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The Allen-Cahn Equation
(AQ) Auv+u—u®P=0 inR"

Euler-Lagrange equation for the energy functional

/\Vu|2 / (1— u?)?

u =41 and u = —1 are global minimizers of the energy
representing, in the gradient theory of phase transitions, two
distinct phases of a material.



Of interest are solutions of (AC) that connect these two values.
They represent states in which the two phases coexist.

The case N = 1. The function

w(t) := tanh (\2)

connects monotonically —1 and +1 and solves
W +w—w =0, w(too)==+1, w >0
For any p,v € RN, |v| =1, the functions
u(x) == w(z), z=(x—p)-v

solve equation (AC). z = normal coordinate to the hyperplane
through p, unit normal v.



De Giorgi’s conjecture (1978): Let u be a bounded solution of
equation

(AC) Au+u—uP=0 inR",

which is monotone in one direction, say Oy, u > 0. Then, at
least when N < 8, there exist p,v such that

u(x) = w((x - p) - v).



This statement is equivalent to:

At least when N < 8, all level sets of u, [u = A\| must be
hyperplanes.

Parallel to Bernstein’s conjecture for minimal surfaces which are
entire graphs.



Entire minimal graph in RV:
F={(x,F(xX) eRV"1 xR/ x¥ e RN}

where F solves the minimal surface equation

Hr == V- _VE =0 inRNL
V1+I|VF]2



Bernstein’s conjecture: All entire minimal graphs are
hyperplanes, namely any entire solution of (MS) must be a linear
affine function:

True for N < 8:

e Bernstein (1910), Fleming (1962) N =3
e De Giorgi (1965) N =4

e Almgren (1966), N =5

e Simons (1968), N = 6,7, 8.

False for N > 9: Bombieri-De Giorgi-Giusti found a
counterexample (1969).



De Giorgi’s Conjecture: u bounded solution of (AC), Ox,u >0
then level sets [u = | are hyperplanes.

e True for N = 2. Ghoussoub and Gui (1998).
e True for N = 3. Ambrosio and Cabré (1999).
e True for 4 < N < 8 (Savin (2009), thesis (2003)) if in addition

lim u(x,xy)=+1 forall x e RN 7L

XN —Fo0



The Bombieri-De Giorgi-Giusti minimal graph:

Explicit construction by super and sub-solutions. N = 9:

. VF _ in RS
H(F) :=V (W) 0 inRS.

F:R*xR* =R, (u,v)— F(|ul,|v]).

In addition, F(|ul,|v|) > 0 for |v| > |u| and

F(Jul; [v]) = =F(|vl, [ul).



Polar coordinates:
. s
lu| = rcosf, |v|=rsinf, 0¢€( ’5)
Mean curvature operator at F = F(r, )
1 F,r7sin320
- 3290r
r’sin \/1+Fr2+r_2F62

HIF] =

1 For®sin326
* rTsin320 " 2
\/1 + F2 +r=2F;

Separation of variables Fo(r,0) = r3g(f).



1 7 3
HIFy = LIPS 3r'g sin® 26
r’sin” 26 V1 9g2 + g?

1 g'sin326
+ 3 89 — 2 .
rsin’ 26 Vit +9g2+g
As r — oo the equation H(Fy) = 0 becomes the ODE
21g sin® 26 N g’ sin326 0 i <7r 77)
—_— ———— | =0 in (-, =),
V9g2 +g”* V9g2 +g”? 472
™ _—o=o (T
e(3)=0=¢(3)

This problem has a solution g positive in (7, 3).



We check directly that

e Fo(r,0) = r3g(#) is a subsolution of the minimal surface
equation H(F) =0: H(Fy) >0

e Fo(r,0) accurate approximation to a solution of the minimal
surface equation:

H(Fo) = O(r™°) asr— +oo.



The supersolution of Bombieri, De Giorgi and Giusti can be refined
to yield that Fy gives the precise asymptotic behavior of F.

Refinement of asymptotic behavior of BDG surface xg = F(r, ),
(D., Kowalczyk, Wei (2008)):

For 6 € (%,%) we have, for 0 < o <1 and all large r,

Fo(r,0) < F(r,0) < Fo(r,0)+ Ar~7 asr — +oo.




