
Threads in Java
Alexandre Bergel

abergel@dcc.uchile.cl
05/05/2011

Roadmap

1.What are threads?

2.Example

3.Multiple execution

4.Scheduling

5.Synchronization

6.Closing words

Roadmap

1.What are threads?

2.Example

3.Multiple execution

4.Scheduling

5.Synchronization

6.Closing words

More than one thing

 Most of the programs we have seen use a single
thread for their execution

 This may cause problem when multiple events or
actions need to occur at the same time

 Drawing a graphical tictactoe while handling user’s clicks

 Serving a HTTP request while waiting for new request

 The solution to these problems is the seamless
execution of two or more sections of a program, at the
same time

Threading Introduction

 Threads: expressing logical parallelism in a program

 thread = logical sequence of control, a program’s path of
execution

 independent logical sequences of control

 generally share one memory

 Threads give the illusion to do some work in parallel

What are threads?

 Threads are a control mechanism offered by both a
library and the programming language

 Used to express concurrency and parallelism in a
program

 The following operations are necessary:

 create: increase parallelism

 synchronize: coordinate

 destroy: decrease parallelism

Multiple execution

 Multithreading means multiple execution lines for a
single program at the same time

 However, it is not the same as starting a program
twice

 In this case, the operating system is treating the
programs as two separate and distinct process

 The idea of sharing data is very beneficial

 but brings up some areas of concern

What are threads in Java?

 Threads are exposed as a special kind of object

 Operations are methods on thread objects

 Each thread object is a unit of parallelism

 A thread can be executed independently therefore

Roadmap

1.What are threads?

2.Example

3.Multiple execution

4.Scheduling

5.Synchronization

6.Closing words

Example: Handing web requests

Web
server

Thread 1

Example: Handing web requests

Web
server

Thread 1

http://localhost:8000/index.html

Example: Handing web requests

Web
server

Thread 1

http://localhost:8000/index.html

Request

Thread 2

creates

Example: Handing web requests

Web
server

Thread 1

http://localhost:8000/index.html

Request

Thread 2

Example: Handing web requests

Web
server

Thread 1

http://localhost:8000/index.html

Request

http://localhost:8000/index.html

Thread 2

The SimpleWebServer class

 public class SimpleWebServer extends Thread {

 public SimpleWebServer(File rootDir, int port) throws IOException {

 // ...

 start();
 }
 /* Starting point of the application */
 public static void main(String[] args) {
 try {
 new SimpleWebServer(new File("~/"), 8000);
 }
 catch (IOException e) {
 System.out.println(e);
 }
 }
 ...
}

The SimpleWebServer class

 public class SimpleWebServer extends Thread {

 private boolean _running = true;

 public void shutdown() { // Used in the tests
	 	 this._running = false;
	 }
 ...
 }

The SimpleWebServer class

 public class SimpleWebServer extends Thread {

 private boolean _running = true;

 public void run() {
 while (_running) {
 try {
 Socket socket = _serverSocket.accept();
 RequestThread requestThread =
 new RequestThread(socket, _rootDir);
 requestThread.start();
 }
 catch (IOException e) {
 System.exit(1);
 }
 }
 }
 ...
}

The RequestThread class

 public class RequestThread extends Thread {

 public void run() {
 ...
 }
}

Roadmap

1.What are threads?

2.Example

3.Multiple execution

4.Scheduling

5.Synchronization

6.Closing words

Two ways to create a thread

 Java’s creators have graciously designed two ways of
creating threads

 Implementing the interface Runnable

 Extending the class Thread

Subclassing Thread

public class RequestThread extends Thread
{
 public void run()
 {

 }
}

The Thread class

 defined as a class in the core Java language

 implements an interface called Runnable

 define a single abstract method called run()

public interface Runnable {
public void run();

}
public class Thread implements Runnable { ... }

java.lang.Thread

 There are a number of methods defined on the
Thread class

 To query the thread to find its priority

 To put it to sleep (note that sleep() is a static method)

 Cause it to yield to another thread

 stop

 suspend its execution

 resume its execution, etc, ...

