Minimal surfaces and entire solutions of the Allen-Cahn equation

Manuel del Pino

DIM and CMM Universidad de Chile

U. de Chile MA 725 Noviembre 2010

The Allen-Cahn Equation

(AC)
$$\Delta u + u - u^3 = 0$$
 in \mathbb{R}^n

Euler-Lagrange equation for the energy functional

$$J(u) = \frac{1}{2} \int |\nabla u|^2 + \frac{1}{4} \int (1 - u^2)^2$$

u = +1 and u = -1 are global minimizers of the energy representing, in the gradient theory of phase transitions, two distinct phases of a material.

Of interest are solutions of (AC) that connect these two values. They represent states in which the two phases coexist.

The case N = 1. The function

$$w(t) := anh\left(rac{t}{\sqrt{2}}
ight)$$

connects monotonically -1 and +1 and solves

$$w'' + w - w^3 = 0, \quad w(\pm \infty) = \pm 1, \quad w' > 0.$$

For any $p, \nu \in \mathbb{R}^N$, $|\nu| = 1$, the functions

$$u(x) := w(z), \quad z = (x - p) \cdot v$$

solve equation (AC). z = normal coordinate to the hyperplane through p, unit normal ν .

De Giorgi's conjecture (1978): Let *u* be a bounded solution of equation

(AC) $\Delta u + u - u^3 = 0 \quad in \ \mathbb{R}^N,$

which is monotone in one direction, say $\partial_{x_N} u > 0$. Then, at least when $N \leq 8$, there exist p, ν such that

 $u(x) = w((x-p) \cdot \nu).$

This statement is equivalent to:

At least when $N \leq 8$, all level sets of u, $[u = \lambda]$ must be hyperplanes.

Parallel to **Bernstein's conjecture** for minimal surfaces which are entire graphs.

Entire minimal graph in \mathbb{R}^N :

$$\Gamma = \{ (x', F(x')) \in \mathbb{R}^{N-1} \times \mathbb{R} \ / \ x' \in \mathbb{R}^{N-1} \}$$

where F solves the minimal surface equation

$$H_{\Gamma} := \nabla \cdot \left(\frac{\nabla F}{\sqrt{1 + |\nabla F|^2}} \right) = 0 \quad \text{in } \mathbb{R}^{N-1}.$$
 (MS)

・ロト ・回ト ・ヨト

æ

- ∢ ≣ ▶

Bernstein's conjecture: All entire minimal graphs are hyperplanes, namely any entire solution of (MS) must be a linear affine function:

True for $N \leq 8$:

- Bernstein (1910), Fleming (1962) N = 3
- De Giorgi (1965) *N* = 4
- Almgren (1966), *N* = 5
- Simons (1968), N = 6, 7, 8.

False for $N \ge 9$: Bombieri-De Giorgi-Giusti found a counterexample (1969).

De Giorgi's Conjecture: *u* bounded solution of (AC), $\partial_{x_N} u > 0$ then level sets $[u = \lambda]$ are hyperplanes.

- True for N = 2. Ghoussoub and Gui (1998).
- True for N = 3. Ambrosio and Cabré (1999).
- True for $4 \le N \le 8$ (Savin (2009), thesis (2003)) if in addition

 $\lim_{x_N\to\pm\infty} u(x',x_N)=\pm 1 \quad \text{for all} \quad x'\in \mathbb{R}^{N-1}.$

The Bombieri-De Giorgi-Giusti minimal graph:

Explicit construction by super and sub-solutions. N = 9:

$$H(F) := \nabla \cdot \left(\frac{\nabla F}{\sqrt{1 + |\nabla F|^2}} \right) = 0$$
 in \mathbb{R}^8 .

 $F: \mathbb{R}^4 \times \mathbb{R}^4 \to \mathbb{R}, \quad (\mathbf{u}, \mathbf{v}) \mapsto F(|\mathbf{u}|, |\mathbf{v}|).$

In addition, $F(|\mathbf{u}|, |\mathbf{v}|) > 0$ for $|\mathbf{v}| > |\mathbf{u}|$ and

 $F(|\mathbf{u}|,|\mathbf{v}|) = -F(|\mathbf{v}|,|\mathbf{u}|).$

(ロ・・副・・ 画・・ 画・ うえの

Polar coordinates:

$$|\mathbf{u}| = r \cos \theta, \ |\mathbf{v}| = r \sin \theta, \quad \theta \in (0, \frac{\pi}{2})$$

Mean curvature operator at $F = F(r, \theta)$

$$H[F] = \frac{1}{r^7 \sin^3 2\theta} \partial_r \left(\frac{F_r r^7 \sin^3 2\theta}{\sqrt{1 + F_r^2 + r^{-2} F_\theta^2}} \right)$$
$$+ \frac{1}{r^7 \sin^3 2\theta} \partial_\theta \left(\frac{F_\theta r^5 \sin^3 2\theta}{\sqrt{1 + F_r^2 + r^{-2} F_\theta^2}} \right)$$

Separation of variables $F_0(r, \theta) = r^3 g(\theta)$.

$$H[F_0] = \frac{1}{r^7 \sin^3 2\theta} \partial_r \left(\frac{3r^7 g \sin^3 2\theta}{\sqrt{r^{-4} + 9g^2 + {g'}^2}} \right)$$
$$+ \frac{1}{r \sin^3 2\theta} \partial_\theta \left(\frac{g' \sin^3 2\theta}{\sqrt{r^{-4} + 9g^2 + {g'}^2}} \right)$$

As $r \to \infty$ the equation $H(F_0) = 0$ becomes the ODE

$$\frac{21g\,\sin^3 2\theta}{\sqrt{9g^2 + {g'}^2}} + \left(\frac{g'\sin^3 2\theta}{\sqrt{9g^2 + {g'}^2}}\right)' = 0 \quad \text{in} \quad \left(\frac{\pi}{4}, \frac{\pi}{2}\right),$$
$$g\left(\frac{\pi}{4}\right) = 0 = g'\left(\frac{\pi}{2}\right).$$

This problem has a solution g positive in $(\frac{\pi}{4}, \frac{\pi}{2})$.

