Minimal surfaces and entire solutions of the Allen-Cahn equation

Manuel del Pino

DIM and CMM
Universidad de Chile

U. de Chile MA 725 Noviembre 2010

The Allen-Cahn Equation

(AC)

$$
\Delta u+u-u^{3}=0 \quad \text { in } \mathbb{R}^{n}
$$

Euler-Lagrange equation for the energy functional

$$
J(u)=\frac{1}{2} \int|\nabla u|^{2}+\frac{1}{4} \int\left(1-u^{2}\right)^{2}
$$

$u=+1$ and $u=-1$ are global minimizers of the energy representing, in the gradient theory of phase transitions, two distinct phases of a material.

Of interest are solutions of (AC) that connect these two values. They represent states in which the two phases coexist.

The case $N=1$. The function

$$
w(t):=\tanh \left(\frac{t}{\sqrt{2}}\right)
$$

connects monotonically -1 and +1 and solves

$$
w^{\prime \prime}+w-w^{3}=0, \quad w(\pm \infty)= \pm 1, \quad w^{\prime}>0
$$

For any $p, \nu \in \mathbb{R}^{N},|\nu|=1$, the functions

$$
u(x):=w(z), \quad z=(x-p) \cdot \nu
$$

solve equation (AC). $z=$ normal coordinate to the hyperplane through p, unit normal ν.

De Giorgi's conjecture (1978): Let u be a bounded solution of equation

$$
\begin{equation*}
\Delta u+u-u^{3}=0 \quad \text { in } \mathbb{R}^{N} \tag{AC}
\end{equation*}
$$

which is monotone in one direction, say $\partial_{x_{N}} u>0$. Then, at least when $N \leq 8$, there exist p, ν such that

$$
u(x)=w((x-p) \cdot \nu)
$$

This statement is equivalent to:
At least when $N \leq 8$, all level sets of $u,[u=\lambda]$ must be hyperplanes.

Parallel to Bernstein's conjecture for minimal surfaces which are entire graphs.

Entire minimal graph in \mathbb{R}^{N} :

$$
\Gamma=\left\{\left(x^{\prime}, F\left(x^{\prime}\right)\right) \in \mathbb{R}^{N-1} \times \mathbb{R} / x^{\prime} \in \mathbb{R}^{N-1}\right\}
$$

where F solves the minimal surface equation

$$
\begin{equation*}
H_{\Gamma}:=\nabla \cdot\left(\frac{\nabla F}{\sqrt{1+|\nabla F|^{2}}}\right)=0 \quad \text { in } \mathbb{R}^{N-1} . \tag{MS}
\end{equation*}
$$

Bernstein's conjecture: All entire minimal graphs are hyperplanes, namely any entire solution of (MS) must be a linear affine function:

True for $N \leq 8$:

- Bernstein (1910), Fleming (1962) $N=3$
- De Giorgi (1965) $N=4$
- Almgren (1966), $N=5$
- Simons (1968), $N=6,7,8$.

False for $N \geq 9$: Bombieri-De Giorgi-Giusti found a counterexample (1969).

De Giorgi's Conjecture: u bounded solution of (AC), $\partial_{x_{N}} u>0$ then level sets $[u=\lambda]$ are hyperplanes.

- True for $N=2$. Ghoussoub and Gui (1998).
- True for $N=3$. Ambrosio and Cabré (1999).
- True for $4 \leq N \leq 8$ (Savin (2009), thesis (2003)) if in addition

$$
\lim _{x_{N} \rightarrow \pm \infty} u\left(x^{\prime}, x_{N}\right)= \pm 1 \quad \text { for all } \quad x^{\prime} \in \mathbb{R}^{N-1}
$$

The Bombieri-De Giorgi-Giusti minimal graph:

Explicit construction by super and sub-solutions. $N=9$:

$$
H(F):=\nabla \cdot\left(\frac{\nabla F}{\sqrt{1+|\nabla F|^{2}}}\right)=0 \quad \text { in } \mathbb{R}^{8} \text {. }
$$

$$
F: \mathbb{R}^{4} \times \mathbb{R}^{4} \rightarrow \mathbb{R}, \quad(\mathbf{u}, \mathbf{v}) \mapsto F(|\mathbf{u}|,|\mathbf{v}|) .
$$

In addition, $F(|\mathbf{u}|,|\mathbf{v}|)>0$ for $|\mathbf{v}|>|\mathbf{u}|$ and

$$
F(|\mathbf{u}|,|\mathbf{v}|)=-F(|\mathbf{v}|,|\mathbf{u}|) .
$$

Polar coordinates:

$$
|\mathbf{u}|=r \cos \theta,|\mathbf{v}|=r \sin \theta, \quad \theta \in\left(0, \frac{\pi}{2}\right)
$$

Mean curvature operator at $F=F(r, \theta)$

$$
\begin{aligned}
H[F]= & \frac{1}{r^{7} \sin ^{3} 2 \theta} \partial_{r}\left(\frac{F_{r} r^{7} \sin ^{3} 2 \theta}{\sqrt{1+F_{r}^{2}+r^{-2} F_{\theta}^{2}}}\right) \\
& +\frac{1}{r^{7} \sin ^{3} 2 \theta} \partial_{\theta}\left(\frac{F_{\theta} r^{5} \sin ^{3} 2 \theta}{\sqrt{1+F_{r}^{2}+r^{-2} F_{\theta}^{2}}}\right) .
\end{aligned}
$$

Separation of variables $F_{0}(r, \theta)=r^{3} g(\theta)$.

$$
\begin{aligned}
H\left[F_{0}\right]= & \frac{1}{r^{7} \sin ^{3} 2 \theta} \partial_{r}\left(\frac{3 r^{7} g \sin ^{3} 2 \theta}{\sqrt{r^{-4}+9 g^{2}+g^{\prime 2}}}\right) \\
& +\frac{1}{r \sin ^{3} 2 \theta} \partial_{\theta}\left(\frac{g^{\prime} \sin ^{3} 2 \theta}{\sqrt{r^{-4}+9 g^{2}+g^{\prime 2}}}\right)
\end{aligned}
$$

As $r \rightarrow \infty$ the equation $H\left(F_{0}\right)=0$ becomes the ODE

$$
\begin{gathered}
\frac{21 g \sin ^{3} 2 \theta}{\sqrt{9 g^{2}+g^{\prime 2}}}+\left(\frac{g^{\prime} \sin ^{3} 2 \theta}{\sqrt{9 g^{2}+g^{\prime 2}}}\right)^{\prime}=0 \quad \text { in }\left(\frac{\pi}{4}, \frac{\pi}{2}\right), \\
g\left(\frac{\pi}{4}\right)=0=g^{\prime}\left(\frac{\pi}{2}\right)
\end{gathered}
$$

This problem has a solution g positive in $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$.

