
Exceptions in Java
Alexandre Bergel

abergel@dcc.uchile.cl
26/05/2011

The Java programming language uses exceptions
to handle errors and other exceptional events

This lecture is about learning
when,how,why to use exceptions

Source

http://java.sun.com/docs/books/tutorial/essential/exceptions

Java Development Kit 1.6 source code

Roadmap

1.Why an exception mechanism?

2.What is an exception?

3.The Catch or Specify Requirement

4.How to throw exception

5.Operations on an exception

Why an exception mechanism?

 In the C programming language, tacking care of the
potential errors clutter the code and reduce readability

 Example:

readFile {
 open the file;
 determine its size;
 allocate that much memory;
 read the file into memory;
 close the file;
}

Why an exception mechanism?

 In the C programming language, tacking care of the
potential errors clutter the code and reduce readability

 Example:

readFile {
 open the file;
 determine its size;
 allocate that much memory;
 read the file into memory;
 close the file;
}

What happens if the
file can’t be opened?

Why an exception mechanism?

 In the C programming language, tacking care of the
potential errors clutter the code and reduce readability

 Example:

readFile {
 open the file;
 determine its size;
 allocate that much memory;
 read the file into memory;
 close the file;
}

What happens if the length
of the file can’t be

determined?

Why an exception mechanism?

 In the C programming language, tacking care of the
potential errors clutter the code and reduce readability

 Example:

readFile {
 open the file;
 determine its size;
 allocate that much memory;
 read the file into memory;
 close the file;
}

What happens if enough
memory can’t be allocated?

Why an exception mechanism?

 In the C programming language, tacking care of the
potential errors clutter the code and reduce readability

 Example:

readFile {
 open the file;
 determine its size;
 allocate that much memory;
 read the file into memory;
 close the file;
}

What happens if the read
fails?

Why an exception mechanism?

 In the C programming language, tacking care of the
potential errors clutter the code and reduce readability

 Example:

readFile {
 open the file;
 determine its size;
 allocate that much memory;
 read the file into memory;
 close the file;
}

What happens if the file can’t
be closed?

errorCodeType readFile {
 initialize errorCode = 0;

 open the file;
 if (theFileIsOpen) {
 determine the length of the file;
 if (gotTheFileLength) {
 allocate that much memory;
 if (gotEnoughMemory) {
 read the file into memory;
 if (readFailed) {
 errorCode = -1;
 }
 } else {
 errorCode = -2;
 }
 } else {
 errorCode = -3;
 }
 close the file;
 if (theFileDidntClose && errorCode == 0) {
 errorCode = -4;
 } else {
 errorCode = errorCode and -4;
 }
 } else {
 errorCode = -5;
 }
 return errorCode;
}

Without
exception

With
exceptionreadFile {

 try {
 open the file;
 determine its size;
 allocate that much memory;
 read the file into memory;
 close the file;
 } catch (fileOpenFailed) {
 doSomething;
 } catch (sizeDeterminationFailed) {
 doSomething;
 } catch (memoryAllocationFailed) {
 doSomething;
 } catch (readFailed) {
 doSomething;
 } catch (fileCloseFailed) {
 doSomething;
 }
}

What is an exception?

 When an error occurs in a method, the method
creates an object, and hands it to the runtime system

 An exception is an event that occurs during the
execution of a program that disrupts the normal flow of
instructions

 Creating an exception object and handling it to the
system is called throwing an exception

Creating a file with an empty path

 package java.io;

 public class File implements Serializable, Comparable<File> {

 public File(String pathname) {
	 if (pathname == null) {
	 throw new NullPointerException();
	 }
	 this.path = fs.normalize(pathname);
	 this.prefixLength = fs.prefixLength(this.path);
 }
 ...
 }

Defining an exception class

 package java.lang;

 public class NullPointerException extends RuntimeException {

 ...

 }

Looking for an handler

 After a method throws an exception, the runtime
system attempts to find something to handle it

 The set of possible "somethings" to handle the
exception is the ordered list of methods that had been
called to get to the method where the error occurred

 The list of methods is known as the call stack

From the Web Server example

main

 public static void main(String[] args) {
 try {
 new SimpleWebServer(new File(null), 8000);
 }
 catch (Exception e) {
 System.out.println(e);
 }
 }

Method call stack

From the Web Server example

main

File(...)

 public static void main(String[] args) {
 try {
 new SimpleWebServer(new File(null), 8000);
 }
 catch (Exception e) {
 System.out.println(e);
 }
 }

Method call stack

From the Web Server example

main

File(...)

 public static void main(String[] args) {
 try {
 new SimpleWebServer(new File(null), 8000);
 }
 catch (Exception e) {
 System.out.println(e);
 }
 }

null!

Method call stack

From the Web Server example

main

File(...)

 public static void main(String[] args) {
 try {
 new SimpleWebServer(new File(null), 8000);
 }
 catch (Exception e) {
 System.out.println(e);
 }
 }

null!

