to use a mail survey is that the non respond bias
of mail surveys tends to be directly related to the subject,
i.e. chiefly respondents particularly interested in the subject
return the questionnaire [23]. This effect will be further dis-
cussed in section IV. The internet-based application Survey-
Monkey hosted the survey, which was open for two weeks,
from January 4 to January 15, 2010. As recommended in
[24], a reminder was sent to non-responding participants in
the middle of the second week to increase the response rate.

As noted in [21], it is important to convince the experts
that there is no straightforward way to tell a ”right” from
a ”wrong” answer, but that their assessments should only
represent their very own knowledge and experience as
faithfully as possible. Indeed, the very rationale for selecting
this particular research approach is that the subject is difficult
to investigate in other ways. In the introduction to the present
survey, it was therefore clearly stated that ”your particular
piece of experience and your corresponding answers are
very important to us as we try to build a general model”.
Furthermore, each question in the present survey included
a self-assessment on the credibility of the answer, enabling
anyone feeling uncertain to communicate this. As will be
discussed in section III-C, this self-assessment also plays an
important role in the construction of the Bayesian model.

2) Train the expert: The validity of the study is highly
dependent on the respondents’ comprehension of the ques-
tions. Therefore, it is often advisable to spend part of the
survey to train the expert [25], so that she will not only be a
subject matter expert, but also an expert in giving probability
estimates. In the present survey, this was accomplished by
the use of an initial tutorial question, where the scope and
aim of the question was explained at some length using text
and figures.

During the training phase, feedback on answers with
known correct answers can help experts calibrate their
responses [26]. However, in the present study, this was
not feasible due to lack of indisputable data of sufficient
generality.

3) Structure the questions: There are some different
approaches to elicitation, direct elicitation being the most
obvious and straightforward one. Here, questions are asked

along the lines of ”What is the probability that variable A
takes this state given these parent values?”. However, these
questions can be hard for domain experts to relate to [19],
forcing the use of alternative approaches as described for ex-
ample in [27]. In the present survey, a behaviorally anchored
scale [22] was used.The experts were asked to answer ”How
large a share of currently unavailable enterprise IT systems
would you guess would be available if a best practice factor
X had been present?” (Mutatis mutandis, depending on the
appropriate grammar of each factor.) The factors themselves
were derived from the availability index presented in [4].
Their completeness is thoroughly discussed in section VI.

Including subjective formulations such as ”best practice”
in a survey has both advantages and disadvantages. On the
one hand, it is possible to interpret the question in several
ways which makes it more difficult to compare the answers
with each other. On the other hand, the answers are to a
lower extent limited to assumptions specified in the question
[22]. In this particular case, the authors of this article do not
claim to know the technical details of ”best practice” better
than the respondents, which is the reason why a subjective
formulation was used.

A separate question was written for each probability to
be assessed. In those cases were potentially ambiguous or
unclear terms were used, a short explanatory note was ap-
pended to the question to clarify the intended use. To provide
the respondent with a birds-eye-view of the survey, a figure
illustrating all question categories in order of appearance
was continuously displayed throughout the survey.

As noted in [28], experts dislike writing numbers for
subjective probabilities and prefer to check scales, place
an ’X’ in a box, etc. In the present survey, this was
accommodated by using predefined scales in drop-down lists
for the alternatives.

To make the survey questions as clear and lucid as
possible, a few test surveys were tried out iteratively, as
recommended in [25]. The test respondents included both
non-domain experts (for general advice on structure and
readability) and a two of the actual respondents (for more
topic-related advice).

4) Elicit and document the expert judgments: Since elici-
tation is taxing for the expert, [28] recommends that sessions
should not exceed one hour. The present survey being web-
based, with the possibility for the respondent to take a
break or withdraw at his or her discretion, this problem
can be considered of marginal importance. However, if a
survey is too long or too complex, the response rate of
the questionnaire decreases [24]. The level of detail in this
study was therefore limited by the expected response rate
considered acceptable. A survey of the responses ex post
indicates that a typical full response required about 20-30
minutes.