We check directly that

• $F_0(r, \theta) = r^3 g(\theta)$ is a subsolution of the minimal surface equation H(F) = 0: $H(F_0) \ge 0$

• $F_0(r, \theta)$ accurate approximation to a solution of the minimal surface equation:

$$H(F_0)=O(r^{-5})$$
 as $r o +\infty.$

個 と く ヨ と く ヨ と

The supersolution of Bombieri, De Giorgi and Giusti can be refined to yield that F_0 gives the precise asymptotic behavior of F.

Refinement of asymptotic behavior of BDG surface $x_9 = F(r, \theta)$, (D., Kowalczyk, Wei (2008)):

For $\theta \in (\frac{\pi}{4}, \frac{\pi}{2})$ we have, for $0 < \sigma < 1$ and all large r,

 $F_0(r,\theta) \leq F(r,\theta) \leq F_0(r,\theta) + Ar^{-\sigma}$ as $r \to +\infty$.

The BDG surface:

◆臣▶ 臣 のへで

Let $\nu_{\varepsilon}(y) := \nu(\varepsilon y)$, $y \in \Gamma_{\varepsilon} = \varepsilon^{-1}\Gamma$ be unit normal with $\nu_9 > 0$. Local coordinates in in a tubular neighborhood of Γ_{ε} :

$$x=y+\zeta
u_arepsilon(y), \quad y\in {\sf \Gamma}_arepsilon, \quad |\zeta|<rac{\delta}{arepsilon}$$

Theorem (D., Kowalczyk, Wei (2008))

Let Γ be a BDG minimal graph in \mathbb{R}^9 and $\Gamma_{\varepsilon} := \varepsilon^{-1}\Gamma$. Then for all small $\varepsilon > 0$, there exists a bounded solution u_{ε} of (AC), monotone in the x_9 -direction, with

 $u_{\varepsilon}(x) = w(\zeta) + O(\varepsilon), \quad x = y + \zeta \nu(\varepsilon y), \quad y \in \Gamma_{\varepsilon}, \ |\zeta| < \frac{\delta}{\varepsilon},$

$$\lim_{x_9 \to \pm \infty} u(x', x_9) = \pm 1 \quad \text{for all} \quad x' \in \mathbb{R}^8.$$

 u_{ε} is a "counterexample" to De Giorgi's conjecture in dimension 9 (hence in any dimension higher).

Sketch of the proof

Let Γ be a fixed BDG graph and let ν designate a choice of its unit normal. Local coordinates near Γ :

$$x = y + z\nu(y), \quad y \in \Gamma, \ |z| < \delta$$

Laplacian in these coordinates:

$$\Delta_x = \partial_{zz} + \Delta_{\Gamma^z} - H_{\Gamma_z}(y) \partial_z$$

$$\Gamma^{z} := \{y + z\nu(y) / y \in \Gamma\}.$$

 Δ_{Γ^z} is the Laplace-Beltrami operator on Γ^z acting on functions of y, and $H_{\Gamma^z}(y)$ its mean curvature at the point $y + z\nu(y)$.

Let k_1, \ldots, k_N denote the principal curvatures of Γ . Then

$$H_{\Gamma^z} = \sum_{i=1}^8 \frac{k_i}{1-zk_i}$$

For later reference, we expand

$$H_{\Gamma^{z}}(y) = H_{\Gamma}(y) + z |A_{\Gamma}(y)|^{2} + z^{2} \sum_{i=1}^{N} k_{i}^{3} + \cdots$$

where

Letting $f(u) = u - u^3$ the equation

 $\Delta u + f(u) = 0$ in \mathbb{R}^9

becomes, for

 $u(y,\zeta) := u(x), \quad x = y + \zeta \nu(\varepsilon y), \quad y \in \Gamma_{\varepsilon}, \ |\zeta| < \delta/\varepsilon,$

 ν unit normal to Γ with $\nu_N > 0$,

 $S(u) := \Delta u + f(u) =$ $\Delta_{\Gamma_{\varepsilon}^{\zeta}} u - \varepsilon H_{\Gamma^{\varepsilon\zeta}}(\varepsilon y) \partial_{\zeta} u + \partial_{\zeta}^{2} u + f(u) = 0.$

(日) 《聞》 《聞》 《聞》 《聞》 二回

• We look for a solution of the form (near Γ_{ε})

 $u_{\varepsilon}(x) = w(\zeta - \varepsilon h(\varepsilon y)) + \phi, \quad x = y + \zeta \nu(\varepsilon y)$

for a function h defined on Γ , left as a parameter to be adjusted and ϕ small.

• Let $r(y', y_9) = |y'|$. We assume a priori on h that

 $\|(1+r^3)D_{\Gamma}^2h\|_{L^{\infty}(\Gamma)}+\|(1+r^2)D_{\Gamma}h\|_{L^{\infty}(\Gamma)}+\|(1+r)h\|_{L^{\infty}(\Gamma)} \leq M$

for some large, fixed number M.