Method call stack

From the Web Server example

main

File(...)

 public static void main(String[] args) {
 try {
 new SimpleWebServer(new File(null), 8000);
 }
 catch (Exception e) {
 System.out.println(e);
 }
 }

null!

Method call stack

From the Web Server example

main

File(...)

 public static void main(String[] args) {
 try {
 new SimpleWebServer(new File(null), 8000);
 }
 catch (Exception e) {
 System.out.println(e);
 }
 }

null!

Method call stack

Searching the call stack

 The runtime system searches the call stack for a
method that contains a block of code that can handle
the exception

main

method with handler

method with no handler

method with error

Searching the call stack

 The runtime system searches the call stack for a
method that contains a block of code that can handle
the exception

main

method with handler

method with no handler

method with error

Searching the call stack

 The runtime system searches the call stack for a
method that contains a block of code that can handle
the exception

main

method with handler

method with no handler

method with error

Searching the call stack

 The runtime system searches the call stack for a
method that contains a block of code that can handle
the exception

main

method with handler

method with no handler

method with error

Searching the call stack

 The runtime system searches the call stack for a
method that contains a block of code that can handle
the exception

main

method with handler

method with no handler

method with error

processed in an
exception
handler

Searching the call stack

 This block of code that can handle an exception is
called an exception handler

 The search begins with the method in which the error
occurred and proceeds through the call stack in the
reverse order in which the methods were called

 The exception handler chosen is said to catch the
exception

And if there is no handler?

main

method with no handler

method with no handler

method with error

And if there is no handler?

main

method with no handler

method with no handler

method with error

And if there is no handler?

main

method with no handler

method with no handler

method with error

And if there is no handler?

main

method with no handler

method with no handler

method with error

And if there is no handler?

main

method with no handler

method with no handler

method with error

And if there is no handler?

main

method with no handler

method with no handler

method with error

The program print the stack terminates

And if there is no handler?

 If the runtime system exhaustively searches all the
methods on the call stack without finding an
appropriate exception handler the runtime system
(and, consequently, the program) terminates.

The Catch or Specify Requirement

 Valid Java programming language code must honor
the Catch or Specify Requirement

 This means that code that might throw certain
exceptions must be enclosed:

 a try statement that catches the exception. The try must provide a
handler for the exception

 a method that specifies that it can throw the exception. The
method must provide a throws clause that lists the exception

 Code that fails to honor the Catch or Specify
Requirement will not compile

package java.io;
public abstract class OutputStream implements Closeable,
Flushable {
 ...
 /**
 * Writes <code>b.length</code> bytes from the specified
 byte array
 * to this output stream. The general contract for
 <code>write(b)</code>
 * is that it should have exactly the same effect as the
 call <code>write(b, 0, b.length)</code>.
 *
 * @param b the data.
 * @exception IOException if an I/O error occurs.
 * @see java.io.OutputStream#write(byte[], int, int)
 */
 public void write(byte b[]) throws IOException {
	 write(b, 0, b.length);
 }
}

package cc3002.smallwebserver;
public class RequestThread extends Thread {
 ...
 private static void sendHeader(BufferedOutputStream out, int
code, String contentType, long contentLength, long lastModified)
throws IOException {
 out.write(("HTTP/1.0 " + code + " OK\r\n" +
 "Date: " + new Date().toString() + "\r\n" +
 "Server: Simple web server cc3002 \r\n" +
 "Content-Type: " + contentType + "\r\n" +
 "Expires: Thu, 01 Dec 1994 16:00:00 GMT\r\n" +
 ((contentLength != -1) ? "Content-Length: " +
 contentLength + "\r\n" : "") +
 "Last-modified: " +
 new Date(lastModified).toString() + "\r\n" +
 "\r\n").getBytes());
 }
}

package cc3002.smallwebserver;
public class SimpleWebServer extends Thread {
 ...
 public SimpleWebServer(String path, int port) throws IOException {
 	 	 this(new File(path), port);
 }

 public SimpleWebServer(File rootDir, int port) throws IOException {
 _rootDir = rootDir.getCanonicalFile();
 if (!_rootDir.isDirectory()) {
 throw new IOException("Not a directory.");
 }
 _serverSocket = new ServerSocket(port);
 start();
 }
}

package cc3002.smallwebserver;
public class SimpleWebServer extends Thread {
 ...
 public SimpleWebServer(String path, int port) throws IOException {
 	 	 this(new File(path), port);
 }

 public SimpleWebServer(File rootDir, int port) throws IOException {
 _rootDir = rootDir.getCanonicalFile();
 if (!_rootDir.isDirectory()) {
 throw new IOException("Not a directory.");
 }
 _serverSocket = new ServerSocket(port);
 start();
 }
} Declared as throwable