Implementing Runnable

 public class RequestThread implements Runnable
{
 Thread t;
 public RequestThread () {
 	 	 t = new Thread(this);

 }
 public void run()
 {

 }
}

Using the Runnable Interface

 A class must implement the Runnable interface

 provide an implementation of the run method

 initiates the computation in the thread

 public class Counter implements Runnable {

 public void run () {

 /* code here executed concurrently with callers */ }

 ...

 }

Creating a Thread

 Steps

 Create an object of type Runnable & bind it to a new Thread object

 Or create an instance of a subclass of Thread

 Start it

 The Thread.start() method

 creates the thread stack for the thread

 then invokes the run() method of the Runnable object in the new
thread

Threads operations

 construction

 usually done by passing a runnable object to the thread on
construction

 starting

 Invoking a thread’s start() method cases the run() method of the
runnable object to run

 priority

 Threads can be run at different priority levels

 control

 this refers to control methods provided by the Thread class

Thread life cycle

http://java.sun.com/javase/6/docs/api/java/lang/Thread.State.html

New

Runnable

Blocked

Waiting

Timed_
waiting

Terminated
start()

waiting for
a monitor

just created

under execution

waiting for
another thread

waiting for
another thread

up to a given time

death

stop()

Issues with threads

 Sharing and Synchronization

 Threads may share access to objects (object state, open files, and
other resources) associated with a single process

 Scheduling

 if # of threads != # of processes, scheduling of threads is an issue

 Operations in different threads may occur in variety of orders

Roadmap

1.What are threads?

2.Example

3.Multiple execution

4.Scheduling

5.Synchronization

6.Closing words

Example: a simple counter

 public class SmallExample implements Runnable {

 	 private String info;

 	 public SmallExample(String info) { this.info = info; }

 	
 	 public void run () {

 	 	 for(int i = 1; i < 10; i++) {

 	 	 	 System.out.println(info + " " + i);

 	 	 }

 	 }

 	
 	 public static void main(String[] argv) {

 	 	 new Thread(new SmallExample("thread1")).start();

 	 	 new Thread(new SmallExample("thread2")).start();

 	 	 new Thread(new SmallExample("thread3")).start();

 	 }

 }

Example

thread1 1
thread1 2
thread1 3
thread1 4
thread1 5
thread1 6
thread1 7
thread1 8
thread1 9
thread2 1
thread2 2
thread2 3
thread2 4
thread2 5
thread2 6
thread3 1
thread3 2
thread3 3
thread3 4
thread3 5
thread3 6
thread3 7
thread3 8
thread3 9
thread2 7
thread2 8
thread2 9

Buh?
No parallelism?

What happened?

thread1 1
thread1 2
thread1 3
thread1 4
thread1 5
thread1 6
thread1 7
thread1 8
thread1 9
thread2 1
thread2 2
thread2 3
thread2 4
thread2 5
thread2 6
thread3 1
thread3 2
thread3 3
thread3 4
thread3 5
thread3 6
thread3 7
thread3 8
thread3 9
thread2 7
thread2 8
thread2 9

Example

Buh?
No parallelism?

What happened?

Each thread did not
wait for the others

Letting other thead execute

 public class SmallExample implements Runnable {

 	 private String info;

 	 public SmallExample(String info) { this.info = info; }

 	
 	 public void run () {

 	 	 for(int i = 1; i < 10; i++) {

 	 	 	 System.out.println(info + " " + i);
 Thread.yield();

 	 	 }

 	 }

 	
 	 public static void main(String[] argv) {

 	 	 new Thread(new SmallExample("thread1")).start();

 	 	 new Thread(new SmallExample("thread2")).start();

 	 	 new Thread(new SmallExample("thread3")).start();

 	 }

 }

Letting other thead execute

 public class SmallExample implements Runnable {

 	 private String info;

 	 public SmallExample(String info) { this.info = info; }

 	
 	 public void run () {

 	 	 for(int i = 1; i < 10; i++) {

 	 	 	 System.out.println(info + " " + i);
 Thread.yield();

 	 	 }

 	 }

 	
 	 public static void main(String[] argv) {

 	 	 new Thread(new SmallExample("thread1")).start();

 	 	 new Thread(new SmallExample("thread2")).start();

 	 	 new Thread(new SmallExample("thread3")).start();

 	 }

 }

Causes the
currently
executing thread
object to
temporarily
pause and allow
other threads to
execute.

