
C# and .Net
Alexandre Bergel

abergel@dcc.uchile.cl
07/06/2011

Source

C# 4.0 in a Nutshell
Joseph Albahari & Ben Albahari

O’Reilly

Goal of this lecture

 Introduction to C#, .Net and CLR

 Emphasis on difference with Java

 Understand the syntax and concept of C#

C# and the .Net Framework

 C# is

 a general purpose language

 type safe

 an object-oriented programming language

 C# is “platform neutral, but work well with .Net”

 Mono (http://www.mono-project.com/) is an open-
source and alternative to .Net

 mcs to compile and mono to run

 Mono works on many platforms

C#: Simple example

 using System;

 class Test {

static void Main() {

int x = 12 * 30;

Console.WriteLine(x);

}

 }

Namespace

 using System;

 namespace CC3002 {

 class Test { ... }

 class Test2 { ... }

 namespace NestedNamespace { ... }

 }

Assembly

 The C# compiler compiles source code (.cs file) into
an assembly

 An assembly can be a library (.dll) or an application
(.exe)

Arithmetic overflow check operator

 The checked operator tells the runtime to generate an
OverflowException rather than failing silently

 int a = 1000000;

 int b = 1000000;

 int c = check (a * b);

 checked { ... c = a * b; ... }

 Useful when precision matters

Value passing

 By default arguments in Java and C# are passed by
value

 A copy of the value is created when passed to the
method

 Passing a reference-type argument by value copies
the reference, but not the object

 This is by far the most common case in today’s
languages

The ref modifier

 To pass by reference, C# provides the ref parameter
modifier

 class T {
 static void Foo (ref int p) { p++ ;}
 static void Main() {
 int x = 0;
 Foo(x);
 Console.writeLine(x); // Prints 1
 }
 }

The ref modifier

 class T {
 static void Swap(ref object o1, ref object o2){
 object t = o1;
 o1 = o2;
 o2 = t;
 }

 static void Main() {
 string s1 = “hello”;
 string s2 = “world”;
 Swap(s1, s2);
 Console.writeLine(s1); // “world”
 Console.writeLine(s2); // “hello”
 }
 }

Value type

 Value type

 built-in value type (primitive types)

 Custom value with struct

 public struct Point { public int X, Y; }

 Point p1 = new Point();

 p1.X = 5;

 Point p2 = p1; // Assignment cause copy

Optional parameters

 Methods, constructors and indexers can declare
optional parameters

 void Foo (int x = 23) {Console.WriteLine(x); }

 Foo(); // 23

Named arguments

 Rather than identifying an argument by position, you
can identity an argument by name

 void Foo (int x, int y) { ... }

 Foo (y:2, x:1); // eqv to Foo (1, 2)

 Useful when calling COM APIs

Delegate

 A delegate dynamically wires up a method callers to
its target method

 Similar to a function pointer in C or C++

 Allow the programmer to encapsulate a reference to a
method

 Delegate type defines a protocol to which the caller
and target will conform

 Delegate instance is an object that refers to one (or
more) target methods

Delegate

delegate int Transformer (int x);

class Test {
 static void Main() {
 // Create delegate instance
 Transformer t = Square;
 // Transformer t = new Transformer(Square);

 int result = t(3); // Invoke delegate
 Console.WriteLine(result); // 9
 }
 static int Square (int x) {return x*x;}
}

Multicast Delegates

 All delegate instances have multicast capability.

 SomeDelegate d = SomeMethod1;

 d += SomeMethod2;

 Invoking d will now call both SomeMethod1 and
SomeMethod2

 Delegates are invoked in the order they are added

 The - and -= operators remove a delegate

Multicast Delegates

 If a multicast delegate has a nonvoid return type, the
caller receives the return value from the last method to
be invoked

 The preceding methods are still called, but their return
value is discarded

using System;

delegate int Del (int i);

class T {
 static void Main() {
 Del	 d = D1;
 d += D2;
 d += D3;
 Console.WriteLine("Main " + d(5));
 }

 static int D1 (int i)
 { Console.WriteLine("D1 " + i); return 1; }
 static int D2 (int i)
 { Console.WriteLine("D2 " + i); return 2; }
 static int D3 (int i)
 { Console.WriteLine("D3 " + i); return 3; }
}

D1 5
D2 5
D3 5
Main 3

Delegates versus Interface

 “A problem that can be solved with a delegate can
also be solved with an interface”