5) Verify the results: This aspect is addressed in section
VI below.



C. Building Bayesian networks

Bayesian networks are a powerful formalism, but their
use requires the specification of conditional probability dis-
tributions (CPDs). As the number of variables X1, . . . , Xn

causally affecting a target variable Y grows, fully specifying
these distributions becomes increasingly cumbersome. As
noted by [29], a binary variable with n causal parents
requires 2n independent parameters to exhaustively describe
the conditional probabilities. As n grows, 2n parameters
quickly becomes a prohibitive number. Often, however,
canonical parameter-based distributions can be used to de-
crease the modeling effort, yet still give a sufficiently good
approximation of the true distribution [29].

The solution described in [29] is the use of a Noisy-
OR gate. Using this formalism, the number of parame-
ters required from expert estimation becomes only n, a
significant gain. The underlying assumption is that instead
of investigating every combinatorial interaction among the
X1 . . . Xn causal parent variables, their interactions are
modeled by a Noisy-OR gate. Furthermore, since Noisy-OR
distributions approximate CPDs using fewer parameters, the
resulting distributions are in general more reliable, being less
susceptible to overfitting [30].

The Noisy-OR gate [18], [29] is typically used to describe
the interaction of n causes X1, . . . , Xn to an effect Y . In the
present article, of course, this effect Y is the unavailability
of enterprise IT systems. Two assumptions are made, viz. (i)
that each of the causes has a probability pi of being sufficient
for producing Y , and (ii) that the ability of each cause Xi, to
bring about Y is independent. Mathematically, the following
holds:

pi = P (y|x̄1, x̄2, . . . , xi, . . . , x̄n) (2)

where xi designates that causal factor Xi is present and x̄i

that it is absent. It follows that the probability of y given
that a subset Xp ⊆ {X1, . . . , Xn} of antecedent causes are
present can be expressed as:

P (y|Xp) = 1−
∏

i:Xi∈Xp

(1− pi) (3)

This is a compact specification of the CPD.
A natural extension proposed by Henrion [31] is the so

called leaky Noisy-OR gate. The rationale for the leakage is
that models typically do not capture all causes of Y . If some
potential Xi have been left out, as is the case in ”almost all
situations encountered in practice” [29], this shortcoming
can be reflected by adding an additional parameter p0, the
leak probability, such that

p0 = P (y|x̄1, x̄2, . . . , x̄n) (4)

In words, this reflects the probability that Y will occur
spontaneously, in the absence of all the explicitly modeled

causes X1, . . . , Xn. In a leaky Noisy-OR gate, the CPD is
becomes

P (y|Xp) = 1− (1− p0)
∏

i:Xi∈Xp

(1− pi)
(1− p0)

(5)

The aim of the expert elicitation survey can now be
stated more explicitly. For each of the factors X1, . . . , Xn

identified in the survey, a probability pi of Xi being a cause
of enterprise IT system unavailability can be estimated.
Depending on the respondent comments regarding causes
not listed in the survey, an approximate value of p0 can also
be found, as discussed in section IV.

IV. RESULTS

A. The respondents

Figure 1 displays some basic data about the respondents
who chose to start taking the survey, viz. their affiliation,
professional relation to enterprise IT systems availability and
their number of years of experience of enterprise IT systems
availability.

The data illustrated pertains to two groups: the 96 respon-
dents who began the survey, and the 50 who completed it.
For obvious reasons, no similar data exists for the grand
total group of the 463 experts invited. As seen in Figure 1,
there is no obvious change in the proportion of affiliations
from the group that began the survey to the group that
completed it. As for working with questions related to
enterprise IT systems availability, the reassuring trend is that
those not involved in the field to a large extent dropped out
from the survey. Thus, while 72% (18 out of 25) of those
who identified themeselves as ”to a large extent” working
with enterprise IT systems availability completed the whole
survey a mere 25% (5 out of 20) of those ”not at all” working
with enterprise IT systems availability did so. Based on these
figures, it seems reasonable to assume that the quality of the
responses collected was improved by this self-selection. A
similar trend can be seen when it comes to the number of
years of experience.