Slow down!

 public class SmallExample implements Runnable {

 	 private String info;

 	 public SmallExample(String info) { this.info = info; }

 	
 	 public void run () {

 	 	 for(int i = 1; i < 10; i++) {

 	 	 	 System.out.println(info + " " + i);
 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 	 e.printStackTrace();

 }

 	 	 }

 	 }

 	 ...

Slow down!

 public class SmallExample implements Runnable {

 	 private String info;

 	 public SmallExample(String info) { this.info = info; }

 	
 	 public void run () {

 	 	 for(int i = 1; i < 10; i++) {

 	 	 	 System.out.println(info + " " + i);
 try {

 Thread.sleep(1000);

 } catch (InterruptedException e) {

 	 e.printStackTrace();

 }

 	 	 }

 	 }

 	 ...

Causes the currently
executing thread to
sleep (temporarily
cease execution) for
the specified number
of milliseconds

Thread interruption

 Threads may interrupt themselves

 Thread.interrupt()

 When this happens, an exception
InterruptedException is raised

Making a thread live

 public class Counter implements Runnable {

 	 private int value = 0;

 private String info;

 	 public void run () {

 	 	 while (true) {

 	 	 	 System.out.println(info + " " + value);

 	 	 	 value ++;

 	 	 	 waitSecond(1);

 	 	 }

 	 }

 ...

 	 public static void main(String[] argv) {

 	 	 Counter counter = new Counter("Counter");

 	 	 Thread thread = new Thread(counter);

 	 	 thread.start();

 	 	 counter.waitSecond(3);

 	 	 thread.stop();

 	 }

 }

Making a thread live

 public class Counter implements Runnable {

 	 private int value = 0;

 private String info;

 	 public void run () {

 	 	 while (true) {

 	 	 	 System.out.println(info + " " + value);

 	 	 	 value ++;

 	 	 	 waitSecond(1);

 	 	 }

 	 }

 ...

 	 public static void main(String[] argv) {

 	 	 Counter counter = new Counter("Counter");

 	 	 Thread thread = new Thread(counter);

 	 	 thread.start();

 	 	 counter.waitSecond(3);

 	 	 thread.stop();

 	 }

 }

Deprecated
method!

Making a thread live

 public class Counter implements Runnable {

 	 private int value = 0;

 private String info;

 	 public void run () {

 	 	 while (true) {

 	 	 	 System.out.println(info + " " + value);

 	 	 	 value ++;

 	 	 	 waitSecond(1);

 	 	 }

 	 }

 ...

 	 public static void main(String[] argv) {

 	 	 Counter counter = new Counter("Counter");

 	 	 Thread thread = new Thread(counter);

 	 	 thread.start();

 	 	 counter.waitSecond(3);

 	 	 thread.stop();

 	 }

 }

“This method is
inherently unsafe.”

How to make a counter stop then?