The Three Kinds of Exceptions

 Not all exceptions are subject to the Catch or Specify
Requirement

 1 - Checked exception

 exceptional condition that a well-written application should
anticipate and recover from

 subject to the catch or specify requirement

 all exceptions are checked exceptions, except for those indicated
by Error, RuntimeException, and their subclasses

 Need to specify the exception in a throws clause when defining the
method that can throw it

The Three Kinds of Exceptions

 2 - Error

 exception conditions that are external to the application

 the application usually cannot anticipate or recover from

 e.g., hardware or system malfunction, java.lang.IOError

 Error are not subject to the Catch or Specify Requirement

 No need to specify the exception when defining the method

The Three Kinds of Exceptions

 3 - Runtime exception

 exceptional conditions that are internal to the application

 the application usually cannot anticipate or recover from

 e.g., bugs, logic error, improper use of an API,
NullPointerException

 The application can catch this exception, but it makes more sense
to eliminate the bug that caused the exception to occur

 Runtime exceptions are not subject to the Catch or Specify
Requirement

 Runtime exceptions are those indicated by RuntimeException and
its subclasses.

 Errors and runtime exceptions are collectively known
as unchecked exceptions.

In the Web server application

 public SimpleWebServer(File rootDir, int port) throws IOException

 {
 _rootDir = rootDir.getCanonicalFile();
 if (!_rootDir.isDirectory()) {
 throw new IOException("Not a directory.");
 }
 _serverSocket = new ServerSocket(port);
 start();
 }

In the Thread class

public class Thread implements Runnable {
 ...

 public static native void sleep(long millis)

 throws InterruptedException;

 ...

 }

In the Thread class

public class Thread implements Runnable {
 ...

 public static native void sleep(long millis)

 throws InterruptedException;

 ...

 }
The native keyword informs the

Java compiler that the
implementation for this method

is provided in another
programming language

Catching and Handling

 A try block looks like the following:

 try {

 code that could throw an exception

 }

 catch and finally blocks ...

 public static void main(String[] args) {
 try {
 new SimpleWebServer(new File("..."), 8000);
 }
 ...
 }

Catching and Handling

 If an exception occurs within the try block, that
exception is handled by an exception handler
associated with it

 try {

 ...

 } catch (ExceptionType name) {

 ...

 }

Catching and Handling

 If an exception occurs within the try block, that
exception is handled by an exception handler
associated with it

 try {

 ...

 } catch (ExceptionType name) {

 ...

 }

 public static void main(String[] args) {
 try {
 new SimpleWebServer(new File("..."), 8000);
 }
 catch (IOException e) {
 System.out.println(e);
 }
 }

Catching and Handling

 More than one catch is possible

 try {

 ...

 } catch (ExceptionType1 name) {

 ...

 } catch (ExceptionType2 name) {

 ...

 }

The Finally block

 The finally block always executes when the try block
exits

 Putting cleanup code in a finally block is always a
good practice, even when no exceptions are
anticipated

 try {

 ...

 }

 catch (ExceptionType1 name) {}

 catch (ExceptionType2 name) {}

 finally {

 // cleaning code here

 }

The Finally block

 The finally block is a key tool for preventing resource
leaks

 When closing a file or otherwise recovering resources,
place the code in a finally block to ensure that
resource is always recovered

Specifying the Exceptions Thrown by
a Method

 Sometimes, it's appropriate for code to catch
exceptions that can occur within it

 In other cases, however, it's better to let a method
further up the call stack handle the exception

 You need to use the throws keyword to delegate the
responsibility of handling the error

 Exception are thrown using the throw keyword

 throw takes an expression as argument

 public SimpleWebServer(File rootDir, int port) throws IOException {
 _rootDir = rootDir.getCanonicalFile();
 if (!_rootDir.isDirectory()) {
 throw new IOException("Not a directory.");
 }
 _serverSocket = new ServerSocket(port);
 start();
 }

Operations on an exception

 Defined in the Throwable class

Operations on an exception

 In Java, exceptions can be thrown and caught

 Other operations are possible

 For example, in Pharo

 retry: to re-evaluate the protected block

 retryUsing: to provide a value in place and re-evaluate the
protected block

 resume: resume the execution at the failure point

Conclusion

 Software errors need to be managed using
Exceptions

 Different kinds of exception

 The exception mechanism may be abused

What you should know

 Why an exception mechanism help managing errors?

 How to throw an exception?

 What are the different kinds of exceptions?

 How does the system look for an handler?

 What is the difference between a checked and
unchecked exception?

 Why the finally block is appropriate for clean-up
code?

Can you answer these questions?

 Why the static type of the throw exception is not
taken into account when looking for a handler?

 Can you provide an example for each the 3 kind of
exceptions?

 How to decide the kind of exception when designing
a class exception?

 How exceptions and the program execution flow are
related?

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

!
Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5

License

