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The Allen-Cahn Equation

(AC) ∆u + u − u3 = 0 in Rn

Euler-Lagrange equation for the energy functional

J(u) =
1

2

∫
|∇u|2 +

1

4

∫
(1− u2)2

u = +1 and u = −1 are global minimizers of the energy
representing, in the gradient theory of phase transitions, two
distinct phases of a material.



Of interest are solutions of (AC) that connect these two values.
They represent states in which the two phases coexist.

The case N = 1. The function

w(t) := tanh

(
t√
2

)
connects monotonically −1 and +1 and solves

w ′′ + w − w 3 = 0, w(±∞) = ±1, w ′ > 0.

For any p, ν ∈ RN , |ν| = 1, the functions

u(x) := w(z), z = (x − p) · ν

solve equation (AC). z = normal coordinate to the hyperplane
through p, unit normal ν.



De Giorgi’s conjecture (1978): Let u be a bounded solution of
equation

(AC) ∆u + u − u3 = 0 in RN ,

which is monotone in one direction, say ∂xN
u > 0. Then, at

least when N ≤ 8, there exist p, ν such that

u(x) = w( (x − p) · ν).



This statement is equivalent to:

At least when N ≤ 8, all level sets of u, [u = λ] must be
hyperplanes.

Parallel to Bernstein’s conjecture for minimal surfaces which are
entire graphs.



Entire minimal graph in RN :

Γ = {(x ′,F (x ′)) ∈ RN−1 × R / x ′ ∈ RN−1}

where F solves the minimal surface equation

HΓ := ∇ ·

(
∇F√

1 + |∇F |2

)
= 0 in RN−1. (MS)



Bernstein’s conjecture: All entire minimal graphs are
hyperplanes, namely any entire solution of (MS) must be a linear
affine function:

True for N ≤ 8:
• Bernstein (1910), Fleming (1962) N = 3
• De Giorgi (1965) N = 4
• Almgren (1966), N = 5
• Simons (1968), N = 6, 7, 8.

False for N ≥ 9: Bombieri-De Giorgi-Giusti found a
counterexample (1969).



De Giorgi’s Conjecture: u bounded solution of (AC), ∂xN
u > 0

then level sets [u = λ] are hyperplanes.

• True for N = 2. Ghoussoub and Gui (1998).

• True for N = 3. Ambrosio and Cabré (1999).

• True for 4 ≤ N ≤ 8 (Savin (2009), thesis (2003)) if in addition

lim
xN→±∞

u(x ′, xN) = ±1 for all x ′ ∈ RN−1.



The Bombieri-De Giorgi-Giusti minimal graph:

Explicit construction by super and sub-solutions. N = 9:

H(F ) := ∇ ·

(
∇F√

1 + |∇F |2

)
= 0 in R8.

F : R4 × R4 → R, (u, v) 7→ F (|u|, |v|).

In addition, F (|u|, |v|) > 0 for |v| > |u| and

F (|u|, |v|) = −F (|v|, |u|).



Polar coordinates:

|u| = r cos θ, |v| = r sin θ, θ ∈ (0,
π

2
)

Mean curvature operator at F = F (r , θ)

H[F ] =
1

r 7 sin3 2θ
∂r

 Fr r 7 sin3 2θ√
1 + F 2

r + r−2F 2
θ



+
1

r 7 sin3 2θ
∂θ

 Fθr 5 sin3 2θ√
1 + F 2

r + r−2F 2
θ

 .

Separation of variables F0(r , θ) = r 3g(θ).



H[F0] =
1

r 7 sin3 2θ
∂r

(
3r 7g sin3 2θ√

r−4 + 9g 2 + g ′2

)

+
1

r sin3 2θ
∂θ

(
g ′ sin3 2θ√

r−4 + 9g 2 + g ′2

)
.

As r →∞ the equation H(F0) = 0 becomes the ODE

21g sin3 2θ√
9g 2 + g ′2

+

(
g ′ sin3 2θ√
9g 2 + g ′2

)′
= 0 in

(π
4
,
π

2

)
,

g
(π

4

)
= 0 = g ′

(π
2

)
.

This problem has a solution g positive in (π4 ,
π
2 ).



We check directly that

• F0(r , θ) = r 3g(θ) is a subsolution of the minimal surface
equation H(F ) = 0: H(F0) ≥ 0

• F0(r , θ) accurate approximation to a solution of the minimal
surface equation:

H(F0) = O(r−5) as r → +∞.



