Object-Oriented
Design Heuristics

Alexandre Bergel
abergel@dcc.uchile.cl
24/05/2011

Source

Book from Arthur J. Riel

Addison-Wesley Professional (May 10, 1996)
click to LOOK INSIDE!

~

978-0201633856

Java 1.6

Pharo 1.0

Goal of this lecture

Provide useful and simple programming “rules”
Insight into object-oriented design improvement

Intended to
Increase the readability and the quality of your code

Facilitate software maintenance

Goal of this lecture

To make you better programmers and responsible
engineers

This lecture provides good hints to not make people
throw stones at you when they will look at your code

Classes and Objects

Classes and Objects

The building blocks of the object-oriented paradigm

An object will always have four important facets
its own identify (e.g., its address in memory)

the attributes of its class (usually static) and values for those
attributes (usually dynamic)

the behavior of its class (the implementor’s view)

the published interface (the user’s view)

All data should be hidden within its class

public class DefaultCaret extends Rectangle implements Caret,
Focuslistener, Mouselistener, MouseMotionListener {

int updatePolicy = UPDATE_WHEN_ON_EDT;

boolean visible;

boolean active;

int dot;

int mark;

Object selectionTag;

boolean selectionVisible;

Timer flasher;

Point magicCaretPosition;

transient Position.Bias dotBias;

transient Position.Bias markBias;

boolean dotLTR;

boolean markLTR;

transient Handler handler = new Handler();
transient private int[] flagXPoints = new int[3];
transient private int[] flagYPoints = new int[3];
private transient NavigationFilter.FilterBypass filterBypass;
static private transient Action selectWord = null;
static private transient Action selectline = null;

}

Piece of code extracted from the JDK 1.6. The class DefaultCaret belongs to the package
javax.swing.text. It contains 15 public attributes

= = i)
— [—] J

Handler

<«— DefaultCaret

Class blueprint [Lanza 2003]

We will make heavy use of visualization along the semester. Visualizing software is a very handy
and intuitive mechanism for getting a quantitative and qualitative impression about a system.

Class blueprint is a visualization that shows class internal. A class is represented as a box. Each
box is composed of 5 part. Each part correspond to some particular elements that composes the

class. From left to right: constructors, public methods, private methods, variable accessors and
mutators (get and set methods), attributes.

Blue edges represent methods invocations. Cyan edges represent variable accesses.

.. Access to public variables

Handler

<«— DefaultCaret

Class blueprint [Lanza 2003]

The class DefaultCaret contains 15 public attributes. These attributes are accessed by other

classes. Handler for example. This shows a poor programming style. Never make field public or
package visible.

One may argue that for optimization reason, it may be preferable to have public variables instead
of accessors. It was true some time ago when virtual machines and compiler were not that

sophisticated. Today, making variable public is hardly considered as an efficient way to optimize
your program.

How to hide data?

Visibility of variables should be set to private or
protected

Define accessors and mutators when necessary

Minimize the number of messages in the protocol of a class

1

' I

7. ngaoo oo orene 00 OpoR0poFe 0 0 0fj0 0 DpEesogo I gfjopo I-jeoo Bl
D DDDDDDDFDBHDDDDDWD [ID U[I H |:|':l [I
°DH I]l] 0 UD |] 0 Ll I |] DDHD .
=1 i .-_,I] d o o
Serg 0[] Tt ey 1

o I:ID i u]
number of !
variables
>
‘number of L number of
lines of code methods

System complexity [Lanza 2003]

We can see another visualization, called System complexity. This visualization is about class

hierarchies. Each class is represented as a box, shaped with three metrics: number of variables,
number of methods and number of lines of code.

The hierarchy represented here is PLAF, the pluggable look and feel of Java. You can notice the
irregularity of the hierarchies, which probably hide some missing functionalities.

[

U

L

|? i “

b l]l:lﬂ HHUDU
L A 1y

i)

o “DD l]ﬂ
E fﬂ dh

:r=

i] i
D “l O]

javax.swing.plaf.basic.Basic TreeUl
1636 lines of code
49 variables
131 methods

System complexity [Lanza 2003]

JComponent
1888 LOC
169 methods
73 attributes

o [™

HDDHDDDU”D

DDU con

NI
770"

i 0
g eago H ago
og DD|:|D LL]

JTable
2691 LOC
185 methods
44 attributes

We can merely observe the two biggest classes of Swing: JComponent and JTable

However, we should not blame their developers. The root of a graphical user interface framework

is inherently complex and difficult to implement. To convince yourself, have a look at the root
class of any serious GUI framework.