We check directly that

- $F_{0}(r, \theta)=r^{3} g(\theta)$ is a subsolution of the minimal surface equation $H(F)=0: H\left(F_{0}\right) \geq 0$
- $F_{0}(r, \theta)$ accurate approximation to a solution of the minimal surface equation:

$$
H\left(F_{0}\right)=O\left(r^{-5}\right) \quad \text { as } r \rightarrow+\infty
$$

The supersolution of Bombieri, De Giorgi and Giusti can be refined to yield that F_{0} gives the precise asymptotic behavior of F.

Refinement of asymptotic behavior of BDG surface $x_{9}=F(r, \theta)$, (D., Kowalczyk, Wei (2008)):

For $\theta \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ we have, for $0<\sigma<1$ and all large r,

$$
F_{0}(r, \theta) \leq F(r, \theta) \leq F_{0}(r, \theta)+A r^{-\sigma} \quad \text { as } r \rightarrow+\infty
$$

The BDG surface:

Let $\nu_{\varepsilon}(y):=\nu(\varepsilon y), \quad y \in \Gamma_{\varepsilon}=\varepsilon^{-1} \Gamma$ be unit normal with $\nu_{9}>0$. Local coordinates in in a tubular neighborhood of Γ_{ε} :

$$
x=y+\zeta \nu_{\varepsilon}(y), \quad y \in \Gamma_{\varepsilon}, \quad|\zeta|<\frac{\delta}{\varepsilon}
$$

Theorem (D., Kowalczyk, Wei (2008))
Let Γ be a BDG minimal graph in \mathbb{R}^{9} and $\Gamma_{\varepsilon}:=\varepsilon^{-1} \Gamma$. Then for all small $\varepsilon>0$, there exists a bounded solution u_{ε} of $(A C)$, monotone in the x_{9}-direction, with

$$
\begin{gathered}
u_{\varepsilon}(x)=w(\zeta)+O(\varepsilon), \quad x=y+\zeta \nu(\varepsilon y), \quad y \in \Gamma_{\varepsilon},|\zeta|<\frac{\delta}{\varepsilon} \\
\lim _{x_{9} \rightarrow \pm \infty} u\left(x^{\prime}, x_{9}\right)= \pm 1 \quad \text { for all } \quad x^{\prime} \in \mathbb{R}^{8}
\end{gathered}
$$

u_{ε} is a "counterexample" to De Giorgi's conjecture in dimension 9 (hence in any dimension higher).

Sketch of the proof

Let Γ be a fixed BDG graph and let ν designate a choice of its unit normal. Local coordinates near 「:

$$
x=y+z \nu(y), \quad y \in \Gamma,|z|<\delta
$$

Laplacian in these coordinates:

$$
\begin{gathered}
\Delta_{x}=\partial_{z z}+\Delta_{\Gamma^{z}}-H_{\Gamma_{z}}(y) \partial_{z} \\
\Gamma^{z}:=\{y+z \nu(y) / y \in \Gamma\} .
\end{gathered}
$$

$\Delta_{\Gamma z}$ is the Laplace-Beltrami operator on Γ^{z} acting on functions of y, and $H_{\Gamma z}(y)$ its mean curvature at the point $y+z \nu(y)$.

Let k_{1}, \ldots, k_{N} denote the principal curvatures of Γ ．Then

$$
H_{\Gamma z}=\sum_{i=1}^{8} \frac{k_{i}}{1-z k_{i}}
$$

For later reference，we expand

$$
H_{\Gamma z}(y)=H_{\Gamma}(y)+z\left|A_{\Gamma}(y)\right|^{2}+z^{2} \sum_{i=1}^{N} k_{i}^{3}+\cdots
$$

where

$$
\underbrace{H_{\Gamma}=\sum_{i=1}^{8} k_{i},}_{\text {mean curvature }} \quad \underbrace{\left|A_{\Gamma}\right|^{2}=\sum_{i=1}^{8} k_{i}^{2}}_{\text {norm second fundamental form }}
$$

Letting $f(u)=u-u^{3}$ the equation

$$
\Delta u+f(u)=0 \quad \text { in } \mathbb{R}^{9}
$$

becomes, for

$$
u(y, \zeta):=u(x), \quad x=y+\zeta \nu(\varepsilon y), \quad y \in \Gamma_{\varepsilon},|\zeta|<\delta / \varepsilon
$$

ν unit normal to Γ with $\nu_{N}>0$,

$$
\begin{gathered}
S(u):=\Delta u+f(u)= \\
\Delta_{\Gamma_{\varepsilon}^{\zeta}} u-\varepsilon H_{\Gamma \varepsilon \zeta}(\varepsilon y) \partial_{\zeta} u+\partial_{\zeta}^{2} u+f(u)=0 .
\end{gathered}
$$

- We look for a solution of the form (near Γ_{ε})

$$
u_{\varepsilon}(x)=w(\zeta-\varepsilon h(\varepsilon y))+\phi, \quad x=y+\zeta \nu(\varepsilon y)
$$

for a function h defined on Γ, left as a parameter to be adjusted and ϕ small.

- Let $r\left(y^{\prime}, y_{9}\right)=\left|y^{\prime}\right|$. We assume a priori on h that

$$
\left\|\left(1+r^{3}\right) D_{\Gamma}^{2} h\right\|_{L^{\infty}(\Gamma)}+\left\|\left(1+r^{2}\right) D_{\Gamma} h\right\|_{L^{\infty}(\Gamma)}+\|(1+r) h\|_{L^{\infty}(\Gamma)} \leq M
$$

for some large, fixed number M.

Let us change variables to $t=\zeta-\varepsilon h(\varepsilon y)$, or

$$
u(y, t):=u(x) \quad x=y+(t+\varepsilon h(\varepsilon y)) \nu(\varepsilon y)
$$

The equation becomes

$$
\begin{gathered}
S(u)=\partial_{t t} u+\Delta_{\Gamma_{\varepsilon}^{\zeta}} u-\varepsilon H_{\Gamma \varepsilon \zeta}(\varepsilon y) \partial_{t} u+ \\
+\varepsilon^{4}\left|\nabla_{\Gamma \varepsilon \zeta} h(\varepsilon y)\right|^{2} \partial_{t t} u-2 \varepsilon^{3}\left\langle\nabla_{\Gamma \varepsilon \zeta} h(\varepsilon y), \partial_{t} \nabla_{\Gamma \varepsilon \zeta} u\right\rangle \\
-\varepsilon^{3} \Delta_{\Gamma \varepsilon \zeta} h(\varepsilon y) \partial_{t} u+f(u)=0, \quad \zeta=t+\varepsilon h(\varepsilon y)
\end{gathered}
$$