Let us change variables to $t = \zeta - \varepsilon h(\varepsilon y)$, or

$$u(y,t) := u(x)$$
 $x = y + (t + \varepsilon h(\varepsilon y)) \nu(\varepsilon y)$

The equation becomes

$$\begin{split} S(u) &= \partial_{tt} u + \Delta_{\Gamma_{\varepsilon}^{\zeta}} u - \varepsilon H_{\Gamma^{\varepsilon\zeta}}(\varepsilon y) \,\partial_{t} u + \\ &+ \varepsilon^{4} |\nabla_{\Gamma^{\varepsilon\zeta}} h(\varepsilon y)|^{2} \partial_{tt} u - 2\varepsilon^{3} \,\langle \nabla_{\Gamma^{\varepsilon\zeta}} h(\varepsilon y), \partial_{t} \nabla_{\Gamma^{\varepsilon\zeta}} u \rangle \\ &- \varepsilon^{3} \Delta_{\Gamma^{\varepsilon\zeta}} h(\varepsilon y) \,\partial_{t} u + f(u) = 0, \quad \zeta = t + \varepsilon h(\varepsilon y). \end{split}$$

Look for solution u_{ε} of the form

$$u_{\varepsilon}(t,y) = w(t) + \phi(t,y)$$

for a small function ϕ .

$$u_{\varepsilon}(t,y) = w(t) + \phi(t,y)$$

The equation in terms of ϕ becomes

 $\partial_{tt}\phi + \Delta_{\Gamma_{\varepsilon}}\phi + B\phi + f'(w(t))\phi + N(\phi) + E = 0.$

where B is a small linear second order operator, and

 $E = S(w(t)), \quad N(\phi) = f(w + \phi) - f(w) - f'(w)\phi \approx f''(w)\phi^2.$

The error of approximation.

E := S(w(t)) =

 $\varepsilon^{4}|\nabla_{\Gamma^{\varepsilon\zeta}}h(\varepsilon y)|^{2}w''(t)-[\varepsilon^{3}\Delta_{\Gamma^{\varepsilon\zeta}}h(\varepsilon y)+\varepsilon H_{\Gamma^{\varepsilon\zeta}}(\varepsilon y)]w'(t),$

and

 $\varepsilon H_{\Gamma^{\varepsilon\zeta}}(\varepsilon y) = \varepsilon^2 (t + \varepsilon h(\varepsilon y)) |A_{\Gamma}(\varepsilon y)|^2 + \varepsilon^3 (t + \varepsilon h(\varepsilon y))^2 \sum_{i=1}^8 k_i^3(\varepsilon y) + \cdots$

A crucial fact: (L. Simon (1989)) $k_i = O(r^{-1})$ as $r \to +\infty$. In particular

 $|E(y,t)| \leq C\varepsilon^2 r(\varepsilon y)^{-2}.$

Equation

 $\partial_{tt}\phi + \Delta_{\Gamma_{\varepsilon}}\phi + B\phi + f'(w(t))\phi + N(\phi) + E = 0.$

makes sense only for $|t| < \delta \varepsilon^{-1}$.

A gluing procedure reduces the full problem to

 $|\partial_{tt}\phi + \Delta_{\Gamma_{\varepsilon}}\phi + B\phi + f'(w)\phi + N(\phi) + E = 0$ in $\mathbb{R} \times \Gamma_{\varepsilon}$,

where *E* and *B* are the same as before, but cut-off far away. *N* is modified by the addition of a small nonlocal operator of ϕ .

We find a small solution to this problem in two steps.

Infinite dimensional Lyapunov-Schmidt reduction:

Step 1: Given the parameter function h, find a solution $\phi = \Phi(h)$ to the problem

$$\partial_{tt}\phi + \Delta_{\Gamma_{\varepsilon}}\phi + B\phi + f'(w(t))\phi + N(\phi) + E = c(y)w'(t) \quad ext{in } \mathbb{R} imes \Gamma_{\varepsilon}, \ \int_{\mathbb{R}} \phi(t,y)w'(t) \, dt = 0 \quad ext{for all} \quad y \in \Gamma_{\varepsilon}.$$

Step 2: Find a function *h* such that for all $y \in \Gamma_{\varepsilon}$,

$$c(y) := \frac{1}{\int_{\mathbb{R}} w'^2 dt} \int_{\mathbb{R}} (E + B\Phi(h) + N(\Phi(h))) w' dt = 0.$$

白 と く ヨ と く ヨ と

æ

For **Step 1** we solve first the linear problem

 $\partial_{tt}\phi + \Delta_{\Gamma_{\varepsilon}}\phi + f'(w(t))\phi = g(t,y) - c(y)w'(t) \quad \text{in } \mathbb{R} \times \Gamma_{\varepsilon}$

$$\int_{\mathbb{R}} \phi(y,t)w'(t) dt = 0 \quad \text{in } \Gamma_{\varepsilon}, \ c(y) := \frac{\int_{\mathbb{R}} g(y,t)w'(t) dt}{\int_{\mathbb{R}} w'^2 dt}.$$

There is a unique bounded solution $\phi := A(g)$ if g is bounded. Moreover, for any $\nu \ge 0$ we have

 $\|(1+r(\varepsilon y)^{\nu})\phi\|_{\infty} \leq C \|(1+r(\varepsilon y))^{\nu}g\|_{\infty}.$

 $\Gamma_{\varepsilon} \approx \mathbb{R}^{N-1}$ around each of its points as $\varepsilon \to 0$, in uniform way. The problem is qualitatively similar to Γ_{ε} replaced with \mathbb{R}^{N-1} . Fact: The linear model problem

 $\partial_{tt}\phi + \Delta_y \phi + f'(w(t))\phi = g(t,y) - c(y)w'(t)$ in \mathbb{R}^N

$$\int_{\mathbb{R}} \phi(y,t)w'(t) dt = 0 \quad \text{in } \mathbb{R}^{N-1}, \quad c(y) := \frac{\int_{\mathbb{R}} g(y,t)w'(t) dt}{\int_{\mathbb{R}} {w'}^2 dt}$$

has a unique bounded solution ϕ if g is bounded, and

 $\|\phi\|_{\infty} \leq C \|g\|_{\infty}.$

Let us prove first the a priori estimate:

If the a priori estimate did not hold, there would exist

 $\|\phi_n\|_{\infty}=1, \quad \|g_n\|_{\infty}\to 0,$

$$\partial_{tt}\phi_n + \Delta_y\phi_n + f'(w(t))\phi_n = g_n(t,y), \quad \int_{\mathbb{R}} \phi_n(y,t)w'(t)\,dt = 0.$$

Using maximum principle and local elliptic estimates, we may assume that $\phi_n \rightarrow \phi \neq 0$ uniformly over compact sets where

$$\partial_{tt}\phi + \Delta_y \phi + f'(w(t))\phi = 0, \quad \int_{\mathbb{R}} \phi(y,t)w'(t) dt = 0.$$