The BDG surface:

Xq = Flu,v)x £9(e)

mn=\

Flur) = -Floju)



Let v.(y) :=v(ey), y €T.=e T be unit normal with v > 0.
Local coordinates in in a tubular neighborhood of I'.:

5
x=y+C(y), yerls []< B

X4

Y+ ‘EV&(w)



Theorem (D., Kowalczyk, Wei (2008))

Let T be a BDG minimal graph in R and T. := &7 'I. Then for
all small € > 0, there exists a bounded solution u. of (AC),
monotone in the xq-direction, with

5
u:(x) =w(()+ 0(e), x=y+cr(ey), yerl., [¢|< -

lim u(x',x)==+1 forall x' €RE

Xg— 00

U is a "counterexample” to De Giorgi's conjecture in dimension 9
(hence in any dimension higher).



Sketch of the proof

Let ' be a fixed BDG graph and let v designate a choice of its unit
normal. Local coordinates near [":

x=y+auly), yer, |z<o

Laplacian in these coordinates:

Ax - azz + AFZ - HFZ(_V) az

. ={r+zvly) /yeT}

Ar: is the Laplace-Beltrami operator on [ acting on functions of
y, and Hrz(y) its mean curvature at the point y + zv(y).



For later reference, we expand

N
Hre(y) = Hr(y) + 2 [Ar(n)P + 22 Yk + -
i=1

where

8 8
Hr =Y ki, Ar? =Yk
i=1 i=1

mean curvature norm second fundamental form



Letting f(u) = u — u® the equation
Au+f(u)=0 inR°
becomes, for
u(y,Q) = u(x), x=y+quley), yele, [([<d/e,
v unit normal to [ with vy > 0,

S(u):==Au+f(u) =
Argu—eHrgc(sy)aqu +8§u+f(u) = 0.



» We look for a solution of the form (near I';)

u-(x) = w(C —eh(ey)) + ¢, x=y+(vey)

for a function h defined on I, left as a parameter to be
adjusted and ¢ small.

» Let r(y’,y9) = |y’|. We assume a priori on h that
1(1+r2) DE hll oo (ry+ 1 (14+r?) Dr | oo (ry +[| (14 1) Bl e (ry < M

for some large, fixed number M.



Let us change variables to t = ( — ch(ey), or

u(y,t) == u(x) x=y+(t+ch(ey))v(ey)
The equation becomes
S(U) = ﬁttu -+ Argu — €Hrs<(€y) atu +
+ " Vrech(ey)|?0su — 263 (Vrech(ey), 8;Viec u)
— 3Arech(ey)diu+ f(u) = 0, ¢ =t+eh(ey).
Look for solution u. of the form
us(t,y) = w(t) + o(t,y)

for a small function ¢.



us(t,y) = w(t) + ¢(t, y)

The equation in terms of ¢ becomes
Ot + Ar.d + Bo + f'(w(t))p + N(¢) + E = 0.

where B is a small linear second order operator, and

E=S(w(t), N(¢)=f(w+¢)—f(w)—F(w)p~rf"(w)e”.



The error of approximation.

E:=S(w(t)) =

e Vrech(ey) 2w’ (t) — [ Arech(ey) + eHp=c(ey)] w/(t),
and

8

eHrc(ey) = £ (t+eh(ey))|Ar(ey)? +e3(t+eh(ey))? Z kP (ey)+ -

A crucial fact: (L. Simon (1989)) k; = O(r 1) as r — +o0c. In
particular
E(y,t)] < Cer(ey) ™2



Equation
Ot + Ar ¢+ B+ f'(w(t))d + N(¢) + E = 0.

makes sense only for [t| < de~ L.

A gluing procedure reduces the full problem to

O + Ar.¢ + Bo + f'(w)p +N(p)+E=0 inRxTl,,

where E and B are the same as before, but cut-off far away. N is
modified by the addition of a small nonlocal operator of ¢.

We find a small solution to this problem in two steps.



Infinite dimensional Lyapunov-Schmidt reduction:

Step 1: Given the parameter function h, find a a solution
¢ = ®(h) to the problem

Ot + Ar ¢+ By + f'(w(t))p + N(¢) + E =
c(y)w'(t) inRxT,,

/gb(t,y)w’(t) dt = 0 forall yerl..
JR
Step 2: Find a function h such that for all y € ',

cly) = — /R(E + BO(h) + N(®(h))) w'dt = 0.

T w2t



For Step 1 we solve first the linear problem

deed+ Dr g+ f'(w(t))o = g(t,y) — c(y)w'(t) inRxT,

_ Jrgly, t)w'(t) dt
B Jr w'? dt

/R(D(y, tw'(t)dt =0 inT, c(y):

There is a unique bounded solution ¢ := A(g) if g is bounded.
Moreover, for any v > 0 we have

11+ r(ey)”)olle < CII(1+ r(ey)) 8 lloo-

. ~ RN~ around each of its points as ¢ — 0, in uniform way.
The problem is qualitatively similar to I'. replaced with RVN=1.