Look for solution u_{ε} of the form

$$
u_{\varepsilon}(t, y)=w(t)+\phi(t, y)
$$

for a small function ϕ.

$$
u_{\varepsilon}(t, y)=w(t)+\phi(t, y)
$$

The equation in terms of ϕ becomes

$$
\partial_{t t} \phi+\Delta_{\Gamma_{\varepsilon}} \phi+B \phi+f^{\prime}(w(t)) \phi+N(\phi)+E=0 .
$$

where B is a small linear second order operator, and

$$
E=S(w(t)), \quad N(\phi)=f(w+\phi)-f(w)-f^{\prime}(w) \phi \approx f^{\prime \prime}(w) \phi^{2} .
$$

The error of approximation.

$$
E:=S(w(t))=
$$

$$
\varepsilon^{4}\left|\nabla_{\Gamma \varepsilon \zeta} h(\varepsilon y)\right|^{2} w^{\prime \prime}(t)-\left[\varepsilon^{3} \Delta_{\Gamma \varepsilon \zeta} h(\varepsilon y)+\varepsilon H_{\Gamma \varepsilon \zeta}(\varepsilon y)\right] w^{\prime}(t)
$$

and
$\varepsilon H_{\Gamma \varepsilon \zeta}(\varepsilon y)=\varepsilon^{2}(t+\varepsilon h(\varepsilon y))\left|A_{\Gamma}(\varepsilon y)\right|^{2}+\varepsilon^{3}(t+\varepsilon h(\varepsilon y))^{2} \sum_{i=1}^{8} k_{i}^{3}(\varepsilon y)+\cdots$

A crucial fact: (L. Simon (1989)) $k_{i}=O\left(r^{-1}\right)$ as $r \rightarrow+\infty$. In particular

$$
|E(y, t)| \leq C \varepsilon^{2} r(\varepsilon y)^{-2}
$$

Equation

$$
\partial_{t t} \phi+\Delta_{\Gamma_{\varepsilon}} \phi+B \phi+f^{\prime}(w(t)) \phi+N(\phi)+E=0 .
$$

makes sense only for $|t|<\delta \varepsilon^{-1}$.
A gluing procedure reduces the full problem to

$$
\partial_{t t} \phi+\Delta_{\Gamma_{\varepsilon}} \phi+B \phi+f^{\prime}(w) \phi+N(\phi)+E=0 \quad \text { in } \mathbb{R} \times \Gamma_{\varepsilon}
$$

where E and B are the same as before, but cut-off far away. N is modified by the addition of a small nonlocal operator of ϕ.

We find a small solution to this problem in two steps.

Infinite dimensional Lyapunov-Schmidt reduction:
Step 1: Given the parameter function h, find a a solution $\phi=\Phi(h)$ to the problem

$$
\begin{array}{r}
\partial_{t t} \phi+\Delta_{\Gamma_{\varepsilon}} \phi+B \phi+f^{\prime}(w(t)) \phi+N(\phi)+E= \\
c(y) w^{\prime}(t) \quad \text { in } \mathbb{R} \times \Gamma_{\varepsilon} \\
\int_{\mathbb{R}} \phi(t, y) w^{\prime}(t) d t=0 \quad \text { for all } y \in \Gamma_{\varepsilon}
\end{array}
$$

Step 2: Find a function h such that for all $y \in \Gamma_{\varepsilon}$,

$$
c(y):=\frac{1}{\int_{\mathbb{R}} w^{\prime 2} d t} \int_{\mathbb{R}}(E+B \Phi(h)+N(\Phi(h))) w^{\prime} d t=0
$$

For Step 1 we solve first the linear problem

$$
\begin{gathered}
\partial_{t t} \phi+\Delta_{\Gamma_{\varepsilon}} \phi+f^{\prime}(w(t)) \phi=g(t, y)-c(y) w^{\prime}(t) \text { in } \mathbb{R} \times \Gamma_{\varepsilon} \\
\int_{\mathbb{R}} \phi(y, t) w^{\prime}(t) d t=0 \quad \text { in } \Gamma_{\varepsilon}, c(y):=\frac{\int_{\mathbb{R}} g(y, t) w^{\prime}(t) d t}{\int_{\mathbb{R}} w^{\prime 2} d t} .
\end{gathered}
$$

There is a unique bounded solution $\phi:=A(g)$ if g is bounded.
Moreover, for any $\nu \geq 0$ we have

$$
\left\|\left(1+r(\varepsilon y)^{\nu}\right) \phi\right\|_{\infty} \leq C\left\|(1+r(\varepsilon y))^{\nu} g\right\|_{\infty}
$$

$\Gamma_{\varepsilon} \approx \mathbb{R}^{N-1}$ around each of its points as $\varepsilon \rightarrow 0$, in uniform way. The problem is qualitatively similar to Γ_{ε} replaced with \mathbb{R}^{N-1}.

Fact: The linear model problem

$$
\begin{gathered}
\partial_{t t} \phi+\Delta_{y} \phi+f^{\prime}(w(t)) \phi=g(t, y)-c(y) w^{\prime}(t) \quad \text { in } \mathbb{R}^{N} \\
\int_{\mathbb{R}} \phi(y, t) w^{\prime}(t) d t=0 \quad \text { in } \mathbb{R}^{N-1}, \quad c(y):=\frac{\int_{\mathbb{R}} g(y, t) w^{\prime}(t) d t}{\int_{\mathbb{R}} w^{\prime 2} d t}
\end{gathered}
$$

has a unique bounded solution ϕ if g is bounded, and

$$
\|\phi\|_{\infty} \leq C\|g\|_{\infty} .
$$

Let us prove first the a priori estimate:

If the a priori estimate did not hold, there would exist

$$
\begin{gathered}
\left\|\phi_{n}\right\|_{\infty}=1, \quad\left\|g_{n}\right\|_{\infty} \rightarrow 0 \\
\partial_{t t} \phi_{n}+\Delta_{y} \phi_{n}+f^{\prime}(w(t)) \phi_{n}=g_{n}(t, y), \quad \int_{\mathbb{R}} \phi_{n}(y, t) w^{\prime}(t) d t=0
\end{gathered}
$$

Using maximum principle and local elliptic estimates, we may assume that $\phi_{n} \rightarrow \phi \neq 0$ uniformly over compact sets where

$$
\partial_{t t} \phi+\Delta_{y} \phi+f^{\prime}(w(t)) \phi=0, \quad \int_{\mathbb{R}} \phi(y, t) w^{\prime}(t) d t=0 .
$$

Claim: $\phi=0$, which is a contradiction

A key one-dimensional fact: The spectral gap estimate.