Claim: $\phi = 0$, which is a contradiction

A key one-dimensional fact: The spectral gap estimate.

$$L_0(p) := p'' + f'(w(t))p$$

There is a $\gamma > 0$ such that if $p \in H^1(\mathbb{R})$ and $\int_{\mathbb{R}} p w' dt = 0$ then

$$-\int_{\mathbb{R}}L_0(p)\,p\,dt=\int_{\mathbb{R}}(|p'|^2-f'(w)p^2)\,dt\,\geq\,\gamma\int_{\mathbb{R}}p^2\,dt\,.$$

Using maximum principle we find $|\phi(y, t)| \leq Ce^{-|t|}$. Set $\varphi(y) = \int_{\mathbb{R}} \phi^2(y, t) dt$. Then

$$egin{aligned} &\Delta_y arphi(y) = 2 \int_{\mathbb{R}} \phi \Delta \phi(y,t) \, dt + 2 \int_{\mathbb{R}} |
abla_y \phi(y,t)|^2 \, dt \geq \ &-2 \int_{\mathbb{R}} \phi \partial_{tt} \phi + f'(w) \phi^2 \, dt \ = \ &2 \int_{\mathbb{R}} (|\phi_t|^2 - f'(w) \phi^2) \, dt \geq \gamma arphi(y). \ &-\Delta_y arphi(y) + \gamma arphi(y) \leq 0 \end{aligned}$$

and $\varphi \ge 0$ bounded, implies $\varphi \equiv 0$, hence $\phi = 0$, a contradiction. This proves the a priori estimate. **Existence:** take *g* compactly supported. Set *H* be the space of all $\phi \in H^1(\mathbb{R}^N)$ with

$$\int_{\mathbb{R}} \phi(y,t) w'(t) dt = 0$$
 for all $y \in \mathbb{R}^{N-1}$.

H is a closed subspace of $H^1(\mathbb{R}^N)$.

The problem: $\phi \in H$ and

$$\partial_{tt}\phi + \Delta_y \phi + f'(w(t))\phi = g(t,y) - w'(t) rac{\int_{\mathbb{R}} g(y,\tau) w'(\tau) d\tau}{\int_{\mathbb{R}} w'^2 d\tau},$$

can be written variationally as that of minimizing in H the energy

$$I(\phi) = \frac{1}{2} \int_{\mathbb{R}^{N}} |\nabla_{y}\phi|^{2} + |\phi_{t}|^{2} - f'(w)\phi^{2} + \int_{\mathbb{R}^{N}} g\phi$$

I is coercive in *H* thanks to the 1d spectral gap estimate. Existence in the general case follows by the L^{∞} -a priori estimate and approximations. We write the problem of **Step 1**,

$$\partial_{tt}\phi + \Delta_{\Gamma_{\varepsilon}}\phi + B\phi + f'(w(t))\phi + N(\phi) + E = c(y)w'(t) \quad \text{in } \mathbb{R} imes \Gamma_{\varepsilon}, \ \int_{\mathbb{R}} \phi(t,y)w'(t) \, dt = 0 \quad \text{for all} \quad y \in \Gamma_{\varepsilon},$$

in fixed point form

$$\phi = A(B\phi + N(\phi) + E).$$

Contraction mapping principle implies the existence of a unique solution $\phi := \Phi(h)$ with

 $\|(1+r^2(\varepsilon y))\phi\|_{\infty} = O(\varepsilon^2).$

同 と く ヨ と く ヨ と

Finally, we carry out **Step 2**. We need to find *h* such that

$$\int_{\mathbb{R}} [E + B\Phi(h) + N(\Phi(h))] (\varepsilon^{-1}y, t) w'(t) dt = 0 \, \forall y \in \Gamma.$$

Since

$$-E(\varepsilon^{-1}y,t) = \varepsilon^{2}tw'(t) |A_{\Gamma}(y)|^{2} + \varepsilon^{3}[\Delta_{\Gamma}h(y) + |A_{\Gamma}(y)|^{2}h(y)]w'(t)$$
$$+ \varepsilon^{3}t^{2}w'(t) \sum_{j=1}^{8}k_{j}(y)^{3} + \text{ smaller terms}$$

the problem becomes

$$\mathcal{J}_{\Gamma}(h) := \Delta_{\Gamma} h + |A_{\Gamma}|^2 h = c \sum_{i=1}^8 k_i^3 + \mathcal{N}(h) \quad \text{in } \Gamma,$$

▶ < 문 ▶ < 문 ▶</p>

æ

where $\mathcal{N}(h)$ is a small operator.

Fact: Let $0 < \sigma < 1$. Then if

 $\|(1+r^{4+\sigma})g\|_{L^{\infty}(\Gamma)} < +\infty$

there is a unique solution h = T(g) to the problem

$$\mathcal{J}_{\Gamma}[h] := \Delta_{\Gamma} h + |A_{\Gamma}(y)|^2 h = g(y) \quad in \ \Gamma.$$

with

 $\|(1+r)^{2+\sigma} h\|_{L^{\infty}(\Gamma)} \leq C \|(1+r)^{4+\sigma} g\|_{L^{\infty}(\Gamma)}.$

We want to solve

$$\mathcal{J}_{\Gamma}(h) := \Delta_{\Gamma} h + |A_{\Gamma}|^2 h = c \sum_{i=1}^{8} k_i^3 + \mathcal{N}(h) \text{ in } \Gamma,$$

using a fixed point formulation for the operator T above. In $\mathcal{N}(h)$ everything decays $O(r^{-4-\sigma})$, but we only have

$$\sum_{i=1}^{8} k_i^3 = O(r^{-3}).$$
Two more facts:

► There is a function *p* smooth, with

 $p(rac{\pi}{2}- heta)=-p(heta)$ for all $heta\in(0,rac{\pi}{4})$ such that

$$\sum_{i=1}^{8} k_i(y)^3 = \frac{p(\theta)}{r^3} + O(r^{-4-\sigma}).$$

▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

2

There exists a smooth function h₀(r, θ) such that h₀ = O(r⁻¹) and for some σ > 0,

$$\mathcal{J}_{\Gamma}[h_0] = rac{p(heta)}{r^3} + O(r^{-4-\sigma}) \quad ext{as } r o +\infty.$$

$$\mathcal{J}_{\Gamma}(h) := \Delta_{\Gamma} h + |A_{\Gamma}|^2 h = c \sum_{i=1}^{8} k_i^3 + O(r^{-4-\sigma})$$
 in Γ .