Fact: The linear model problem

O+ Dy + f'(w(t))g = g(t,y) — c(y)w'(t) in RV

Jrely, t)w'(t) dt
/]R w'? dt

has a unique bounded solution ¢ if g is bounded, and

/gby tw'(t)dt =0 inRVN7L, c(y) =

[6llc < Cllglloo-

Let us prove first the a priori estimate:



If the a priori estimate did not hold, there would exist

[Pnllo =1, [l&nllo — O,

0.

Drtton + Dy + F'(w(£))bn = gnlt.y), /R only. t)W/(2) dit

Using maximum principle and local elliptic estimates, we may
assume that ¢, — ¢ # 0 uniformly over compact sets where

O+ Dy + ' (w(t))p =0, / o(y, t)w'(t) dt = 0.
JR

Claim: ¢ = 0, which is a contradiction



A key one-dimensional fact: The spectral gap estimate.

Lo(p) := p" + f'(w(t))p

There is a v > 0 such that if p € H*(R) and Jz pw' dt =0 then

—/R Lo(p)pdt—/R(p’!z— f'(w)p?) dt > ’Y!/RP2 dt.



Using maximum principle we find |¢(y, t)| < Ce~I*l. Set
oly) = fR #?(y, t) dt. Then

Ayp(y) = 2/R(/>A(/>(y, t) dt+2A|vy@(y, t)[% dt >
_2/ pOeep + f'(w)p? dt =
R
2 [ (62 = F(w)6?) ot = 201y).
R

—Ayp(y) +v¢(y) <0

and ¢ > 0 bounded, implies ¢ = 0, hence ¢ = 0, a contradiction.
This proves the a priori estimate.



Existence: take g compactly supported. Set H be the space of all
¢ € HY(RN) with

/qﬁyt t)dt =0 for all y € RN-L,

H is a closed subspace of H'(R").



The problem: ¢ € H and

Jr gy, T)W'(7) d7
Iz w'? dr

Ond+ Dyo + f'(w(t))d = g(t,y) — w'(t)

can be written variationally as that of minimizing in H the energy

10) =5 [ 90 + 16 = Fwye? + [

g9
RN

| is coercive in H thanks to the 1d spectral gap estimate.
Existence in the general case follows by the L°°-a priori estimate
and approximations.



We write the problem of Step 1,

Oed + Ar.¢ + Bo + f'(w(t))p + N(¢) + E =
c(y)w/(t) in R x I,

/¢(t,y)W'(t) dt = 0 forall yer.,
R

in fixed point form

¢ = A(Bop+ N(¢)+ E).

Contraction mapping principle implies the existence of a unique
solution ¢ := ®(h) with

11+ rP(ey))dlle = O(?).



Finally, we carry out Step 2. We need to find h such that
/[E + BO(h) + N(@()] (= Ly, ) w!(t) dt = 0 Vy e T.
JR

Since

—E(c 'y, t) = W/ (1) |Ar(y) P+ [Arh(y)+ | Ar (y)[Ph(y) ] w/ (1)

+ 3t2w/'(1) Z ki(y)® + smaller terms
j=1

the problem becomes

8
Jr(h) == Arh+|ArPh = ¢ > K+ N(h) inT,
i=1

where N (h) is a small operator.



Fact: Let 0 < o < 1. Then if
11+ r*7) glliory < +o0
there is a unique solution h = T(g) to the problem
Jrlh] = Arh+|Ar(y)I*h =g(y) inT.
with

11+ > hllieory < CIE+ ) glliseqry -



We want to solve
8
Jr(h) == Arh+ |ArPh = ¢ > K+ N(h) inT,
i=1

using a fixed point formulation for the operator T above.
In NV(h) everything decays O(r=*=7), but we only have



Two more facts:

» There is a function p smooth, with
p(5 —0)=—p(0) forall 6 c(0,%) such that

» There exists a smooth function hg(r, ) such that
hg = O(r~') and for some & > 0,

Jrlho] = P,(g) + O(r*4*U) as r — +o00.



8
Jr(h) == Arh+ [ArPh = ¢ > kP +0(r*°) inT.
i=1

Our final problem then becomes h = hg + hy where
hi = T(O(r * 7))+ N(ho + h1))

which we can solve for hy = O(r=277), using contraction mapping
principle, keeping track of Lipschitz dependence in h of the objects
involved in in A(h).