$$
L_{0}(p):=p^{\prime \prime}+f^{\prime}(w(t)) p
$$

There is a $\gamma>0$ such that if $p \in H^{1}(\mathbb{R})$ and $\int_{\mathbb{R}} p w^{\prime} d t=0$ then

$$
-\int_{\mathbb{R}} L_{0}(p) p d t=\int_{\mathbb{R}}\left(\left|p^{\prime}\right|^{2}-f^{\prime}(w) p^{2}\right) d t \geq \gamma \int_{\mathbb{R}} p^{2} d t
$$

Using maximum principle we find $|\phi(y, t)| \leq C e^{-|t|}$. Set $\varphi(y)=\int_{\mathbb{R}} \phi^{2}(y, t) d t$. Then

$$
\begin{gathered}
\Delta_{y} \varphi(y)=2 \int_{\mathbb{R}} \phi \Delta \phi(y, t) d t+2 \int_{\mathbb{R}}\left|\nabla_{y} \phi(y, t)\right|^{2} d t \geq \\
-2 \int_{\mathbb{R}} \phi \partial_{t t} \phi+f^{\prime}(w) \phi^{2} d t= \\
2 \int_{\mathbb{R}}\left(\left|\phi_{t}\right|^{2}-f^{\prime}(w) \phi^{2}\right) d t \geq \gamma \varphi(y) \\
\quad-\Delta_{y} \varphi(y)+\gamma \varphi(y) \leq 0
\end{gathered}
$$

and $\varphi \geq 0$ bounded, implies $\varphi \equiv 0$, hence $\phi=0$, a contradiction.
This proves the a priori estimate.

Existence: take g compactly supported. Set H be the space of all $\phi \in H^{1}\left(\mathbb{R}^{N}\right)$ with

$$
\int_{\mathbb{R}} \phi(y, t) w^{\prime}(t) d t=0 \quad \text { for all } \quad y \in \mathbb{R}^{N-1}
$$

H is a closed subspace of $H^{1}\left(\mathbb{R}^{N}\right)$.

The problem: $\quad \phi \in H$ and

$$
\partial_{t t} \phi+\Delta_{y} \phi+f^{\prime}(w(t)) \phi=g(t, y)-w^{\prime}(t) \frac{\int_{\mathbb{R}} g(y, \tau) w^{\prime}(\tau) d \tau}{\int_{\mathbb{R}} w^{\prime 2} d \tau}
$$

can be written variationally as that of minimizing in H the energy

$$
I(\phi)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left|\nabla_{y} \phi\right|^{2}+\left|\phi_{t}\right|^{2}-f^{\prime}(w) \phi^{2}+\int_{\mathbb{R}^{N}} g \phi
$$

I is coercive in H thanks to the 1d spectral gap estimate.
Existence in the general case follows by the L^{∞}-a priori estimate and approximations.

We write the problem of Step 1,

$$
\begin{array}{r}
\partial_{t t} \phi+\Delta_{\Gamma_{\varepsilon}} \phi+B \phi+f^{\prime}(w(t)) \phi+N(\phi)+E= \\
c(y) w^{\prime}(t) \text { in } \mathbb{R} \times \Gamma_{\varepsilon}, \\
\int_{\mathbb{R}} \phi(t, y) w^{\prime}(t) d t=0 \quad \text { for all } \quad y \in \Gamma_{\varepsilon},
\end{array}
$$

in fixed point form

$$
\phi=A(B \phi+N(\phi)+E) .
$$

Contraction mapping principle implies the existence of a unique solution $\phi:=\Phi(h)$ with

$$
\left\|\left(1+r^{2}(\varepsilon y)\right) \phi\right\|_{\infty}=O\left(\varepsilon^{2}\right)
$$

Finally, we carry out Step 2. We need to find h such that

$$
\int_{\mathbb{R}}[E+B \Phi(h)+N(\Phi(h))]\left(\varepsilon^{-1} y, t\right) w^{\prime}(t) d t=0 \forall y \in \Gamma .
$$

Since

$$
\begin{aligned}
-E\left(\varepsilon^{-1} y, t\right) & =\varepsilon^{2} t w^{\prime}(t)\left|A_{\Gamma}(y)\right|^{2}+\varepsilon^{3}\left[\Delta_{\Gamma} h(y)+\left|A_{\Gamma}(y)\right|^{2} h(y)\right] w^{\prime}(t) \\
& +\varepsilon^{3} t^{2} w^{\prime}(t) \sum_{j=1}^{8} k_{j}(y)^{3}+\text { smaller terms }
\end{aligned}
$$

the problem becomes

$$
\mathcal{J}_{\Gamma}(h):=\Delta_{\Gamma} h+\left|A_{\Gamma}\right|^{2} h=c \sum_{i=1}^{8} k_{i}^{3}+\mathcal{N}(h) \quad \text { in } \Gamma
$$

where $\mathcal{N}(h)$ is a small operator.

Fact: Let $0<\sigma<1$. Then if

$$
\left\|\left(1+r^{4+\sigma}\right) g\right\|_{L^{\infty}(\Gamma)}<+\infty
$$

there is a unique solution $h=T(\mathrm{~g})$ to the problem

$$
\mathcal{J}_{\Gamma}[h]:=\Delta_{\Gamma} h+\left|A_{\Gamma}(y)\right|^{2} h=\mathrm{g}(y) \quad \text { in } \Gamma .
$$

with

$$
\left\|(1+r)^{2+\sigma} h\right\|_{L^{\infty}(\Gamma)} \leq C\left\|(1+r)^{4+\sigma} \mathrm{g}\right\|_{L^{\infty}(\Gamma)} .
$$

We want to solve

$$
\mathcal{J}_{\Gamma}(h):=\Delta_{\Gamma} h+\left|A_{\Gamma}\right|^{2} h=c \sum_{i=1}^{8} k_{i}^{3}+\mathcal{N}(h) \quad \text { in } \Gamma
$$

using a fixed point formulation for the operator T above.
In $\mathcal{N}(h)$ everything decays $O\left(r^{-4-\sigma}\right)$, but we only have

$$
\sum_{i=1}^{8} k_{i}^{3}=O\left(r^{-3}\right)
$$

Two more facts:

- There is a function p smooth, with

$$
p\left(\frac{\pi}{2}-\theta\right)=-p(\theta) \text { for all } \theta \in\left(0, \frac{\pi}{4}\right) \text { such that }
$$

$$
\sum_{i=1}^{8} k_{i}(y)^{3}=\frac{p(\theta)}{r^{3}}+O\left(r^{-4-\sigma}\right)
$$

- There exists a smooth function $h_{0}(r, \theta)$ such that $h_{0}=O\left(r^{-1}\right)$ and for some $\sigma>0$,

$$
\mathcal{J}_{\Gamma}\left[h_{0}\right]=\frac{p(\theta)}{r^{3}}+O\left(r^{-4-\sigma}\right) \quad \text { as } r \rightarrow+\infty .
$$

$$
\mathcal{J}_{\Gamma}(h):=\Delta_{\Gamma} h+\left|A_{\Gamma}\right|^{2} h=c \sum_{i=1}^{8} k_{i}^{3}+O\left(r^{-4-\sigma}\right) \quad \text { in } \Gamma .
$$

Our final problem then becomes $h=h_{0}+h_{1}$ where

$$
h_{1}=T\left(O\left(r^{-4-\sigma}\right)+\mathcal{N}\left(h_{0}+h_{1}\right)\right)
$$

which we can solve for $h_{1}=O\left(r^{-2-\sigma}\right)$, using contraction mapping principle, keeping track of Lipschitz dependence in h of the objects involved in in $\mathcal{N}(h)$.