Our final problem then becomes $h = h_0 + h_1$ where

$$h_1 = T(O(r^{-4-\sigma}) + \mathcal{N}(h_0 + h_1))$$

which we can solve for $h_1 = O(r^{-2-\sigma})$, using contraction mapping principle, keeping track of Lipschitz dependence in h of the objects involved in in $\mathcal{N}(h)$.

The Jacobi operator

$$\mathcal{J}_{\Gamma}[h] = \Delta_{\Gamma} h + |A_{\Gamma}(y)|^2 h,$$

is the linearization of the mean curvature, when normal perturbations are considered. In the case of a minimal graph $x_9 = F(x')$, if we linearize along vertical perturbations we get

$$H'(F)[\phi] = \nabla \cdot \left(\frac{\nabla \phi}{\sqrt{1 + |\nabla F|^2}} - \frac{(\nabla F \cdot \nabla \phi)}{(1 + |\nabla F|^2)^{\frac{3}{2}}} \nabla F \right)$$

These two operators are linked through the relation

 $\mathcal{J}_{\Gamma}[h] = H'(F)[\phi], \quad \text{where} \quad \phi(x') = \sqrt{1 + |\nabla F(x')|^2 h(x', F(x'))}.$

The relation $\mathcal{J}_{\Gamma_0}[h] = H'(F_0)[\sqrt{1+|\nabla F_0|^2}h]$ also holds.

Next we discuss the proofs of the facts used above:

1. If $g = O(r^{-4-\sigma})$ there is a unique solution to $\mathcal{J}_{\Gamma}[h] = g$ with $\|(1+r)^{2+\sigma} h\|_{L^{\infty}(\Gamma)} \leq C \|(1+r)^{4+\sigma} g\|_{L^{\infty}(\Gamma)}.$

2. There is a function p smooth, with $p(\frac{\pi}{2} - \theta) = -p(\theta)$ for all $\theta \in (0, \frac{\pi}{4})$ such that

$$\sum_{i=1}^{8} k_i(y)^3 = \frac{p(\theta)}{r^3} + O(r^{-4-\sigma}).$$

3. There exists $h_0(r, \theta)$ such that $h_0 = O(r^{-1})$ and

$$\mathcal{J}_{\mathsf{\Gamma}}[h_0] = rac{p(heta)}{r^3} + O(r^{-4-\sigma}) \quad ext{as } r o +\infty.$$

The closeness between \mathcal{J}_{Γ_0} and \mathcal{J}_{Γ} .

Let $p \in \Gamma$ with $r(p) \gg 1$. There is a unique $\pi(p) \in \Gamma_0$ such that $\pi(p) = p + t_p \nu(p)$. Let us assume

 $\widetilde{h}(\pi(y))=h(y), \hspace{1em} ext{for all} \hspace{1em} y\in {\sf \Gamma}, \hspace{1em} r(y)>r_0.$

Then

 $\begin{aligned} \mathcal{J}_{\Gamma}[h](y) &= \\ [\mathcal{J}_{\Gamma_0}[h_0] + O(r^{-2-\sigma})D_{\Gamma_0}^2h_0 + O(r^{-3-\sigma})D_{\Gamma_0}h_0 + O(r^{-4-\sigma})h_0](\pi(y)) \,. \end{aligned}$ We keep in mind that $\mathcal{J}_{\Gamma_0}[h] &= H'(F_0)[\sqrt{1 + |\nabla F_0|^2}h]$ and make explicit computations. We compute explicitly

$$H'(F_0)[\phi] = \frac{1}{r^7 \sin^3(2\theta)} \Big\{ (9g^2 \,\tilde{w}r^3\phi_\theta)_\theta + (r^5 {g'}^2 \,\tilde{w}\phi_r)_r \\ -3(gg' \,\tilde{w}r^4\phi_r)_\theta - 3(gg' \,\tilde{w}r^4\phi_\theta)_r \Big\} \\ + \frac{1}{r^7 \sin^3(2\theta)} \Big\{ (r^{-1} \,\tilde{w}\phi_\theta)_\theta + (r\tilde{w}\phi_r)_r \Big\},$$

where

$$\tilde{w}(r,\theta):=\frac{\sin^3 2\theta}{(r^{-4}+9g^2+g'^2)^{\frac{3}{2}}}.$$

・ロト ・御 ト ・ 油 ト ・ 油 ト

æ

Further expand

$$L[\phi] := H'(F_0)[\phi] := L_0 + L_1,$$

with

$$\begin{split} L_{0}[\phi] &= \frac{1}{r^{7}\sin^{3}(2\theta)} \Big\{ (9g^{2}\,\tilde{w}_{0}r^{3}\phi_{\theta})_{\theta} + (r^{5}{g'}^{2}\,\tilde{w}_{0}\phi_{r})_{r} \\ &- 3(gg'\,\tilde{w}_{0}r^{4}\phi_{r})_{\theta} - 3(gg'\,\tilde{w}_{0}r^{4}\phi_{\theta})_{r} \Big\} \\ &+ \frac{1}{r^{7}\sin^{3}(2\theta)} \Big\{ (r^{-1}\,\tilde{w}_{0}\phi_{\theta})_{\theta} + (r\,\tilde{w}_{0}\phi_{r})_{r} \Big\}, \end{split}$$

where

$$ilde{w}_0(heta) := rac{\sin^3 2 heta}{(9g^2 + {g'}^2)^{rac{3}{2}}}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