B. The Bayesian model

The main results of the survey are presented in Table I. As
described in section III, the respondents not only answered
each question, but also stated their certainty. In the table, the
N specified excludes respondents who ”just picked a random
interval”, and retains only those who were 50%, 90% or
99% certain. This corresponds to the answers actually used
in building the Bayesian model.

As can be seen, the number of useful answers vary from
36 to 54 over the causal factors, with a mean of 44. While
Table I does give a good overview of the results, it does
not show the self-assessed uncertainties associated with each
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In which sector is your primary line of work?
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0

10

20

30

40

50

60

70
Began survey
Completed survey

Working with availability

Does your work include activities related to maintaining,
investigating or enhancing the availability of enterprise IT systems?
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Experience

How many years of experience do you have in work related
to availability of enterprise IT systems?

None < 1 y. 1 − 5 y. 5 − 10 y. 10 − 20 y. > 20 y.
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Figure 1. Data on respondents’ affiliations, working experience with enterprise IT systems availability, and years of such experience.

Table I
CAUSAL FACTORS (BASED ON [4]) AND STRENGTHS AS PER THE RESPONDENTS’ ANSWERS.

How large a share of currently unavailable enterprise IT systems would
you guess would be available if a best practice factor X had been
present?

Causal factor X <
0, 05%

0, 05%−
0, 1%

0, 1%−
0, 5%

0, 5%−
1%

1%−
5%

5%−
10%

10%−
50%

>
50%

N

1 Physical environment 1 2 3 5 8 18 14 3 54
2 Requirements and procurement 1 1 1 2 10 11 16 5 47
3 Operations 1 0 0 1 6 16 19 5 48
4 Change control 0 1 1 2 7 13 17 8 49
5 Technical solution of backup 2 3 1 6 9 15 5 3 44
6 Process solution of backup 0 2 4 6 12 10 9 0 43
7 Data redundancy 0 2 4 6 8 11 9 4 44
8 Storage architecture redundancy 0 3 3 8 15 6 4 1 40
9 astructure redundancy 1 3 3 8 12 7 5 3 42

10 Avoidance of internal application failures 0 4 3 2 7 12 15 2 45
11 Avoidance of external services that fail 2 1 0 5 4 15 12 4 43
12 Network redundancy 0 4 1 4 11 13 9 2 44
13 Avoidance of network failures 0 5 1 5 9 9 11 2 42
14 Physical location 2 0 7 7 11 8 3 2 40
15 Resilient client/server solutions 1 1 2 5 9 9 6 3 36
16 Monitoring of the relevant components 0 2 1 4 13 6 14 3 43



answer by the respondents. These, however, play a vital
role in determining the Noisy-OR probabilities p1, . . . , pn

associated with each of the causes X1, . . . , Xn listed in the
table.

Table II
THE 54 USEFUL RESPONDENT ANSWERS REGARDING THE PHYSICAL

ENVIRONMENT FACTOR, DISPLAYED BY CERTAINTY.

Physical environ-
ment

50% (I
think
so.)

90%
(I am
quite
sure.)

99% (I
am almost
completely
certain.)

Weighted
vote w

< 0, 05% 0 0 1 0.99
0, 05%− 0, 1% 2 0 0 1
0, 1%− 0, 5% 2 1 0 1.9
0, 5%− 1% 4 0 1 2.99
1%− 5% 6 2 0 4.8
5%− 10% 16 2 0 9.8
10%− 50% 10 3 1 8.69
> 50% 1 2 0 2.3

Table II illustrates the distribution of answers over the
intervals with certainty gradings for the first causal factor,
physical environment. As before, respondents who ”just
picked a random interval” are excluded. As can be seen,
most feel comfortable with the 50% level, ”I think so”.