The Jacobi operator

$$
\mathcal{J}_{\Gamma}[h]=\Delta_{\Gamma} h+\left|A_{\Gamma}(y)\right|^{2} h,
$$

is the linearization of the mean curvature, when normal perturbations are considered. In the case of a minimal graph $x_{9}=F\left(x^{\prime}\right)$, if we linearize along vertical perturbations we get

$$
H^{\prime}(F)[\phi]=\nabla \cdot\left(\frac{\nabla \phi}{\sqrt{1+|\nabla F|^{2}}}-\frac{(\nabla F \cdot \nabla \phi)}{\left(1+|\nabla F|^{2}\right)^{\frac{3}{2}}} \nabla F\right) .
$$

These two operators are linked through the relation
$\mathcal{J}_{\Gamma}[h]=H^{\prime}(F)[\phi], \quad$ where $\quad \phi\left(x^{\prime}\right)=\sqrt{1+\left|\nabla F\left(x^{\prime}\right)\right|^{2}} h\left(x^{\prime}, F\left(x^{\prime}\right)\right)$.

The relation $\mathcal{J}_{\Gamma_{0}}[h]=H^{\prime}\left(F_{0}\right)\left[\sqrt{1+\left|\nabla F_{0}\right|^{2}} h\right]$ also holds.

Next we discuss the proofs of the facts used above:

1. If $g=O\left(r^{-4-\sigma}\right)$ there is a unique solution to $\mathcal{J}_{\Gamma}[h]=g$ with

$$
\left\|(1+r)^{2+\sigma} h\right\|_{L^{\infty}(\Gamma)} \leq C\left\|(1+r)^{4+\sigma} \mathrm{g}\right\|_{L^{\infty}(\Gamma)} .
$$

2. There is a function p smooth, with

$$
p\left(\frac{\pi}{2}-\theta\right)=-p(\theta) \quad \text { for all } \quad \theta \in\left(0, \frac{\pi}{4}\right) \text { such that }
$$

$$
\sum_{i=1}^{8} k_{i}(y)^{3}=\frac{p(\theta)}{r^{3}}+O\left(r^{-4-\sigma}\right)
$$

3. There exists $h_{0}(r, \theta)$ such that $h_{0}=O\left(r^{-1}\right)$ and

$$
\mathcal{J}_{\Gamma}\left[h_{0}\right]=\frac{p(\theta)}{r^{3}}+O\left(r^{-4-\sigma}\right) \quad \text { as } r \rightarrow+\infty .
$$

The closeness between $\mathcal{J}_{\Gamma_{0}}$ and \mathcal{J}_{Γ}.
Let $p \in \Gamma$ with $r(p) \gg 1$. There is a unique $\pi(p) \in \Gamma_{0}$ such that $\pi(p)=p+t_{p} \nu(p)$.
Let us assume

$$
\tilde{h}(\pi(y))=h(y), \quad \text { for all } \quad y \in \Gamma, \quad r(y)>r_{0}
$$

Then

$$
\mathcal{J}_{\Gamma}[h](y)=
$$

$\left[\mathcal{J}_{\Gamma_{0}}\left[h_{0}\right]+O\left(r^{-2-\sigma}\right) D_{\Gamma_{0}}^{2} h_{0}+O\left(r^{-3-\sigma}\right) D_{\Gamma_{0}} h_{0}+O\left(r^{-4-\sigma}\right) h_{0}\right](\pi(y))$.
We keep in mind that $\mathcal{J}_{\Gamma_{0}}[h]=H^{\prime}\left(F_{0}\right)\left[\sqrt{1+\left|\nabla F_{0}\right|^{2}} h\right]$ and make explicit computations.

We compute explicitly

$$
\begin{aligned}
& H^{\prime}\left(F_{0}\right)[\phi]= \frac{1}{r^{7} \sin ^{3}(2 \theta)}\left\{\left(9 g^{2} \tilde{w} r^{3} \phi_{\theta}\right)_{\theta}+\left(r^{5} g^{\prime 2} \tilde{w} \phi_{r}\right)_{r}\right. \\
&\left.-3\left(g g^{\prime} \tilde{w} r^{4} \phi_{r}\right)_{\theta}-3\left(g g^{\prime} \tilde{w} r^{4} \phi_{\theta}\right)_{r}\right\} \\
&+ \frac{1}{r^{7} \sin ^{3}(2 \theta)}\left\{\left(r^{-1} \tilde{w} \phi_{\theta}\right)_{\theta}+\left(r \tilde{w} \phi_{r}\right)_{r}\right\},
\end{aligned}
$$

where

$$
\tilde{w}(r, \theta):=\frac{\sin ^{3} 2 \theta}{\left(r^{-4}+9 g^{2}+g^{\prime 2}\right)^{\frac{3}{2}}} .
$$

Further expand

$$
L[\phi]:=H^{\prime}\left(F_{0}\right)[\phi]:=L_{0}+L_{1},
$$

with

$$
\begin{aligned}
& L_{0}[\phi]= \frac{1}{r^{7} \sin ^{3}(2 \theta)}\left\{\left(9 g^{2} \tilde{w}_{0} r^{3} \phi_{\theta}\right)_{\theta}+\left(r^{5} g^{\prime 2} \tilde{w}_{0} \phi_{r}\right)_{r}\right. \\
&\left.-3\left(g g^{\prime} \tilde{w}_{0} r^{4} \phi_{r}\right)_{\theta}-3\left(g g^{\prime} \tilde{w}_{0} r^{4} \phi_{\theta}\right)_{r}\right\} \\
&+ \frac{1}{r^{7} \sin ^{3}(2 \theta)}\left\{\left(r^{-1} \tilde{w}_{0} \phi_{\theta}\right)_{\theta}+\left(r \tilde{w}_{0} \phi_{r}\right)_{r}\right\},
\end{aligned}
$$

where

$$
\tilde{w}_{0}(\theta):=\frac{\sin ^{3} 2 \theta}{\left(9 g^{2}+g^{\prime 2}\right)^{\frac{3}{2}}}
$$