An important fact: If $0 < \sigma < 1$ there is a positive supersolution $\bar{\phi} = O(r^{-\sigma})$ to

$$-L[ar{\phi}] \geq rac{1}{r^{4+\sigma}}$$
 in Γ

We have that

$$L_0[r^{-\sigma}q(\theta)] = \frac{1}{r^{4+\sigma}} \frac{9g^{\frac{4-\sigma}{3}}}{\sin^3 2\theta} \left[\frac{g^{\frac{2}{3}} \sin^3 2\theta}{(9g^2 + {g'}^2)^{\frac{3}{2}}} (g^{\frac{\sigma}{3}}q)' \right]' = \frac{1}{r^{4+\sigma}}.$$

if and only if $q(\theta)$ solves the ODE

$$\left[\frac{g^{\frac{2}{3}}\sin^{3}2\theta}{(9g^{2}+g'^{2})^{\frac{3}{2}}}(g^{\frac{\sigma}{3}}q)'\right]' = \frac{1}{9}\sin^{3}2\theta g(\theta)^{-\frac{4-\sigma}{3}}, \ .$$

(日) 《母》 《母》 《母》 《日

A solution in $(\frac{\pi}{4}, \frac{\pi}{2})$:

$$q(\theta) = \frac{1}{9}g^{-\frac{\sigma}{3}}(\theta) \int_{\frac{\pi}{4}}^{\theta} \frac{(9g^2 + {g'}^2)^{\frac{3}{2}}}{g^{\frac{2}{3}}\sin^3(2s)} \, ds \int_{s}^{\frac{\pi}{2}} g^{-\frac{4-\sigma}{3}}(\tau) \sin^3(2\tau) \, d\tau \, .$$

Since $g'(\frac{\pi}{4}) > 0$, q is defined up to $\frac{\pi}{4}$ and can be extended smoothly (evenly) to $(0, \frac{\pi}{4})$. Thus and $\bar{\phi} := q(\theta)r^{-\sigma}$ satisfies

$$-L_0(\bar{\phi})=r^{-4-\mu}\quad\text{in }\mathbb{R}^8.$$

We can show that also $-L(\bar{\phi}) \ge r^{-4-\sigma}$ for all large r. Thus

$$-\mathcal{J}_{\Gamma_0}[\bar{h}] \ge r^{-4-\sigma}, \quad \bar{h} = rac{\phi}{\sqrt{1+|\nabla F_0|^2}} \sim r^{-2-\sigma}$$

The closeness of \mathcal{J}_{Γ} and \mathcal{J}_{Γ_0} makes \bar{h} to induce a positive supersolution $\hat{h} \sim r^{-2-\sigma}$ to

$$-\mathcal{J}_{\Gamma}[\hat{h}] \geq r^{-4-\sigma}$$
 in Γ .

We conclude by a barrier argument that Fact 1 holds: if $\|(1+r^{4+\sigma})g\|_{L^{\infty}(\Gamma)} < +\infty$ there is a unique h with $\mathcal{J}_{\Gamma}[h] = g$ and $\|(1+r)^{2+\sigma}h\|_{L^{\infty}(\Gamma)} \leq C \|(1+r)^{4+\sigma}g\|_{L^{\infty}(\Gamma)}.$ Let $k_i^0(y)$ be the principal curvatures of Γ_0 . The following hold:

•
$$\sum_{i=1}^{8} k_i(y)^3 = \sum_{i=1}^{8} k_i^0(\pi(y))^3 + O(r^{-4-\sigma})$$

$$\sum_{i=1}^{8} k_i^0(y)^3 = \frac{p(\theta)}{r^3} + O(r^{-4-\sigma})$$

 $p \text{ smooth, } p(\frac{\pi}{2} - \theta) = -p(\theta) \text{ for all } \theta \in (0, \frac{\pi}{4}).$

We claim: there exists a smooth function $h_*(r, \theta)$ such that $h_* = O(r^{-1})$ and for some $\sigma > 0$,

$$\mathcal{J}_{\Gamma_0}[h_*] = rac{p(heta)}{r^3} + O(r^{-4-\sigma}) \quad ext{as } r o +\infty.$$

▲ロ ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ のへで

Setting $h_0(y) = h_*(\pi(y))$ we then get $h_0 = O(r^{-1})$ and

$$\mathcal{J}_{\Gamma}(h) := \Delta_{\Gamma} h + |A_{\Gamma}|^2 h = c \sum_{i=1}^{8} k_i^3 + O(r^{-4-\sigma}) \quad \text{in } \Gamma,$$

namely the validity of Fact 2.

Construction of h_* .

We argue as before (separation of variables) to find $q(\theta)$ solution of

$$L_0(r q(\theta)) = \frac{p(\theta)}{r^3}, \theta \in (\frac{\pi}{4}, \frac{\pi}{2}).$$
$$q(\theta) = -\frac{1}{9}g^{\frac{1}{3}}(\theta) \int_{\frac{\pi}{4}}^{\theta} (9g^2 + {g'}^2)^{\frac{3}{2}} \frac{g^{-\frac{2}{3}}ds}{\sin^3(2s)} \int_s^{\frac{\pi}{2}} p(\tau)g^{-\frac{5}{3}}(\tau)\sin^3(2\tau) d\tau.$$

Let $\eta(s) = 1$ for s < 1, = 0 for s > 2 be a smooth cut-off function. Then

$$\phi_0(r,\theta) := (1-\eta(s)) r q(\theta) \text{ in } (\frac{\pi}{4},\frac{\pi}{2}), \quad s = r^2 g(\theta).$$

satisfies

$$L(\phi_0) = rac{p(heta)}{r^3} + O(r^{-4-rac{1}{3}}).$$

Finally, the function

$$h_* = rac{\phi_0}{\sqrt{1 + |\nabla F_0|^2}} = O(r^{-1})$$

extended oddly through $\theta = \frac{\pi}{4}$ satisfies

$$J_{\Gamma_0}[h_*] = \frac{p(\theta)}{r^3} + O(r^{-4-\frac{1}{3}})$$

白 と く ヨ と く ヨ と …

æ

as desired.