To weight these judgments into a single probability pi

for use in the Noisy-OR model, the number of respondents
in an interval j has been multiplied with the certainty q ∈
{0.5, 0.9, 0.99} of their responses (these figures were the
alternatives used in the survey). The weighted voting score
wj of interval j is thus defined as

wj =
∑

k∈Kj

qk = 0.5 · n0.5 + 0.9 · n0.9 + 0.99 · n0.99 (6)

where Kj designates all the respondents who selected in-
terval j, qk the certainty level of respondent k, and n0.5,
n0.9 and n0.99 are the number of respondents within Kj

answering with the different certainty levels. For exam-
ple, the physical environment weighted voting score for
the interval 0, 1% − 0, 5% has been calculated simply as
wj = 2 · 0.5 + 1 · 0.9 + 0 · 0.99 = 1.9. The weighted voting
scores for physical environment are displayed graphically in
Figure 2.

As a consequence of the distribution of the intervals, a
linear plot is difficult to read. A logarithmic version is there-
fore given in Figure 2. To determine the probability pi of a
less than best practice physical environment factor to cause
unavailability in enterprise IT systems, the interval with the
highest weighted voting score is selected. To determine the
exact location within the interval j, the weighted voting
scores of the two adjacent intervals j − 1 and j + 1 are
used, so that

pi = jmin +
wj+1

wj+1 + wj−1
(jmax − jmin) (7)
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Figure 2. Weighted voting scores for physical environment, logarithmic
version. pi ≈ 0.082 represents the share of currently unavailable enterprise
IT systems that would, in the experts’ opinion, be available if the physical
environment had been managed according to best practice

where jmin and jmax designate the start and end points
of interval j. In this case, as illustrated in Figure 2, the
interval with the highest weighted voting score is number 6,
5%− 10%, with w6 = 9.8. The adjacent intervals have the
weighted voting scores w5 = 4.8 and w7 = 8.69. These
relative scores indicate that the probability p1 should be
located slighlty above the midpoint of the 5%−10% interval.
The calulation yields

p1 = 0.05 +
8.69

8.69 + 4.8
(0.1− 0.05) ≈ 0.0822

The procedure is iterated for each and every causal factor,
resulting in probabilities p1, . . . , pn as illustrated in Table
III (rounded to one decimal). Each pi reflects the share
of currently unavailable enterprise IT systems that would,
in the experts’ opinion, be available if the factor Xi had
been managed according to best practice. It might seem
counterintuitive that

∑
pi > 100%, but consider a system

that went down because of an internal application error, and
then did not come up because proper backups did not exist.
At an appropriate time after the mishap, it is true that the
system would have been available if the application error had
been avoided, and also true that the system would have been
available if the backups had been better. Thus, the factors
need not be mutually exclusive.

As can be seen from Table III, judging from the respon-
dents’ answers, best practice change control is the factor
most prone to increase availability of enterprise IT systems,
closely followed by best practice component monitoring, and
best practice requirements and procurement.

One factor is still missing in order to obtain a complete
leaky Noisy-OR model, viz. the leakage p0. To obtain an



Table III
CAUSAL FACTORS WITH PROBABILITIES FOR NOISY-OR MODEL.