The Jacobi operator

JIr[h] = Arh+ |Ar(y)Ph,

is the linearization of the mean curvature, when normal
perturbations are considered. In the case of a minimal graph
xg = F(x), if we linearize along vertical perturbations we get

H'(F)l¢] = V-( vé (VF- Vo) VF).

VIFIVFR  (1+|VFP)?

These two operators are linked through the relation
Jrlhl = H'(F)[¢], where o¢(x') = /14 |VF(X')]2h(X, F(x)).
The relation Jr[h] = H'(Fo)[\/1 + |V Fo|?h] also holds.



Next we discuss the proofs of the facts used above:

1. If g = O(r=*77) there is a unique solution to Jr[h] = g with

(14 )" Bl < CIA+ N glloory -

2. There is a function p smooth, with
p(5 —0) = —p(0) forall 6 c(0,7%) such that

8
p(0 b0
> k) =0+ o),
i=1
3. There exists ho(r,0) such that hg = O(r~!) and

Jrlho] = pg) +0(r™*°) asr— 4.



The closeness between Jr, and Jr .

Let p € I with r(p) > 1. There is a unique 7(p) € Iy such that

m(p) = p+ tpv(p).
Let us assume

h(z(y)) = h(y), forall yeT, r(y)>r.

Then
Irlhl(y) =

[Trolho]+O(r~277) D ho+O(r=>~7) Dryho+O(r~* =) ho ] (n(y)) -
We keep in mind that Jr,[h] = H'(Fo)[\/1 + |V Fo|?h] and make

explicit computations.



We compute explicitly

H (Fo)ld] = {982 Wrp0) + (r°g" o),

r7 sin3(26)
~3(gg’ #r*o,)s — 3(g8’ o), }

+ r75.m3(29){(r1 Wa)o + (fV"V@r)r},

where
sin3 26

(r*+9g2 +¢’)

w(r,0) =

3"
2



Further expand

L[¢] := H'(Fo)[¢] := Lo + Lu,

with
Lo[g] = r75in3(20){(9g2 Wor3de)e + (r°g" Wody),
—3(gg’ wor*¢r)o — 3(gg’ |7v0r4(/)9),}
+ ﬂsinlg(zg){(rl Wodo)o + (riier). |,
e sin® 20
WO g e



An important fact: If 0 < o < 1 there is a positive supersolution

¢=0(r7)to

- 1
—L[¢] > el r

We have that

1 9g4%0 g% sin3 26 / 1
Lolrq(9)] = [ q)’]

rtosin®20 | (92 4 g/?)3
if and only if q(#) solves the ODE
2 .3 /
[( g?sin (g3q)’] = §Sin326’g(9)*4T, .

982 +¢)’



A solution in (7, %5):

. 0 9g2 +g/2 %
q(0) = 58 3(9)/ %
T g3sin®(2s)

‘g 4—0o
ds / g5 (7)sin®(27) dr
S

Since g'(%) > 0, q is defined up to 7 and can be extended
(

smoothly (evenly) to (0, 7). Thus and ¢ = q(0)r=° satisfies
—Lo(¢) = r** in RS
We can show that also —L(¢) > r—*=7 for all large r. Thus

TRz, e e

I+ IVRoP



The closeness of Jr and Jr, makes h to induce a positive
supersolution h ~ r=2=7 to

~Jr[h > r 7 inT.

We conclude by a barrier argument that Fact 1 holds: if
[(1+r*7) g|1oo(ry < +o0 there is a unique h with Jr[h] = g and

11+ r)> 7 Al ey < ClIA+ )" gll () -



Let k%(y) be the principal curvatures of Ig.
The following hold:

8 8

o > k()= K(x()+0(r ")
i=1 i=1

° ZkO 9) + O( —4—(7)

p smooth, p(5 —0) = —p(0) forall 6 < (0,7%).

We claim: there exists a smooth function h.(r,0) such that
h, = O(r~') and for some o > 0,

JIrolhe] = pg) +0(r %) asr — 4oc.



Setting ho(y) = h.(7(y)) we then get hg = O(r— ') and

8
Jr(h) == Arh+ [ArPh = ¢ Y kP +0(r*°) inT,
i=1

namely the validity of Fact 2.