A class should capture one and only one key abstraction

A |IF
=
/AL HE
lf"CL% -
|:}:::'DE]~“ D:
m;;l:Df ﬁ
Example in ArgoUML

We can observe a class which has 2 public methods and many private methods. This class is quite
particular in the sense that its private methods are divided into two distinct groups. Each group of
private method is used by one public method.

This is an example of a class that offers two distinct functionalities.

Action-Oriented vs Object-Oriented

The god class problem

A “god” class performs most of the work, leaving
minor details to a collection of trivial classes

Do not create god classes/objects in your system.
Be very suspicious of a class whose name contains
Driver, Manager, System, Subsystem, Utility

* @version 1.158, ©03/13/06
* @since JDK1.0
*/

public final class System {

/* First thing---register the natives */
private static native void registerNatives();
static {

registerNatives();

}

/** Don't let anyone instantiate this class */
private System() {
ks

/**
* The "standard" input stream. This stream is already
* open and ready to supply input data. Typically this stream
* corresponds to keyboard input or another input source specified by

java.lang.System is the perfect example. It offers methods ranging from writing on the standard
streams to copying arrays and managing security.

Bra——

(] applet o :nontygueue,Java % CurrencyNameProvider.java
> [awt a ProperlI?-Javé o) LocaleNameProvider.java

(] beans o P’°"9"VRE""'“'°E"'JB;’|3) ©) LocaleServiceProvider.java

& o % ropertyResourceBundle.java 2 package.html

“J Queue.java T .

] lang - N , TimeZoneNameProvider.java

&2 math % Random.java

& net @ RandomAccess.java

& nio (] regex

3 mi % RegularEnumSet.java
[security @ ResourceBundle.java
£ saql @ Scanner.java
(] text “ ServiceConfigurationError.java
il , % serviceLoader.java
[ut . /
| Set.java
@ SimpleTimeZone.java

% | SortedMap.java
@ SortedSet.java

@ Stack.java
@ StringTokenizer.java
% Timer.java
% TimerTask.java
¥ TimeZone.java
¥ TooManyListenersException.java
) TreeMap.java
| TreeSetjava
% UnknownFormatConversionException.java
¥ UnknownFormatFlagsException.java
% UUID.java
@ Vector.java
@ WeakHashMap.java 3
@] XMLUtils.java 3
i i [zip 1

P

¢.6.6.¢.6.6.¢

2 Macintosh HD + (] Users » ¢} alexandrebergel + (] Desktop » (] CaseStudies » [(]JOK » []java » [util »] spi

Note that the heuristic given before is also valid for packages. Consider the package java.util.
This package contains 229 classes, most of them are collections. But it also contains the classes
Data, JapaneselmperialCalendar, Locale, Random, XMLUtils and many more unrelated classes.

006 OB Package Browser: SystemDictionary o

SystemDictionary <<)(hist.)(>
System-Object Stora¢m SARInstaller ® [class names ® bytesLeft [}
B System-Platforms & SecurityManager # |copying bytesLeftString -~
B System-Pools Smalltalkimage deprecated bytesLeft:

8 System-Serial Port SystemDictionary dictionary access createStackOverflow
BB System-Support Q SystemNavigation @ housekeeping forceTenure
System-Tools v SystemOrganizer ¥ limage, changes name garbageCollect
" <@ > B <G » |memory space garbageCollectMost
i 5 miscellaneous installLowSpaceWatche¥
;/hler. KgrOUpSJ \D&CHSSJQ ohiects from disk < é 2
forceTenure

"Primitive. Tell the GC logic to force a tenure on the next increment GC."
<primitive: 'primitiveForceTenure'>
~self primitiveFailed

In the Pharo and Squeak Smalltalk languages, the class SystemDictionary is another example of a
god class.

SystemDictionary enables one to control the garbage collectors, streaming objects, accessing
classes, querying the systems. It has little to do with the notion of dictionary!