An important fact: If $0<\sigma<1$ there is a positive supersolution $\bar{\phi}=O\left(r^{-\sigma}\right)$ to

$$
-L[\bar{\phi}] \geq \frac{1}{r^{4+\sigma}} \quad \text { in } \Gamma
$$

We have that

$$
L_{0}\left[r^{-\sigma} q(\theta)\right]=\frac{1}{r^{4+\sigma}} \frac{9 g^{\frac{4-\sigma}{3}}}{\sin ^{3} 2 \theta}\left[\frac{g^{\frac{2}{3}} \sin ^{3} 2 \theta}{\left(9 g^{2}+g^{\prime 2}\right)^{\frac{3}{2}}}\left(g^{\frac{\sigma}{3}} q\right)^{\prime}\right]^{\prime}=\frac{1}{r^{4+\sigma}}
$$

if and only if $q(\theta)$ solves the ODE

$$
\left[\frac{g^{\frac{2}{3}} \sin ^{3} 2 \theta}{\left(9 g^{2}+g^{\prime 2}\right)^{\frac{3}{2}}}\left(g^{\frac{\sigma}{3}} q\right)^{\prime}\right]^{\prime}=\frac{1}{9} \sin ^{3} 2 \theta g(\theta)^{-\frac{4-\sigma}{3}}, .
$$

A solution in $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$:

$$
q(\theta)=\frac{1}{9} g^{-\frac{\sigma}{3}}(\theta) \int_{\frac{\pi}{4}}^{\theta} \frac{\left(9 g^{2}+g^{\prime 2}\right)^{\frac{3}{2}}}{g^{\frac{2}{3}} \sin ^{3}(2 s)} d s \int_{s}^{\frac{\pi}{2}} g^{-\frac{4-\sigma}{3}}(\tau) \sin ^{3}(2 \tau) d \tau
$$

Since $g^{\prime}\left(\frac{\pi}{4}\right)>0, q$ is defined up to $\frac{\pi}{4}$ and can be extended smoothly (evenly) to ($0, \frac{\pi}{4}$). Thus and $\bar{\phi}:=q(\theta) r^{-\sigma}$ satisfies

$$
-L_{0}(\bar{\phi})=r^{-4-\mu} \quad \text { in } \mathbb{R}^{8} .
$$

We can show that also $-L(\bar{\phi}) \geq r^{-4-\sigma}$ for all large r. Thus

$$
-\mathcal{J}_{\Gamma_{0}}[\bar{h}] \geq r^{-4-\sigma}, \quad \bar{h}=\frac{\phi}{\sqrt{1+\left|\nabla F_{0}\right|^{2}}} \sim r^{-2-\sigma}
$$

The closeness of \mathcal{J}_{Γ} and $\mathcal{J}_{\Gamma_{0}}$ makes \bar{h} to induce a positive supersolution $\hat{h} \sim r^{-2-\sigma}$ to

$$
-\mathcal{J}_{\Gamma}[\hat{h}] \geq r^{-4-\sigma} \quad \text { in } \Gamma .
$$

We conclude by a barrier argument that Fact 1 holds: if
$\left\|\left(1+r^{4+\sigma}\right) g\right\|_{L^{\infty}(\Gamma)}<+\infty$ there is a unique h with $\mathcal{J}_{\Gamma}[h]=\mathrm{g}$ and

$$
\left\|(1+r)^{2+\sigma} h\right\|_{L^{\infty}(\Gamma)} \leq C\left\|(1+r)^{4+\sigma} \mathrm{g}\right\|_{L^{\infty}(\Gamma)}
$$

Let $k_{i}^{0}(y)$ be the principal curvatures of Γ_{0}.
The following hold:

$$
\begin{aligned}
- & \sum_{i=1}^{8} k_{i}(y)^{3}=\sum_{i=1}^{8} k_{i}^{0}(\pi(y))^{3}+O\left(r^{-4-\sigma}\right) \\
- & \sum_{i=1}^{8} k_{i}^{0}(y)^{3}=\frac{p(\theta)}{r^{3}}+O\left(r^{-4-\sigma}\right)
\end{aligned}
$$

p smooth, $p\left(\frac{\pi}{2}-\theta\right)=-p(\theta)$ for all $\theta \in\left(0, \frac{\pi}{4}\right)$.
We claim: there exists a smooth function $h_{*}(r, \theta)$ such that $h_{*}=O\left(r^{-1}\right)$ and for some $\sigma>0$,

$$
\mathcal{J}_{\Gamma_{0}}\left[h_{*}\right]=\frac{p(\theta)}{r^{3}}+O\left(r^{-4-\sigma}\right) \quad \text { as } r \rightarrow+\infty
$$

Setting $h_{0}(y)=h_{*}(\pi(y))$ we then get $h_{0}=O\left(r^{-1}\right)$ and

$$
\mathcal{J}_{\Gamma}(h):=\Delta_{\Gamma} h+\left|A_{\Gamma}\right|^{2} h=c \sum_{i=1}^{8} k_{i}^{3}+O\left(r^{-4-\sigma}\right) \quad \text { in } \Gamma,
$$

namely the validity of Fact 2.
Construction of h_{*}.
We argue as before (separation of variables) to find $q(\theta)$ solution of

$$
\begin{gathered}
L_{0}(r q(\theta))=\frac{p(\theta)}{r^{3}}, \theta \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right) . \\
q(\theta)=-\frac{1}{9} g^{\frac{1}{3}}(\theta) \int_{\frac{\pi}{4}}^{\theta}\left(9 g^{2}+g^{\prime 2}\right)^{\frac{3}{2}} \frac{g^{-\frac{2}{3}} d s}{\sin ^{3}(2 s)} \int_{s}^{\frac{\pi}{2}} p(\tau) g^{-\frac{5}{3}}(\tau) \sin ^{3}(2 \tau) d \tau .
\end{gathered}
$$

Let $\eta(s)=1$ for $s<1,=0$ for $s>2$ be a smooth cut-off function. Then

$$
\phi_{0}(r, \theta):=(1-\eta(s)) r q(\theta) \quad \text { in }\left(\frac{\pi}{4}, \frac{\pi}{2}\right), \quad s=r^{2} g(\theta) .
$$

satisfies

$$
L\left(\phi_{0}\right)=\frac{p(\theta)}{r^{3}}+O\left(r^{-4-\frac{1}{3}}\right)
$$

Finally, the function

$$
h_{*}=\frac{\phi_{0}}{\sqrt{1+\left|\nabla F_{0}\right|^{2}}}=O\left(r^{-1}\right)
$$

extended oddly through $\theta=\frac{\pi}{4}$ satisfies

$$
J_{\Gamma_{0}}\left[h_{*}\right]=\frac{p(\theta)}{r^{3}}+O\left(r^{-4-\frac{1}{3}}\right)
$$

as desired.