Construction of h,.
We argue as before (separation of variables) to find g() solution of

72

™ T
R

Lo(ra(@) = PP 0 e (

11 o 2.3 g’%ds 2 _5 )
)= ~g&)0) [ (967+6™)} 2525 |7 plr)g S(msin(ar)

ES



Let n(s) =1 for s < 1, =0 for s > 2 be a smooth cut-off function
Then

gbo(r, 9) .

(L=n(s))ra®) in(3.5) s=rg(®).
satisfies

L(o0) = P9 + o(4),

Finally, the function

d)o -1
hy = —————— = 0O(r
V1+ |VF|? (r™)

extended oddly through 0 = 7 satisfies

0 1
ol = 2+ o)
as desired.



Loosely speaking: The method described above applies to find an
entire solution u, to Au+ u — u®> = 0 with transition set near

. = eIl whenever I is a minimal hypersurface in RV, that splits
the space into two components, and for which enough control at
infinity is present to invert globally its Jacobi operator.



An important example for N = 3: finite Morse index
solutions.

Theorem (D., Kowalczyk, Wei (2009))

Let T be a complete, embedded minimal surface in R3 with finite
total curvature: [ |K| < co,K Gauss curvature.

If T is non-degenerate, namely its bounded Jacobi fields originate
only from rigid motions, then for small € > 0 there is a solution u,
to (AC) with

u(x) = w(t), x=y+ tr(y).
In addition i(u.) = i(I") where i denotes Morse index.

Examples: nondegeneracy and Morse index are known for the catenoid
and Costa-Hoffmann-Meeks surfaces (Nayatani (1990), Morabito,
(2008)).



= acatenoid: 3 u.(x) = w(C) + O(e), x =y + tre(y).

u. axially symmetric: u.(x) = u:(\/x2 + x5 ,x3), x3 rotation axis
coordinate. i(u:) =1




I = CHM surface genus ¢ > 1:




e Nondegeneracy: The only nontrivial bounded solutions of
Jr(¢) = Arg — 2K = 0

arise from translations and rotation about the common symmetry

axis (x3) of the ends: vi(x) i = 1,2,3, xov1(x) — x112(x).

e i(I"), the Morse index of I, is the number of negative eigenvalues
of Jr in L°°(T'). This number is finite <= T has finite total
curvature.

e /(") = 0 for the plane, = 1 for the catenoid and = 2¢ + 3 for the
CHM surface genus /.



Morse index of a solution u of (AC), i(u): roughly, the number of
negative eigenvalues of the linearized operator, namely those of the
problem

Ap+(1-3u7)p+Ap=0 ¢e L=RN).
De Giorgi solution: “stable”, i(u) = 0 since A = 0 is an eigenvalue
with eigenfunction d,,u > 0.
i(u) =0 = DG statement for N = 2 (Dancer). Open if N > 3.

A recent result: i(u) = 0 does not imply DG statement for N = 8
(Example by Pacard and Wei).



Another application of the BDG minimal graph:
Overdetermined semilinear equation
Q smooth domain, f Lipschitz

Au+f(u)=0, u>0 inQ, uel™(Q) (S)

u=0, O,u= constant on Jf)

Let us assume that (S) is solvable. What can we say about the
geometry of Q7

Serrin (1971) proved that if Q is bounded and there is a solution
to (S) then Q must be a ball.

We consider the case of an entire epigraph

Q= {(.xn) /X €RV, xy > p(x)}, T =09



Q={(x,xn) / X RN xy > p(x)}, T=0Q.

Berestycki, Caffarelli and Nirenberg (1997) proved that if ¢ is
Lispchitz and asymptotically flat then it must be linear and u
depends on only one variable. They conjecture that this
should be true for any arbitrary smooth function ¢.

Farina and Valdinoci (2009) lifted asymptotic flatness for

N =2,3 and for N = 4,5 and f(u) = u— u5.



Theorem (D., Pacard, Wei (2010))

In Dimension N > 9 there exists a solution to Problem (S) with
f(u) = u— u3, in an entire epigraph Q which is not a half-space.
The proof consists of finding the region Q in the form

0 ={y +ch(ey)v(ey) / y €T:}.

for h a small decaying function on I'. Here I is a BDG graph.
We set

up(x) = w(t), x=y+(t+eh(ey))v(ey) Q={t>0}.



At main order ¢ should satisfy

O+ Ar.¢ + f(w(t))p = E
#(0,y) = 0,¢+(0,y) =~ ae = constant

E=Au+ f(uo) =
e¥|Vr=ch(ey) Pw"(t) — [*Arech(ey) + eHrec(ey)] w/(t),

E = eHr(ey) w'(t) + O(£?)