Loosely speaking: The method described above applies to find an entire solution u_{ε} to $\Delta u + u - u^3 = 0$ with transition set near $\Gamma_{\varepsilon} = \varepsilon^{-1}\Gamma$ whenever Γ is a minimal hypersurface in \mathbb{R}^N , that splits the space into two components, and for which enough control at infinity is present to invert globally its Jacobi operator.

An important example for N = 3: finite Morse index solutions.

Theorem (D., Kowalczyk, Wei (2009))

Let Γ be a complete, embedded minimal surface in \mathbb{R}^3 with finite total curvature: $\int_{\Gamma} |K| < \infty, K$ Gauss curvature.

If Γ is non-degenerate, namely its bounded Jacobi fields originate only from rigid motions, then for small $\varepsilon > 0$ there is a solution u_{ε} to (AC) with

$$u_{\varepsilon}(x) \approx w(t), \quad x = y + t\nu_{\varepsilon}(y).$$

In addition $i(u_{\varepsilon}) = i(\Gamma)$ where i denotes Morse index.

Examples: nondegeneracy and Morse index are known for the catenoid and Costa-Hoffmann-Meeks surfaces (Nayatani (1990), Morabito, (2008)).

$$\Gamma = \text{a catenoid:} \quad \exists \ u_{\varepsilon}(x) = w(\zeta) + O(\varepsilon), \ x = y + t\nu_{\varepsilon}(y).$$

 u_{ε} axially symmetric: $u_{\varepsilon}(x) = u_{\varepsilon}(\sqrt{x_1^2 + x_2^2}, x_3)$, x_3 rotation axis coordinate. $i(u_{\varepsilon}) = 1$

 $\Gamma = CHM$ surface genus $\ell \ge 1$:

 $\exists \ u_{\varepsilon}(x) = w(\zeta) + O(\varepsilon), \ x = y + \zeta \nu_{\varepsilon}(y). \ i(u_{\varepsilon}) = 2\ell + 3.$

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

Nondegeneracy: The only nontrivial bounded solutions of

 $\mathcal{J}_{\Gamma}(\phi) = \Delta_{\Gamma}\phi - 2K\phi = 0$

arise from translations and rotation about the common symmetry axis (x₃) of the ends: $\nu_i(x)$ $i = 1, 2, 3, x_2\nu_1(x) - x_1\nu_2(x)$.

• $i(\Gamma)$, the Morse index of Γ , is the number of negative eigenvalues of J_{Γ} in $L^{\infty}(\Gamma)$. This number is finite $\iff \Gamma$ has finite total curvature.

• $i(\Gamma) = 0$ for the plane, = 1 for the catenoid and = $2\ell + 3$ for the CHM surface genus ℓ .

Morse index of a solution u of (AC), i(u): roughly, the number of negative eigenvalues of the linearized operator, namely those of the problem

$$\Delta \phi + (1 - 3u^2)\phi + \lambda \phi = 0 \quad \phi \in L^{\infty}(\mathbb{R}^N).$$

De Giorgi solution: "stable", i(u) = 0 since $\lambda = 0$ is an eigenvalue with eigenfunction $\partial_{x_N} u > 0$.

 $i(u) = 0 \implies$ DG statement for N = 2 (Dancer). Open if $N \ge 3$.

A recent result: i(u) = 0 **does not imply** DG statement for N = 8 (Example by Pacard and Wei).

Another application of the BDG minimal graph: Overdetermined semilinear equation Ω smooth domain, f Lipschitz

 $\Delta u + f(u) = 0, \ u > 0 \quad \text{in } \Omega, \ u \in L^{\infty}(\Omega)$ (S)

$$u = 0, \quad \partial_{\nu} u = constant \quad \text{on } \partial \Omega$$

Let us assume that (S) is solvable. What can we say about the geometry of Ω ?

Serrin (1971) proved that if Ω is **bounded** and there is a solution to (S) then Ω must be a ball.

We consider the case of an entire *epigraph*

$$\Omega = \{ (x', x_N) / x' \in \mathbb{R}^{N-1}, x_N > \varphi(x') \}, \quad \Gamma = \partial \Omega.$$

 $\Omega = \{ (x', x_N) \ / \ x' \in \mathbb{R}^{N-1}, \ x_N > \varphi(x') \}, \quad \Gamma = \partial \Omega.$

- Berestycki, Caffarelli and Nirenberg (1997) proved that if φ is Lispchitz and asymptotically flat then it must be linear and u depends on only one variable. They conjecture that this should be true for any arbitrary smooth function φ.
- ► Farina and Valdinoci (2009) lifted asymptotic flatness for N = 2,3 and for N = 4,5 and f(u) = u - u³.

Theorem (D., Pacard, Wei (2010))

In Dimension $N \ge 9$ there exists a solution to Problem (S) with $f(u) = u - u^3$, in an entire epigraph Ω which is not a half-space. The proof consists of finding the region Ω in the form

 $\partial \Omega = \{ y + \varepsilon h(\varepsilon y) \nu(\varepsilon y) / y \in \Gamma_{\varepsilon} \}.$

for h a small decaying function on Γ . Here Γ is a BDG graph. We set

 $u_0(x) = w(t), \quad x = y + (t + \varepsilon h(\varepsilon y))\nu(\varepsilon y) \quad \Omega = \{t > 0\}.$

At main order ϕ should satisfy

 $\partial_{tt}\phi + \Delta_{\Gamma_{\varepsilon}}\phi + f'(w(t))\phi = E$

$$\phi(0,y) = 0, \phi_t(0,y) = \approx \alpha \varepsilon = constant$$

 $E = \Delta u_0 + f(u_0) =$ $\varepsilon^4 |\nabla_{\Gamma^{\varepsilon\zeta}} h(\varepsilon y)|^2 w''(t) - [\varepsilon^3 \Delta_{\Gamma^{\varepsilon\zeta}} h(\varepsilon y) + \varepsilon H_{\Gamma^{\varepsilon\zeta}}(\varepsilon y)] w'(t),$

$$E = \varepsilon H_{\Gamma}(\varepsilon y) \, w'(t) + O(\varepsilon^2)$$

個人 くほん くほん しほ

The construction carries over for regions whose boundaries are more general surfaces.