Causal factor Xi pi

Lack of best practice . . .
1 . . . physical environment 8.2%
2 . . . requirements and procurement 25.2%
3 . . . operations 23.0%
4 . . . change control 28.1%
5 . . . technical solution of backup 7.0%
6 . . . process solution of backup 3.6%
7 . . . data redundancy 7.8%
8 . . . storage architecture redundancy 2.8%
9 . . . infrastructure redundancy 2.9%

10 . . . avoidance of internal application failures 16.9%
11 . . . avoidance of external services that fail 8.7%
12 . . . network redundancy 7.6%
13 . . . avoidance of network failures 18.3%
14 . . . physical location 3.3%
15 . . . resilient client/server solutions 3.6%
16 . . . monitoring of the relevant components 26.1%

estimate of the leakage, the experts consulted in this survey
was asked to comment if they believed that any important
factors contributing to unavailability were left out in the
survey. This is discussed in further detail in section VI.
Suffice to note here that since no single proposed missing
factor was mentioned by more than two experts (out of the
50 respondents) it seems safe to assume that the leakage
should be less important than the least important factor
considered in the survey. As seen in Table III, the smallest
pi belongs to storage architecture redundancy at 2.8%. A
leakage p0 = 1% therefore seems reasonable, and will be
used throughout the remainder of the article.

C. Rescaling for case-based assessment

The questions answered by the respondents were explic-
itly concerned with increasing the availability of unavail-
able systems (”How large a share of currently unavailable
enterprise IT systems would you guess would be available
if a best practice factor X had been present?”). The leaky
Noisy-OR model therefore explains enterprise IT systems
un-availability (Y ), employing the parameters X1, . . . , Xn

describing the lack of best practices, and the model is built in
the domain of unavailable enterprise IT systems. However, a
more practical typical concern is the availability of an entire
park of systems, with a known prior availability baseline.
The Bayesian model therefore needs to be rescaled from the
set of unavailable enterprise IT systems to the whole set of
enterprise IT systems. Figure 3 (slightly adapted from the
survey) illustrates the issue.

Another way to express the issue is that the unscaled
Noisy-OR model reflects the potential for improvement, by
addressing only unavailability.

The most straightforward way to rescale the model, in
order to answer how a system’s availability can be improved

All enterprise IT systems

Unavailable 

enterprise IT 

systems right 

now

Enterprise IT systems that are 

unavailable, but would be available if a 

best practice factor X had been present

Company system park

Average 

unavailability

SURVEY CASE

Potential for availability 

improvement by implementing 

best practice factor X

Rescaling factor α

Figure 3. Venn diagrams schematically depicting the relation between the
survey and an application case.

by applying best practice solutions, is to apply a rescaling
factor α to all pi, including the leakage p0. It could be argued
that a single α should not be applied to all factors alike, but
in the absence of good reasons to treat them separately, this
is surely the simplest and best warranted solution. It follows
from Equation (5) that

A(Xp) = 1−P (y|Xp) = (1−αp0)
∏

i:Xi∈Xp

(1− αpi)
(1− αp0)

(8)

where A(Xp) is the availability of a given system lacking
the best practice factors listed in the vector Xp.

V. A SCENARIO-ANALYSIS EXAMPLE

This section is intended to illustrate how the leaky Noisy-
OR model presented in the previous section can be used for
actual assessment of an enterprise IT system, and how it can
guide decision-making with an impact on availability.

To give an example, if one knows that the system
Saurischia has a current availability of 99.8% and that best
practice was only applied in the cases of data redundancy
(X7), storage architecture redundancy (X8) and infrastruc-
ture redundancy (X9), Equation (8) becomes

99.8% = (1− αp0)
6∏

i=1

(1− αpi)
(1− αp0)

16∏
i=10

(1− αpi)
(1− αp0)

Solving for α (analytically this is cumbersome due to all
the binomial coefficients, but numerically it is easy) yields
a rescaling factor α ≈ 0.00117223.

Continuing the example of the Saurischia system, it is nat-
ural to ask how to improve its availability. Here, the model
can give precious guidance. Assuming that the 13 factors not
currently reaching best practice are at the decision-maker’s
disposal, their respective impacts can easily be analyzed and
compared to the prior baseline of 99.8%.
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Causal factor
1 Physical environment
2 Requirements and procurement
3 Operations
4 Change control
5 Technical solution of backup
6 Process solution of backup

10 Avoidance of internal application failures
11 Avoidance of external services that fail
12 Network redundancy
13 Avoidance of network failures
14 Physical location
15 Resilient client/server solutions
16 Monitoring of the relevant components

Figure 4. Prediction of how improvements of factors to the best practice-level would impact the availability of the example Saurischia system.