In application that consist of an object-oriented model interaction
with a user interface, the model should never be dependent on the
interface.

The interface should be dependent on the model

In Mozilla:
dom/base/nsDOMWindowUtils.cpp

/* —-*— Mode: C++; tab-width: 2; indent-
tabs-mode: nil; c-basic-offset: 2 -*- %/
/* *%x%%% BEGIN LICENSE BLOCK ***%*%

* Version: MPL 1.1/GPL 2.0/LGPL 2.1

#include "nsIDOMHTMLCanvasElement.h"
#include "nsICanvasElement.h"
#include "gfxContext.h"

#include "gfxImageSurface.h"

Have a look at the definition of the class nsDOMWindowUtils, which is central to the DOM

component of Mozilla.
This class has references to some graphical packages, which goes against the idea of having a

clean and modular DOM.

belong to

the core
In Mozilla: i

dom/base/nsDOMWindowUtils.cpp

/* —-*— Mode: C++; tab-width: 2; indent-
tabs-mode: nil; c-basic-offset: 2 -*- %/
/* *%x%%% BEGIN LICENSE BLOCK ***%*%

* Version: MPL 1.1/GPL 2.0/LGPL 2.1
#include "nsIDOMHTMLCanvasElement.h"
#include "nsICanvasElement.h"

#include "gfxContext.h" belong to
#include "gfxImageSurface.h" ofx package

006 OB Package Browser: Object (s}

C... (class search), i... (implementor search), #C... (class ref search), #s... <<)(hist.)(>>
(i ia NN)7
v B Kernel ® ObjectTracer ® testing ® v defaultBackground®
Chronology ObjectViewer 2 thumbnail “ v defaultLabelForins|™
Classes ProtoObject translation support explore
Methods Object undo v hasContentsInExpl
Numbers Boolean updating v inform:
_— jects Ty Eglis a V] user interface @ v !nitialEﬁgnhtL bel
hier.) groups) @chlassjgﬁv& . _,"].—I‘n&d{lt -a e_>"]

inform: aString
"Display a message for the user to read and then dismiss. 6/9/96 sw"

aString isEmptyOrNil iffFalse: [UIManager default inform: aString]

Another example of the kernel of Pharo. The class Object contains a reference to the UlManager,
which belongs to the package ToolBuilder. The method #inform: is clearly wrongly packaged

Wrong dependency

T

Model-view-controller

. L 2 Controller

Model-view-controller (MVC) is a software architecture,
considered as an architectural pattern

Model-view-controller

The MVC pattern isolates the domain logic from the
user interface

MVC permits
independent development
testing

maintenance (separation of concerns)

Model-view-controller

MVC is typically associated with frameworks

Update of the view by the model and/or controller is
commonly realized with the observer/observable
design pattern

About encapsulation

desired_temp?() Desired Temp

Heat flow actual_temp?0 NG E M= 0y o)
regulator]

anyone_in_room?() Occupancy

Home heating system without encapsulation

Example of poor system intelligence distribution

About encapsulation
get_actual_temp?()
get_desired_temp() © Flssiice ane

Heat flow R Actual Temp

regulator

is_occupied() Occupancy

Home heating system with encapsulation

About encapsulation

do_you_need_heat?() Desired Temp

Heat flow R Actual Temp

regulator

Occupancy

Home heating system with distributed intelligence

Do not turn an operation into a class. Be suspicious of any class
whose name is a verb or is derived from a verb.

DigitCollector

call_buffer

DialTonelnitiator

connector

Classes which should be operations

TelephoneCall

call_buffer
connector

A better design for telephone services

The relationship between classes
and objects

Minimize the number of classes with which another class
collaborates

public class JTable extends JComponent implements TableModellListener,
Scrollable,
TableColumnModellistener, ListSelectionListener, CellEditorlListener,
Accessible, RowSorterlListener

/** The <code>TableModel</code> of the table. */
protected TableModel dataModel ;

/** The <code>TableColumnModel</code> of the table. */
protected TableColumnModel columnModel;

/** The <code>ListSelectionModel</code> of the table, used to keep
track of row selections. */
protected ListSelectionModel selectionModel;