Let us assume, more generally that Γ is a smooth surface such that

 $H_{\Gamma} \equiv H = constant$

Namely Γ is a constant mean curvature surface.

For $x = y + \varepsilon(t + \varepsilon h(\varepsilon y))$, we look now for a solution for t > 0 with

 $u(t, y) = w(t) + \phi(t, y), \quad \phi(0, y) = 0.$

Imposing $\alpha = (H/w'(0)) \int_0^\infty w'(t)^2 dt$. we can solve

 $\psi'' + f'(w(t))\psi = Hw'(t), \quad t > 0, \quad \psi(0) = 0, \psi'(0) = \alpha$

which is solvable for ψ bounded. Then the approximation $u_1(x) = w(t) + \varepsilon \psi(t)$ produces a new error of order ε^2 . And the equation for $\phi = \varepsilon \psi(t) + \phi_1$ now becomes

$$\partial_{tt}\phi_1 + \Delta_{\Gamma_{\varepsilon}}\phi_1 + f'(w(t))\phi_1 = E_1 = O(\varepsilon^2)$$

 $\phi_1(0, y) = 0, \phi_{1,t}(0, y) = 0$

(< E) < E) = E</p>

The construction follows a scheme similar to that for the entire solution, but it is more subtle in both theories needed in Steps 1 and 2.

- < ≣ →

æ

The case N = 2: Very few solutions known with $1 \le i(u) < +\infty$.

• Dang, Fife, Peletier (1992). The cross saddle solution: $u(x_1, x_2) > 0$ for $x_1, x_2 > 0$,

$$u(x_1, x_2) = -u(-x_1, x_2) = -u(x_1, -x_2).$$

Nodal set two lines (4 ends). Super-subsolutions in first quadrant.

• Alessio, Calamai, Montecchiari (2007). Extension: saddle solution with dihedral symmetry. Nodal set k lines (2k ends), $k \ge 2$. Presumably i(u) = k - 1.

The saddle solutions

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ のへで

A result: Existence of entire solutions with embedded level set and finite number of transition lines of $\Delta u + u - u^3 = 0$ in \mathbb{R}^2 :

Solutions with k "nearly parallel" transition lines are found for any $k\geq 1.$

Theorem (del Pino, Kowalczyk, Pacard, Wei (2007)) If f satisfies

$$\frac{\sqrt{2}}{24}f''(z) = e^{-2\sqrt{2}f(z)}, \quad f'(0) = 0,$$

and $f_{\varepsilon}(z) := \sqrt{2} \log \frac{1}{\varepsilon} + f(\varepsilon z)$, then there exists a solution u_{ε} to (AC) in \mathbb{R}^2 with

$$u_{\varepsilon}(x_1, x_2) = w(x_1 + f_{\varepsilon}(x_2)) + w(x_1 - f_{\varepsilon}(x_2)) - 1 + o(1)$$

as $\varepsilon \to 0^+$. Here $w(s) = \tanh(s/\sqrt{2})$. This solution has 2 transition lines.

f(z) = A|z| + B + o(1) as $z \to \pm \infty$.

(ロ・・部・・ボン・オート・モー シャク

More in general: the equilibrium of k far-apart, embedded transition lines is governed by the **Toda system**, a classical integrable model for scattering of particles on a line under the action of a repulsive exponential potential:

$$u_{\varepsilon}(x_1, x_2) = \sum_{j=1}^{k} (-1)^{j-1} w(x_1 - f_{\varepsilon,j}(x_2)) - \frac{1}{2} (1 + (-1)^k) + o(1)$$

The Toda system:

$$\frac{\sqrt{2}}{24}f_j'' = e^{-\sqrt{2}(f_j - f_{j-1})} - e^{-\sqrt{2}(f_{j+1} - f_j)}, \quad j = 1, \dots, k,$$

$$f_0 \equiv -\infty, \ f_{k+1} \equiv +\infty.$$

Given a solution f (with asymptotically linear components), if we scale

$$f_{arepsilon,j}(z) \, := \, \sqrt{2} \, (j - rac{k+1}{2}) \log rac{1}{arepsilon} + f_j(arepsilon z),$$

then there is a solution with k transitions:

$$u_{\varepsilon}(x_1, x_2) = \sum_{j=1}^{k} (-1)^{j-1} w(x_1 - f_{\varepsilon,j}(x_2)) - \frac{1}{2} (1 + (-1)^k) + o(1)$$

- Pacard and Ritoré (2002) found a solution with a transition layer across a nondegenerate minimal submanifold of codimension 1 in a compact manifold.
- Kowalczyk (2002) found such a solution associated to a nondegenerate segment of a planar domain, with Neumann boundary conditions. D., Kowalczyk, Wei (2005) found multiple interfaces in that setting, with equilibrium driven by the Toda system.
- ► We believe the nodal set of any finite Morse index solutions in ℝ² must be asymptotic to an even, finite number of rays.

We conjecture: The 4-end (two-line) solution is a limit case of a continuum of solutions with Morse index 1 that has the cross saddle as the other endpoint *All intermediate slopes missing*. This is also the case for k > 2.

2-line transition layer and 4 end saddle: Do they connect?

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

General 2k-end

Some evidence:

A result: (D., Kowalczyk, Pacard) given a nondegenerate 2k-end solution u, the class of all 2k-end solutions nearby constitutes a 2k-dimensional manifold.

This is the case for the solution with k nearly parallel transition lines and the cross saddle (Kowalczyk, Liu (2009)). For 2 transition lines we thus have one parameter (ε) besides translations and rotations.