Loosely speaking: The method described above applies to find an entire solution u_{ε} to $\Delta u+u-u^{3}=0$ with transition set near $\Gamma_{\varepsilon}=\varepsilon^{-1} \Gamma$ whenever Γ is a minimal hypersurface in \mathbb{R}^{N}, that splits the space into two components, and for which enough control at infinity is present to invert globally its Jacobi operator.

An important example for $N=3$: finite Morse index solutions.

Theorem (D., Kowalczyk, Wei (2009))
Let Γ be a complete, embedded minimal surface in \mathbb{R}^{3} with finite total curvature: $\int_{\Gamma}|K|<\infty, K$ Gauss curvature.

If Γ is non-degenerate, namely its bounded Jacobi fields originate only from rigid motions, then for small $\varepsilon>0$ there is a solution u_{ε} to (AC) with

$$
u_{\varepsilon}(x) \approx w(t), \quad x=y+t \nu_{\varepsilon}(y)
$$

In addition $i\left(u_{\varepsilon}\right)=i(\Gamma)$ where i denotes Morse index.
Examples: nondegeneracy and Morse index are known for the catenoid and Costa-Hoffmann-Meeks surfaces (Nayatani (1990), Morabito, (2008)).
$\Gamma=$ a catenoid: $\quad \exists u_{\varepsilon}(x)=w(\zeta)+O(\varepsilon), x=y+t \nu_{\varepsilon}(y)$.

u_{ε} axially symmetric: $u_{\varepsilon}(x)=u_{\varepsilon}\left(\sqrt{x_{1}^{2}+x_{2}^{2}}, x_{3}\right), x_{3}$ rotation axis coordinate. $i\left(u_{\varepsilon}\right)=1$
$\Gamma=$ CHM surface genus $\ell \geq 1$:

$\exists u_{\varepsilon}(x)=w(\zeta)+O(\varepsilon), x=y+\zeta \nu_{\varepsilon}(y) . i\left(u_{\varepsilon}\right)=2 \ell+3$.

- Nondegeneracy: The only nontrivial bounded solutions of

$$
\mathcal{J}_{\Gamma}(\phi)=\Delta_{\Gamma} \phi-2 K \phi=0
$$

arise from translations and rotation about the common symmetry axis $\left(x_{3}\right)$ of the ends: $\nu_{i}(x) i=1,2,3, x_{2} \nu_{1}(x)-x_{1} \nu_{2}(x)$.

- $i(\Gamma)$, the Morse index of Γ, is the number of negative eigenvalues of J_{Γ} in $L^{\infty}(\Gamma)$. This number is finite $\Longleftrightarrow \Gamma$ has finite total curvature.
- $i(\Gamma)=0$ for the plane, $=1$ for the catenoid and $=2 \ell+3$ for the CHM surface genus ℓ.

Morse index of a solution u of (AC), $i(u)$: roughly, the number of negative eigenvalues of the linearized operator, namely those of the problem

$$
\Delta \phi+\left(1-3 u^{2}\right) \phi+\lambda \phi=0 \quad \phi \in L^{\infty}\left(\mathbb{R}^{N}\right)
$$

De Giorgi solution: "stable", $i(u)=0$ since $\lambda=0$ is an eigenvalue with eigenfunction $\partial_{x_{N}} u>0$.
$i(u)=0 \Longrightarrow D G$ statement for $N=2$ (Dancer). Open if $N \geq 3$.
A recent result: $i(u)=0$ does not imply DG statement for $N=8$ (Example by Pacard and Wei).

Another application of the BDG minimal graph:
Overdetermined semilinear equation
Ω smooth domain, f Lipschitz

$$
\begin{gathered}
\Delta u+f(u)=0, u>0 \quad \text { in } \Omega, u \in L^{\infty}(\Omega) \\
u=0, \quad \partial_{\nu} u=\text { constant on } \partial \Omega
\end{gathered}
$$

Let us assume that (S) is solvable. What can we say about the geometry of Ω ?

Serrin (1971) proved that if Ω is bounded and there is a solution to (S) then Ω must be a ball.

We consider the case of an entire epigraph

$$
\Omega=\left\{\left(x^{\prime}, x_{N}\right) / x^{\prime} \in \mathbb{R}^{N-1}, x_{N}>\varphi\left(x^{\prime}\right)\right\}, \quad \Gamma=\partial \Omega
$$

$$
\Omega=\left\{\left(x^{\prime}, x_{N}\right) / x^{\prime} \in \mathbb{R}^{N-1}, x_{N}>\varphi\left(x^{\prime}\right)\right\}, \quad \Gamma=\partial \Omega .
$$

- Berestycki, Caffarelli and Nirenberg (1997) proved that if φ is Lispchitz and asymptotically flat then it must be linear and u depends on only one variable. They conjecture that this should be true for any arbitrary smooth function φ.
- Farina and Valdinoci (2009) lifted asymptotic flatness for $N=2,3$ and for $N=4,5$ and $f(u)=u-u^{3}$.

Theorem (D., Pacard, Wei (2010))

In Dimension $N \geq 9$ there exists a solution to Problem (S) with $f(u)=u-u^{3}$, in an entire epigraph Ω which is not a half-space.
The proof consists of finding the region Ω in the form

$$
\partial \Omega=\left\{y+\varepsilon h(\varepsilon y) \nu(\varepsilon y) / y \in \Gamma_{\varepsilon}\right\} .
$$

for h a small decaying function on Γ. Here Γ is a BDG graph. We set

$$
u_{0}(x)=w(t), \quad x=y+(t+\varepsilon h(\varepsilon y)) \nu(\varepsilon y) \quad \Omega=\{t>0\} .
$$

At main order ϕ should satisfy

$$
\begin{gathered}
\partial_{t t} \phi+\Delta_{\Gamma_{\varepsilon}} \phi+f^{\prime}(w(t)) \phi=E \\
\phi(0, y)=0, \phi_{t}(0, y)=\approx \alpha \varepsilon=\text { constant } \\
E=\Delta u_{0}+f\left(u_{0}\right)= \\
\varepsilon^{4}\left|\nabla_{\Gamma \varepsilon \zeta} h(\varepsilon y)\right|^{2} w^{\prime \prime}(t)-\left[\varepsilon^{3} \Delta_{\Gamma \varepsilon \zeta} h(\varepsilon y)+\varepsilon H_{\Gamma \varepsilon \zeta}(\varepsilon y)\right] w^{\prime}(t), \\
E=\varepsilon H_{\Gamma}(\varepsilon y) w^{\prime}(t)+O\left(\varepsilon^{2}\right)
\end{gathered}
$$

The construction carries over for regions whose boundaries are more general surfaces.