Figure 4 illustrates the predicted impact of each of these 13
factors taken by themselves. As can be seen, factor 4 (change
control), factor 16 (monitoring of the relevant components),
and factor 2 (requirements and procurement) are the most
promising candidates for availability improvement of the
Saurischia system. It might be objected that this could have
been read straight off Table III – finding the most promising
candidates requires only an ordinal ranking. However, a
key strength of the Bayesian method is the possibility to
investigate the impact of getting several factors up to best
practice-level at the same time (as seen from Equation 8).
To evaluate these interactions of several factors, Table III is
not sufficient by itself, but the full leaky Noisy-OR model
is needed. Another strength of the full model is that the
expected cost of unavailability (e.g. from [1] or using a
method like [8]) can be compared to the estimated costs
for getting the various factors up to best practice-level.

VI. DISCUSSION

A. The Noisy-OR assumptions

As noted in section III, proper use of the Noisy-OR
gate makes two assumptions regarding the structure of the
interaction of causes (X1, . . . , Xn) and effect (Y ) [18], [29].
These are (i) that each of the causes has a probability pi of
being sufficient for producing Y , and (ii) that the ability of
each cause X1, . . . , Xn to bring about Y is independent. In
the present study, Y is unavailability of enterprise IT systems
and X1, . . . , Xn are causes of such unavailability.

Arguing for (i) in this case is straightforward. Indeed,
it is almost always assumed that failing non-redundant

components of complex systems can cause malfunctions by
themselves. However, these faults are not always determinis-
tic – e.g. a non-best practice requirements and procurement
process will not infallibly lead to unavailability, but will do
so with a certain probability p. Arguing for (ii) is harder.
In many cases it is reasonable to assume that factors are
independent, but this is not always the case. Backup systems,
for example, only come into play when a system has failed
and it is time to restore it. Therefore, the impact of factors
such as technical solution of backup and the process solution
of backup depend to some extent on other factors. In general
terms, the distinction between proactive and reactive factors
indicate that (ii) is an approximation that does not hold in all
circumstances. In the full model, such dependencies could be
modeled by rescaling different factors pi with different fac-
tors αi accounting for interactions. However, to accurately
reflect these phenomena, more empirical data is needed. To
conclude, while the assumptions required for the Noisy-OR
model are reasonable as a first approximation, the model
should certainly be open to further refinement. By and large,
such refinement is a matter of empirical investigation, where
availability data from enterprise IT systems can be analyzed
and statistically checked for independence. It should be
noted, however, that there is no need to refashion the entire
Bayesian model should some cause variables X1, . . . , Xn

turn out to be dependent. The bulk of the causes can remain
modeled in a Noisy-OR relation to each other, while a select
few can be modeled using different CPDs.

B. Validity of the model

So far, the validity discussion has mainly focused on the
numbers. As discussed in section III-B, the respondents were



carefully selected based on scientific merit, the uncertainty
of their answers was taken into account, and self-selection
ensured that the 50 final respondent were among the most
qualified. However, the discussion of leakage also leads
to a discussion of the completeness of the model. First
and foremost, a strong argument for the completeness of
the model is that it is based on the widely cited [4].
However, converting the qualitative theory of [4] into ques-
tions suitable for building a quantitative Bayesian model
unavoidably introduces distortions. Two questions thus need
to be addressed: (i) are there causes missing that should be
added? and (ii) are there superfluous causes that should be
removed? Together, these questions determine whether the
model contains all relevant causal factors.