 A delegate design may be a better choice than an
interface design if one or more of these conditions are
true:

 the interface defines only a single method

 multicast capability is needed

 the subscriber needs to implement the interface multiple times

Events

 When using delegates, two emergent roles appear

 broadcaster: a type that contains a delegate field. It decides when
to broadcast, by invoking the delegate

 subscribers: the method target. A subscriber decides when to start
and stop listening, by calling += and -=

 Events are a language feature that formalizes this
pattern

 An event is a construct that exposes just the subset
of delegate features required for the boardcaster

 The goal of events is to prevent subscribers from
interfering with each other

Events

 public class Metronome {
 public event TickHandler Tick;
 ...
 }

 Code within Metronome has full access to Tick and can
treat it as a delegate

Metronome Example

using System;

namespace eventExample {
 public class Metronome {
 public event TickHandler Tick;
 public delegate void TickHandler (Metronome m);
 public void Start () {
 while (true) {
 System.Threading.Thread.Sleep (2000);
 if (this.Tick!= null) {
	 this.Tick (this);
 }
 }
 }
 }
 ...

Metronome Example

 ...
 public class Listener {
 public void Subscribe (Metronome m) {
 m.Tick += new Metronome.TickHandler(HeardIt);
 }
 private void HeardIt(Metronome m) {
 Console.WriteLine("Heard it!");
 }
 }
 ...

Metronome Example

 ...
 class Run {
 static void Main() {
 Metronome m = new Metronome();
 Listener l = new Listener();
 l.Subscribe(m);
 m.Start();
 }
 }
}

Lambda expression

using System;

delegate int Transformer (int i);
public class Lambda {
 static void Main() {
 Transformer sqr = x => x * x;
 Console.WriteLine(sqr(3));
 }
}

Lambda expression

 A lambda expression has the following form

 (parameters) => expression-or-statement-
block
 x => {return x * x; };

 Used with two pre-defined delegates, Func and
Action

 Func<int,int> sqr = x => x * x;
 Func<string,string,int> totalLength =
 (s1, s2) => s1.Length + s2.Length
 int total = totalLength (“hello”, “world”);

 The compiler can usually infer the type of lambda

The using statement

 Many classes encapsulate unmanaged resources, such as
file handles, graphic handles, or database connections

 Consider:

 StreamReader reader;
 try { reader = File.OpenText (“file.txt”); ... }
 finally { if (reader != null) ((IDisposable)reader).Dispose();}

 Shortened into:

 using (StreamReader reader = File.OpenText (“file.txt”)) {...}

Exception

 All exceptions in C# are runtime exceptions

 There is no equivalent to Java’s compile-time
checked exceptions

Atomicity pattern

using System;

class Transaction {
 static void Main() {
 Accumulator a = new Accumulator();
 try {
 a.Add (4, 5); // Result is 9

 // Will cause OverflowException
 a.Add (1, int.MaxValue);
 }
 catch (OverflowException) {
 Console.WriteLine (a.Total); // 9
 }
 }
}

Atomicity pattern

class Accumulator {
 public int Total {get; private set; }

 public void Add (params int[] ints) {
 bool success = false;
 int totalSnapshot = Total;
 try {
 foreach (int i in ints) {
 checked {Total += i; }
 }
 success = true;
 }
 finally {
 if (! success) Total = totalSnapshot;
 }
 }
}

Accessors

 The class Accumulator has a field Total

 class Accumulator {
 public int Total {get; private set; }
 ...
 }

 This field can be accessed from other objects

 Console.WriteLine(new Accumulator().Total);

 But it cannot be set. The following raises a compile
time error

 new Accumulator().Total = 3

Variable number of arguments

 C#, as well as Java, accepts a variable number of
arguments when sending message

 Variables are declared in a particular way

 In C#, use the params keyword

 public void Add (params int[] ints) { ...}

 a.Add(1 , 2 , 3 , 4);

Variable number of arguments (Java)

 public class T {
 public static int add(int... ints) {
 int result = 0;
 for (int i : ints)
 result += i;
 return result;
 }
 public static void main(String[] argv) {
 // prints 21
 System.out.println(add(1,2,3,4,5,6) + add());
 }
}

Extension Methods

 Object-orientation provides many mechanism for
supporting software evolution and extension

 e.g., late binding, polymorphic, class inheritance, reflection

 C# offers the possibility to add methods to already
existing class

 Already present in many other languages: CLOS, Objective-C,
Pharo, Ruby, AspectJ, ...