Let us assume, more generally that Γ is a smooth surface such that

$$
H_{\Gamma} \equiv H=\text { constant }
$$

Namely Γ is a constant mean curvature surface.
For $x=y+\varepsilon(t+\varepsilon h(\varepsilon y))$, we look now for a solution for $t>0$ with

$$
u(t, y)=w(t)+\phi(t, y), \quad \phi(0, y)=0
$$

Imposing $\alpha=\left(H / w^{\prime}(0)\right) \int_{0}^{\infty} w^{\prime}(t)^{2} d t$. we can solve

$$
\psi^{\prime \prime}+f^{\prime}(w(t)) \psi=H w^{\prime}(t), \quad t>0, \quad \psi(0)=0, \psi^{\prime}(0)=\alpha
$$

which is solvable for ψ bounded. Then the approximation $u_{1}(x)=w(t)+\varepsilon \psi(t)$ produces a new error of order ε^{2}. And the equation for $\phi=\varepsilon \psi(t)+\phi_{1}$ now becomes

$$
\begin{gathered}
\partial_{t t} \phi_{1}+\Delta_{\Gamma_{\varepsilon}} \phi_{1}+f^{\prime}(w(t)) \phi_{1}=E_{1}=O\left(\varepsilon^{2}\right) \\
\phi_{1}(0, y)=0, \phi_{1, t}(0, y)=0
\end{gathered}
$$

The construction follows a scheme similar to that for the entire solution, but it is more subtle in both theories needed in Steps 1 and 2.

The case $N=2$: Very few solutions known with $1 \leq i(u)<+\infty$.

- Dang, Fife, Peletier (1992). The cross saddle solution: $u\left(x_{1}, x_{2}\right)>0$ for $x_{1}, x_{2}>0$,

$$
u\left(x_{1}, x_{2}\right)=-u\left(-x_{1}, x_{2}\right)=-u\left(x_{1},-x_{2}\right) .
$$

Nodal set two lines (4 ends). Super-subsolutions in first quadrant.

- Alessio, Calamai, Montecchiari (2007). Extension: saddle solution with dihedral symmetry. Nodal set k lines ($2 k$ ends), $k \geq 2$. Presumably $i(u)=k-1$.

DANG-FIFE-PELETIER 92 (4 -END)

ALESSIO-CALAMAI-MONTECCHIARI 07 ($2 K$-END)

The saddle solutions

A result: Existence of entire solutions with embedded level set and finite number of transition lines of $\Delta u+u-u^{3}=0$ in \mathbb{R}^{2} :

Solutions with k "nearly parallel" transition lines are found for any $k \geq 1$.

Theorem (del Pino, Kowalczyk, Pacard, Wei (2007)) If f satisfies

$$
\frac{\sqrt{2}}{24} f^{\prime \prime}(z)=e^{-2 \sqrt{2} f(z)}, \quad f^{\prime}(0)=0
$$

and $f_{\varepsilon}(z):=\sqrt{2} \log \frac{1}{\varepsilon}+f(\varepsilon z)$, then there exists a solution u_{ε} to $(A C)$ in \mathbb{R}^{2} with

$$
u_{\varepsilon}\left(x_{1}, x_{2}\right)=w\left(x_{1}+f_{\varepsilon}\left(x_{2}\right)\right)+w\left(x_{1}-f_{\varepsilon}\left(x_{2}\right)-1+o(1)\right.
$$

as $\varepsilon \rightarrow 0^{+}$. Here $w(s)=\tanh (s / \sqrt{2})$.
This solution has 2 transition lines.

$$
f(z)=A|z|+B+o(1) \quad \text { as } z \rightarrow \pm \infty .
$$

More in general: the equilibrium of k far-apart, embedded transition lines is governed by the Toda system, a classical integrable model for scattering of particles on a line under the action of a repulsive exponential potential:

$$
u_{\varepsilon}\left(x_{1}, x_{2}\right)=\sum_{j=1}^{k}(-1)^{j-1} w\left(x_{1}-f_{\varepsilon, j}\left(x_{2}\right)\right)-\frac{1}{2}\left(1+(-1)^{k}\right)+o(1)
$$

The Toda system:

$$
\begin{aligned}
\frac{\sqrt{2}}{24} f_{j}^{\prime \prime}=e^{-\sqrt{2}\left(f_{j}-f_{j-1}\right)}-e^{-\sqrt{2}\left(f_{j+1}-f_{j}\right)}, \quad j=1, \ldots k, \\
f_{0} \equiv-\infty, f_{k+1} \equiv+\infty
\end{aligned}
$$

Given a solution f (with asymptotically linear components), if we scale

$$
f_{\varepsilon, j}(z):=\sqrt{2}\left(j-\frac{k+1}{2}\right) \log \frac{1}{\varepsilon}+f_{j}(\varepsilon z),
$$

then there is a solution with k transitions:

$$
u_{\varepsilon}\left(x_{1}, x_{2}\right)=\sum_{j=1}^{k}(-1)^{j-1} w\left(x_{1}-f_{\varepsilon, j}\left(x_{2}\right)\right)-\frac{1}{2}\left(1+(-1)^{k}\right)+o(1)
$$

- Pacard and Ritoré (2002) found a solution with a transition layer across a nondegenerate minimal submanifold of codimension 1 in a compact manifold.
- Kowalczyk (2002) found such a solution associated to a nondegenerate segment of a planar domain, with Neumann boundary conditions. D., Kowalczyk, Wei (2005) found multiple interfaces in that setting, with equilibrium driven by the Toda system.
- We believe the nodal set of any finite Morse index solutions in \mathbb{R}^{2} must be asymptotic to an even, finite number of rays.

We conjecture: The 4-end (two-line) solution is a limit case of a continuum of solutions with Morse index 1 that has the cross saddle as the other endpoint All intermediate slopes missing. This is also the case for $k>2$.

2-line transition layer and 4 end saddle: Do they connect?

Do they connect?

General $2 k$-end

Some evidence:

A result: (D., Kowalczyk, Pacard) given a nondegenerate $2 k$-end solution u, the class of all $2 k$-end solutions nearby constitutes a $2 k$-dimensional manifold.

This is the case for the solution with k nearly parallel transition lines and the cross saddle (Kowalczyk, Liu (2009)). For 2 transition lines we thus have one parameter (ε) besides translations and rotations.