(i) was explicitly addressed in the survey. The question
”Do you believe that important aspects of enterprise IT
systems availability have been left out in the survey? If
so, please describe the areas missing.” received 18 answers,
i.e. 32 of the respondents did not find any aspects missing
important enough to warrant an answer. Out of these 18
answers, two were in the negative, i.e. confirming the com-
pleteness of the model. Another two addressed methodology
issues, that will be discussed below, but did not constitute
suggestions for additional causal factors relevant to enter-
prise IT systems availability. The remaining 14 replies are
summarized in Table IV.

Table IV
MISSING FACTORS IDENTIFIED BY 14 RESPONDENTS. SOME

RESPONDENTS IDENTIFIED MORE THAN ONE MISSING FACTOR.

CAUSAL FACTOR N
Security attacks 1
Automatic computing 1
Software quality 1
Disaster management 1
Human factors 2
Methodologies such as ISO-standards 1
Evolution/maintenance 1
Data availability and data model 1
Performance monitoring 1
Cost/benefit issues 2
Virtualization 1
Load management 1
Infrastructure should be more specific 1
Enterprise organization 1
Relationship between SLA and desired uptime 1

The two methodology questions raised were (a) that sub-
jective perception of availability may differ from objective
measures, and (b) that practitioners rather than academics
should have been selected as respondents. These are both
relevant points, but they are also complementary in an
interesting way. Asking practitioners to give estimates would
run a higher risk of being influenced by subjective percep-
tions (since a user or administrator dealing with systems
on an everyday basis has the opportunity to develop a
subjective perception, as opposed to a scientist collecting

data or building models in a fashion more disconnected from
daily system usage). Conversely, asking published scientists
limits the risk of subjective perceptions based only on ones
own systems (since scientific publication requires a certain
generality, and a careful discussion of validity), but at the
same time runs the risk of missing valuable ”down-to-earth”
insights from the practitioner community. There seems, thus,
to exist an inherent methodological trade-off between (a) and
(b), and in the light of this, receiving one comment on each
is not a bad result. The details on the selection of survey
participants was more thoroughly discussed in section III-B.

As seen in Table IV, no single potentially missing causal
factor was identified by more than 4% of survey respon-
dents (2 out of 50). Most were identified by just a single
respondent. Since there is no strong agreement among the
50 experts on which causal factors are missing, we conclude
that the model contains an appropriate set of causal factors
causing enterprise IT system unavailability.

As for concern (ii) – superfluous causes of unavailability
in the model that should be removed – it was not explicitly
addressed in the survey in the sense that any particular
question was devoted to it. However, every question on
causes implicitly addresses the issue, as the respondents
could always say that a very minute fraction (< 0, 05%)
of currently unavailable enterprise IT systems would be
available if a best practice factor X had been present. It
should be noted, of course, that this is not an unambiguous
measure of the superfluousness of a cause. A causal factor
that is both very important to availability and very well
managed in the real world does not offer the kind of potential
for improvement that the question looks for. However, as
discussed in section IV, it does offer a measure of the
practical relevance of the causal factor. A causal factor with
a large potential for improvement is, ceteris paribus, more
relevant to a practitioner than a causal factor with a small
potential for improvement.

VII. CONCLUSIONS

The contribution of the present paper is three-fold. First,
the results from an academic expert survey on the causes
of unavailability of enterprise IT systems are presented.
Second, these results are used to build a Bayesian decision
support model for assessment of enterprise IT systems
availability. Third, an example is presented to illustrate how
the model can actually be put to use by practitioners aiming
to ensure systems availability.

A natural continuation of the present line of research is
to validate the results with case studies of actual enterprise
IT systems. Empirical data from such investigations could
be used both quantitatively – to calibrate the numbers in
the Bayesian model, and qualitatively – to restructure the
Bayesian network if the leaky Noisy-OR assumptions prove
unsuitable for some variables. Another line of prospective
future work is to embed the present model into a larger



enterprise architecture framework for IT systems availability
analysis, along the lines of [12].
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