The construction carries over for regions whose boundaries are
more general surfaces.

Let us assume, more generally that I is a smooth surface such that
Hr = H = constant

Namely I is a constant mean curvature surface.

For x = y + e(t + ch(ey)), we look now for a solution for t > 0
with
ut,y) = w(t) + ¢(t.y), ¢(0,y) =0.



Imposing o = (H/w'(0 ]0 )?dt. we can solve
"+ F(w(t))y = HW'(t), t>0, (0)=0,9'(0) =«

which is solvable for ¢ bounded. Then the approximation
ui(x) = w(t) + e9(t) produces a new error of order 2. And the
equation for ¢ = e1(t) + ¢1 now becomes

Owd1 + Ar_¢1 + f/(W(t))le =k = 0(52)

#1(0,y) =0,01+(0,y) =0



The construction follows a scheme similar to that for the entire
solution, but it is more subtle in both theories needed in Steps 1
and 2.



The case N = 2: Very few solutions known with 1 < j(u) < 4o0.
e Dang, Fife, Peletier (1992). The cross saddle solution:
u(x1,x2) > 0 for x1,x, > 0,

u(x1,x2) = —u(—x1, x2) = —u(x1, —x2).

Nodal set two lines (4 ends). Super-subsolutions in first quadrant.

e Alessio, Calamai, Montecchiari (2007). Extension: saddle
solution with dihedral symmetry. Nodal set k lines (2k ends),
k > 2. Presumably i(u) = k — 1.



| ~t
~+| -1
w0 w>0
~ =\ ~
t |
w=0
1
W >0 w=<Q l
~ =]
~ ¢l . :
=0
DANG- FIFE- PELETIER 92 A\E‘Qm_CA\-"’HA')-'T"ONTECLH{A@‘ 0a

(4-enD)

The saddle solutions

(zk -€ND)



A result: Existence of entire solutions with embedded level set and
finite number of transition lines of Au+ u — v =0 in R2:

Solutions with k “nearly parallel” transition lines are found for any
k> 1.



Theorem ( del Pino, Kowalczyk, Pacard, Wei (2007) )
If f satisfies

\/Ef”(z) _ e—Zﬁf(z)’ f/(O) _ 0’

24

and £-(z) := V/2log 1 + f(ez), then there exists a solution u; to
(AC) in R? with

ue(x1,%0) = wla + £(x) ) + wix — £0e) —1 +0(1)]

as e — 0. Here w(s) = tanh(s/\/2).

This solution has 2 transition lines.

f(z) =Alz| + B+ o(1) asz— +oo.



More in general: the equilibrium of k far-apart, embedded transition
lines is governed by the Toda system, a classical integrable model for
scattering of particles on a line under the action of a repulsive
exponential potential:



N N b= £ )
1 £ \ -1 / ~ tl

W We (X x2)

l -

j‘g “ 'Cx.dxz) “

k
w(a,30) = 301wl — £00) — 51+ (-1 + o(1)

Jj=1




The Toda system:

f’?” — e VA1) _ o V2Af—h) i1k,
fo = —00, fxy1 = +o00.

Given a solution f (with asymptotically linear components), if we

scale K41 )
foj(2) = V2( - T)logg + fi(ez),

then there is a solution with k transitions:

i) = S (1wl — £500)) — 51+ (D9 + o)




» Pacard and Ritoré (2002) found a solution with a transition
layer across a nondegenerate minimal submanifold of
codimension 1 in a compact manifold.

> Kowalczyk (2002) found such a solution associated to a
nondegenerate segment of a planar domain, with Neumann
boundary conditions. D., Kowalczyk, Wei (2005) found
multiple interfaces in that setting, with equilibrium driven by
the Toda system.

» We believe the nodal set of any finite Morse index solutions in
R? must be asymptotic to an even, finite number of rays.



We conjecture: The 4-end (two-line) solution is a limit case of a
continuum of solutions with Morse index 1 that has the cross

saddle as the other endpoint All intermediate slopes missing. This
is also the case for k > 2.
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2-line transition layer and 4 end saddle: Do they connect?
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Do they connect?
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General 2k-end

—> u=0



Some evidence:

A result: (D., Kowalczyk, Pacard) given a nondegenerate 2k-end
solution u, the class of all 2k-end solutions nearby constitutes a
2k-dimensional manifold.

This is the case for the solution with k nearly parallel transition
lines and the cross saddle (Kowalczyk, Liu (2009)). For 2
transition lines we thus have one parameter (¢) besides translations
and rotations.