/** The <code>TableHeader</code> working with the table. */
protected JTableHeader tableHeader;

public class JTable extends JComponent implements TableModellListener,
Scrollable,
TableColumnModellistener, ListSelectionListener, CellEditorListener,
Accessible, RowSorterListener

/** The <code>Tab
protected Table

ek The —codenTe JTable depends on more
ks than 50 different classes

. X/

/** The <code>Lis
track of row selections. */
protected ListSelectionModel selectionModel;

able, used to keep

/** The <code>TableHeader</code> working with the table. */
protected JTableHeader tableHeader;

The inheritance relationship

Inheritance

The Inheritance relationship is one of the most
important relationships within object-orientation

It is best used to capture the a-kind-of relationship
between classes

e

Example of the core of java.awt

JComponent

accessibleContext
listenerList

AbstractButton

itemListener
changeEvent

T

JButton

JButton

AbstractButton
itemListener
changeEvent, ...

JComponent
accessibleContext
listenerList

Virtual Classes
A powerful mechanism in object-oriented programming

Ole Lehrmann Madsen
Computer Science Department, Aarhus University
Ny Muskegade, DK-$000 Aashus C, Denmark
TH: 445 6 12 71 85 - E-mail: olmadsenGdaimi.dk

Abstract

The notions of class, subelass and virtaal

Birger Moller-Pedersen
Norwegian Computing Center
P.O. Box 114, Blindern, N-0314 Oslo 3, Norway
TIH.: 447 2 45 35 00 - E-nail: birges@ne.uninett.no

gramming, Classes support the classification of objects
with the same properties, and sabelassing supparts the

b-ly-dluh-modudmepmdu-omehhh,
en«whobpe-—uh“ programming. The peasidil-
ity of modifying » virtual procedure in a subclass is a
powerful technique for specialising the general proper-
ties of the superclass.

In most object.oriented L the i of
aa object may be references to objects and (viztual) pro-
eedures. In Simuls and BETA it is also possible 1o have
class attributes. The power of class attributes has not
yet been widely recognited. In BETA & class may also
bave virtwal closs attridutes. This makes it possible to
defer part of the specification of & class attribute 1o &
subclass. In this sense virtual classes aze analogous to
virtaal procedures. Virtual classes are mainly interest-
ing within sizongly typed languages where they provide

& mechanism for defining general pazameterised classes
wuch as set, mtnudbﬂ In this sense they provide
an alternative to generics.

Although the notion of visteal elass originates from
lﬂA.ﬁth-Aﬂﬂdmm
Key X virtual class,
strong typing, m—mhd class, gemerics, BETA,
Simaula, Eiffel, C++, Smalltalk

1 Introduction

‘The notions of class and subclass are some of the key
language concepts associated with object-oriented pro-

it foe 38 ¢ purt

e ACM cogymght messcn and the Stk of the pubbcation wd 5 duse sy,

Competing Machinery. To copy ceberwise. o 1o republish, orgmers & fex

ot oo e permamase.
© 190 ACM IOV 3 T I ON007 51

of the general A class defines
a set of attributes associated with each instance of the
chass. An sttribute may be either an object reference
(ox just reference for short) or a procedure.

In a subelass it is possible to specialive the general

properties defined in the superclass. This can be done
by adding references and/oe procedures. However, it is
also possible to modify the procedures defined in the su-
petclass. Modification can take place in different ways.
In Simula 87 (4] a procedure attribute may be declared
virtual. A virtual procedure may then be redefined in a
subclass. A mon-virtual procedure cannot be redefined®.
This is essentially the same scheme adapted by C++
(16] and Eiffel [13]. In Smalltalk [6] any procedure is
virtual in the sense that it can be redefined in & sub.
class, and even the parameters of & procedure may be
redefined.

In BETA (8] & virtual procedure cannot be redefized
in & subclass, but it may be further defined by an ez
tended definition. The extended procedure is a “sub-
procedure” (in the same way as for subclass) of the pro-
cedure defined in the superclass. This implies that the
actions of a virtual procedure definition are automat.
ieally combined with the actions of the extended pro-
cedure in & subclass. This is the case for all levels of
subeclasses that farther defines a virtual procedure. In
Smalitalk and C++ it is the responsibility of the pro-
srammer o combine & redefined vistual procedure with
the virtual of the
This is of course more flexible, since the programmer
can ignote the procedure in the superclass. However, it
is aleo & potential source of evror since the programmer
may forget to execute the virtual procedure from the
superclass.

