CC4102/CC40A/CC53A - Diseño y Análisis de Algoritmos Auxiliar 6

Prof. Jérémy Barbay, Aux. Mauricio Quezada

11 de Mayo, 2011

Hashing

Sea una tabla (arreglo) de tamaño N y un conjunto de n elementos a insertar.

- Collisions by chaining (Hashing abierto)
 - Utiliza una lista (doblemente) enlazada en cada celda de la tabla. La inserción se produce al comienzo de la lista
 - Se define el factor de carga $\lambda = \frac{n}{N}$
 - En el caso promedo:
 - * Buscar y eliminar toman $O(\lambda)$ en promedio si el elemento a insertar no estaba en la tabla. $O(\lambda/2)$ en otro caso.
 - * Insertar toma $O(\lambda)$ en promedio
- Open addressing (Hashing cerrado)
 - Una función de hash h está dada por $h(k) = (h'(k) + f(i)) \mod N$
 - Por cada colisión, se va buscando en sucesivas posiciones:
 - * Linear probing: f(i) = i
 - * Quadratic probing $f(i) = c_1 i^2 + c_2 i$
 - * Double hashing f(i) = ih''(k) (otra función de hash)
- Perfect hashing
 - Sólo requiere O(1) accesos en el peor caso, a diferencia de los anteriores
 - Utiliza una tabla de hash secundaria (Cormen 3th ed. cap. 11.5)
- Universal hashing
 - Suponga que un adversario, conociendo la función de hash, puede escoger los datos a ser insertados. Ya que n < N, siempre existirá una secuencia que produzca colisiones.
 - Una familia de funciones de hash \mathcal{H} se dice universal, si para cada par de elementos l, k en el dominio de los valores, el número de funciones $h \in \mathcal{H}$ tal que h(l) = h(k) no excede $\frac{|\mathcal{H}|}{N}$.
- Extendible hashing
 - Si la tabla no cabe en memoria, usar un árbol B^+ para almacenar los valores

Preguntas

- 1. ¿Qué problemas tiene linear probing? ¿quadratic probing? ¿y double hashing?
- 2. Dado el tamaño de página B=3, muestre cómo se construye una tabla de hash según el esquema Extendible Hashing con la secuencia

00001, 10000, 10001, 01001, 01111, 00000, 10010, 11111, 10111

Análisis Amortizado

- 1. ¿Cuál es el costo amortizado de n inserciones en un vector (inicialmente de tamaño 1), que duplica su tamaño cada vez que se llena?
- 2. Muestre que el costo amortizado de n incrementos de un contador binario es O(1) por inserción. Utilizando: el método agregado, de conteo y potencial.
- 3. Pruebe, utilizando análisis amortizado, que la heurística *Move To Front* (MTF) rinde según un factor de 4 con respecto a *cualquier* otro algoritmo de búsqueda en un arreglo desordenado.