“This method is
inherently unsafe.”

 public class Counter implements Runnable {

 	 private int value = 0;

 private String info;

 	 public void run () {

 	 	 while (true) {

 	 	 	 System.out.println(info + " " + value);

 	 	 	 value ++;

 	 	 	 waitSecond(1);

 	 	 }

 	 }

 ...

 	 public static void main(String[] argv) {

 	 	 Counter counter = new Counter("Counter");

 	 	 Thread thread = new Thread(counter);

 	 	 thread.start();

 	 	 counter.waitSecond(3);

 	 	 thread.stop();

 	 }

 }

How to make a counter stop then?

 public class Counter implements Runnable {

 	 private boolean shouldRun;

 private String info;

 	 public Counter(String info) { this.info = info; shouldRun = true; }
 public void run () {

 	 while (shouldRun) {

 	 	 System.out.println(info + " " + value);

 	 	 value ++;

 	 	 waitSecond(1);

 	 }

 }

 ...

 private void stopRunning() { shouldRun = false; }

 public static void main(String[] argv) {

 	 Counter counter = new Counter("Counter");

 	 Thread thread = new Thread(counter);

 	 thread.start();

 	 counter.waitSecond(3);

 	 counter.stopRunning();
 }}

Thread Scheduler

 Java has a scheduler that monitors all running
threads

 The Scheduler decides which threads should be
running and which are in line to be executed

 Two important characteristics

 Thread daemon

 Thread priority

Thread Daemon

 According to Webster’s, a daemon (variant of demon)
is an attendant power or spirit

 In Java, any thread can be a Daemon thread

 Thread.setDaemon(true)

 The difference between threads and daemon threads
is that the JVM will only shut down a program when all
user threads have terminated

 Daemon threads are terminated by the JVM when
there are no longer any user threads running, including
the main thread of execution

Thread priority

 Each thread runs a given priority

 The runtime chooses the runnable thread with the
highest priority for execution

 A thread gets the Runnable state according to their
priority

 When a Java thread is created, it inherits its priority
from the thread that created it

Preemptive scheduling

 In Java, preemptive scheduling algorithm is applied

 Always the thread of the highest priority is chosen

 If two threads of the same priority are waiting to be
executed by the CPU, then the round-robin algorithm
is applied

Roadmap

1.What are threads?

2.Example

3.Multiple execution

4.Scheduling

5.Synchronization

6.Closing words

Synchronization

 public class SynchronizedCounter {

 private int c = 0;

 public synchronized void increment() {

 c++;

 }

 public synchronized void decrement() {

 c--;

 }

 public synchronized int value() {

 return c;

 }

 }

Synchronization

 If count is an instance of SynchronizedCounter, then
making these methods synchronized has two effects:

 First, it is not possible for two invocations of synchronized
methods on the same object to interleave. When one thread is
executing a synchronized method for an object, all other threads
that invoke synchronized methods for the same object block
(suspend execution) until the first thread is done with the object.

 Second, when a synchronized method exits, it automatically
establishes a happens-before relationship with any subsequent
invocation of a synchronized method for the same object. This
guarantees that changes to the state of the object are visible to all
threads.

 Note that constructors cannot be synchronized

Synchronization

 If count is an instance of SynchronizedCounter, then
making these methods synchronized has two effects:

 First, it is not possible for two invocations of synchronized
methods on the same object to interleave. When one thread is
executing a synchronized method for an object, all other threads
that invoke synchronized methods for the same object block
(suspend execution) until the first thread is done with the object.

 Second, when a synchronized method exits, it automatically
establishes a happens-before relationship with any subsequent
invocation of a synchronized method for the same object. This
guarantees that changes to the state of the object are visible to all
threads.

 Note that constructors cannot be synchronized

http://java.sun.com/docs/books/
tutorial/essential/concurrency/

syncmeth.html

Roadmap

1.What are threads?

2.Example

3.Multiple execution

4.Scheduling

5.Synchronization

6.Closing words

Conclusion

 Java threads are the basis for expression of
parallelism

 convenient, nice encapsulation, cleanly integrated

 can build flexible expression and management

 Do not overuse Threads

 It may leads to complex and hard-to-debug situations

What you should know

 What are threads?

 What threads are often necessary?

 How to define a thread?

 When you need to employ threads?

 Understand what are the synchronization problems in
threading

 What is a scheduler?

Can you answer to these questions?

 Why each web request must be handled in a
separate thread?

 Can you provide an example of synchronization
problem?

 Why stop() is deprecated?