Using the terminology from [18] a class in BETA

VIa Simula a subclass may declare & new procedure with the
fame nores o & precedurs defned n o soperele. This docssuk
Dave the effect of & redefiuition e

@OOPSLA'89

Window: class Stream
(# UpperLeft,LowerRight: @ Point;
Label: - Text;
Move: proc (# ... #);
Display: wirtual proc (# ... #);
#)

Figure 2: Example of class declaration

“In Figure 2 an example of a class is given. Class Window is
described as a subclass of class Stream. ...”

Window: class Stream
(# UpperLeft,LowerRight: @ Point;
Label: = Text;
Move: proc (# ... #);
Display: wirtual proc (# ... #);
#)

Figure 2: Example of class declaration

“In Figure 2 an example of a class is given. Class Window is
described as a subclass of class Stream. ...”

Do you think a window can be considered as a stream?

Collection

SMALLMALK=80 %
. Link
LinkedList Process
Semaphore

Probably a semaphore can be seen as a collection, but is it
worth subclassing LinkedList in that case?

All abstract classes must be base classes

All abstract classes must be base classes

Since an abstract class cannot be instantiated, does it make sense
to have an abstract class leaf?

Mistaking objects for derived classes

CarManufacturer

GeneralMotors

Chrysler

Consider the inheritance hierarchy given on this slide. At first view the inheritance hierarchy looks
correct. GeneralMotors, Ford and Chrysler are all special types of car manufacturers. On second
thought, is GeneralMotors really a special type of car manufacturer? Or is it an example of a car
manufacturer? This is a classic error and it causes proliferation of classes.

how many GeneralMotors objects are there? Ford objects? Chrysler objects? The answer for all
three classes if one. In this case they should have been objects.

Keep in mind that not all derived classes that have only one instance in your system are
manifestations of this error, but many will be.

It should be illegal for a derived class to override a base class
method with a NOP method, that is, a method that does nothing

m wag_tail() {...}

Dlele|Nle\WElel wag_tail() { /- empty */}

What is wrong with this design?

Consider a class Dog. The behaviors that all Dogs know how to carry out is bark, chase_cats and
wag_tail. Consider that we want to have a dog that does not wag its tail, let’s say DogNoWag. This
new class is exactly like a Dog except it doesn’t know how to wag its tail. A solution could be to
have DogNoWag inherit from Dog and override the wag_tail method with an empty method (NOP).

wag_tail() {...}

Dlole|Nle\WElel wag_tail() { /- empty */}

This design does not capture a logical relationship

It implies the following statements:
All dogs know how to wag their tails
DogNoWag is a special type of dog

DogNoWag does not know how to wag its tail

The rules of classic logic are not being obeyed

AlDogs BRakle

chase_cats() {...}

DogNoWag

Dogs and their tails...

wag_tail() {...}

Other heuristics

When building an inheritance hierarchy, try to construct reusable
frameworks rather than reusable components

Users of a class must be dependent on its public interface, but a
class should not be dependent on its users

Minimize the number of message sends between a class and its
collaborator

A class must know what it contains, but it should not know who
contains it

All base classes should be abstract classes

All base classes should be abstract classes

Not everybody will agree with this one (including me),
but this heuristic deserves some attention

What you should know!

What is the difference between encapsulation and information
hiding?

What is the difference between an object and a class
Why is it important to have hidden data?

Why visualization is useful to understand large code?
What is a god class?

What is model-view-controller?

Why a leaf class cannot be abstract?

Can you answer these questions”?

Why information hiding and encapsulation favor
maintainability?

Why god classes are dangerous for an application
health?

Why MVC requires implementing the observer/
observable design pattern?

What are the criteria to assess the quality of a class
hierarchy?

License

http://creativecommons.org/licenses/by-sa/2.5

@creative
commons

COMMONS DEED

Attribution-ShareAlike 2.5
You are free:
+ to copy, distribute, display, and perform the work
» to make derivative works
+ to make commercial use of the work

Under the following conditions:

@ Attribution. You must attribute the work in the manner specified by the author or licensor.

@ Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

» For any reuse or distribution, you must make clear to others the license terms of this work.
+ Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