Extension Methods

using System;
// a static class cannot be instantiated
public static class StringHelper
{
 // “string” is the equivalent of “String” in Java
 public static bool IsCapitalized (this string s) {
 if (string.IsNullOrEmpty(s))
 return false;
 else
 return char.IsUpper (s[0]);
 }

 static void Main() {
 Console.WriteLine("Hello".IsCapitalized());
 }
}

Extension Methods

 An extension method can be used as if it is defined
on the corresponding class

 It has to be under the current scope

 Conflicts are not allowed

 An instance method will always take precedence over
an extension method

 Can apply to interfaces

Dynamic binding

 Way to check types at execution rather than at
compilation

 Useful when at compile time you know that a certain
function, member or operation exists, but the compiler
does not

 dynamic d = "hello";

 Console.WriteLine (d.ToUpper()); // HELLO

 // Compiles OK but gives runtime error

 Console.WriteLine (d.Foo());	

Dynamic binding

 Calling an object dynamically is useful in scenarios
that would otherwise require complicated reflection
code

 Dynamic binding is also useful when interoperating
with dynamic languages (e.g., IronPython or IronRuby)
and COM components

TryInvokeMember

using System;
using System.Dynamic;

public class Test {
 static void Main () {
 dynamic d = new Duck ();
 d.Quack();
 d.Waddle();
 }
}

TryInvokeMember

public class Duck : DynamicObject {
 public override bool TryInvokeMember
 (InvokeMemberBinder binder,
 object[] args,
 out object result) {
 Console.WriteLine
 (binder.Name + " method was called");
 result = null;
 return true;
 }
}

 The Duck class does not have a Quack method.
Instead, it uses custom bindings to intercept and
interpret all method calls

Implicit conversions

int i = 7;
dynamic d = i;
int j = d;

int i = 7;
dynamic d = i;
short j = d;! // throws RuntimeBinderException

Unsafe code and pointers

 C# supports direct memory manipulation via pointers

 within blocks of code marked unsafe

 compiled with the /unsafe compiler option

 Pointer types are primarily useful for interoperability
with C APIs

 Useful for accessing memory outside the managed
heap or for performance-critical hotspots

Unsafe code and pointers

unsafe void BlueFilter (int[,] bitmap)
{
 int length = bitmap.Length;
 fixed (int* b = bitmap)
 {
 int* p = b;
 for (int i = 0; i < length; i++)
 *p++ &= 0xFF;
 }
}

Framework Overview

 Almost all the capabilities of the .Net Framework are
exposed via types

 Contains

 all the essential types

 user interface technologies

 backend technologies

 distributed system technologies

Language Integrated Query

 LINQ is a set of language and framework feature for
writing structured type-safe queries over collections

 Enable to query any collections that implements
IEnumerable<T> (array, list, XML DOM, SQL Server)

Linq

using System;
using System.Collections.Generic;
using System.Linq;

class LinqDemo {
 static void Main () {
 string[] names = { "Tom", "Dick", "Harry" };
 IEnumerable<string> filteredNames =

 names.Where(n => n.Length >= 4);

 foreach (string name in filteredNames)
 Console.WriteLine(name);
 }
} // print “Dick” and “Harry”

Query expression syntax

 C# embeds a syntax to easily query collections

 IEnumerable<string> filteredNames = names
 .Where (n => n.Contains (“a”))
 .OrderBy (n => n.Length)
 .Select (n => n.ToUpper());

Deferred Execution

 query operators are not executed when constructed,
but when enumerated

 var numbers = new List<int> ();
 numbers.Add (1);

 var query = numbers.Select (n => n * 10);
 numbers.Add (2);
 foreach (var n in query)
 Console.Write (n + “ | “);

 // 10 | 20 |

What you should know!

 What is an assembly?

 What is the difference between a library and an
application?

 What is the difference between passing by value and
passing by reference?

 What is an optional parameter?

 What is a delegate?

 What is a lambda?

 What is a method extension?

Can you answer these questions?

 When passing by reference is useful?

 Which design pattern delegates and events help
implement?

 How would you implement lambdas in Java?

 How method extension help to get a better
distribution of responsibilities?

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

!
Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5

License