The supersolution of Bombieri, De Giorgi and Giusti can be refined
to yield that F0 gives the precise asymptotic behavior of F .

Refinement of asymptotic behavior of BDG surface x9 = F (r , θ),
(D., Kowalczyk, Wei (2008)):

For θ ∈ (π4 ,
π
2 ) we have, for 0 < σ < 1 and all large r ,

F0(r , θ) ≤ F (r , θ) ≤ F0(r , θ) + Ar−σ as r → +∞.



The BDG surface:



Let νε(y) := ν(εy), y ∈ Γε = ε−1Γ be unit normal with ν9 > 0.
Local coordinates in in a tubular neighborhood of Γε:

x = y + ζνε(y), y ∈ Γε, |ζ| < δ

ε



Theorem (D., Kowalczyk, Wei (2008))

Let Γ be a BDG minimal graph in R9 and Γε := ε−1Γ. Then for
all small ε > 0, there exists a bounded solution uε of (AC ),
monotone in the x9-direction, with

uε(x) = w(ζ) + O(ε), x = y + ζν(εy), y ∈ Γε, |ζ| <
δ

ε
,

lim
x9→±∞

u(x ′, x9) = ±1 for all x ′ ∈ R8.

uε is a “counterexample” to De Giorgi’s conjecture in dimension 9
(hence in any dimension higher).



Sketch of the proof
Let Γ be a fixed BDG graph and let ν designate a choice of its unit
normal. Local coordinates near Γ:

x = y + zν(y), y ∈ Γ, |z | < δ

Laplacian in these coordinates:

∆x = ∂zz + ∆Γz − HΓz (y) ∂z

Γz := {y + zν(y) / y ∈ Γ}.

∆Γz is the Laplace-Beltrami operator on Γz acting on functions of
y , and HΓz (y) its mean curvature at the point y + zν(y).



Let k1, . . . , kN denote the principal curvatures of Γ. Then

HΓz =
8∑

i=1

ki

1− zki

For later reference, we expand

HΓz (y) = HΓ(y) + z |AΓ(y)|2 + z2
N∑

i=1

k3
i + · · ·

where

HΓ =
8∑

i=1

ki︸ ︷︷ ︸
mean curvature

, |AΓ|2 =
8∑

i=1

k2
i︸ ︷︷ ︸

norm second fundamental form

.



Letting f (u) = u − u3 the equation

∆u + f (u) = 0 in R9

becomes, for

u(y , ζ) := u(x), x = y + ζν(εy), y ∈ Γε, |ζ| < δ/ε,

ν unit normal to Γ with νN > 0,

S(u) := ∆u + f (u) =

∆
Γζε

u − εHΓεζ (εy) ∂ζu + ∂2
ζu + f (u) = 0.



I We look for a solution of the form (near Γε)

uε(x) = w(ζ − εh(εy)) + φ, x = y + ζν(εy)

for a function h defined on Γ, left as a parameter to be
adjusted and φ small.

I Let r(y ′, y9) = |y ′|. We assume a priori on h that

‖(1+r 3)D2
Γh‖L∞(Γ)+‖(1+r 2)DΓh‖L∞(Γ)+‖(1+r)h‖L∞(Γ) ≤ M

for some large, fixed number M.



Let us change variables to t = ζ − εh(εy), or

u(y , t) := u(x) x = y + (t + εh(εy)) ν(εy)

The equation becomes

S(u) = ∂ttu + ∆
Γζε

u − εHΓεζ (εy) ∂tu +

+ ε4|∇Γεζh(εy)|2∂ttu − 2ε3 〈∇Γεζh(εy), ∂t∇Γεζu〉

− ε3∆Γεζh(εy) ∂tu + f (u) = 0, ζ = t + εh(εy).

Look for solution uε of the form

uε(t, y) = w(t) + φ(t, y)

for a small function φ.



uε(t, y) = w(t) + φ(t, y)

The equation in terms of φ becomes

∂ttφ+ ∆Γεφ+ Bφ+ f ′(w(t))φ+ N(φ) + E = 0.

where B is a small linear second order operator, and

E = S(w(t)), N(φ) = f (w + φ)− f (w)− f ′(w)φ ≈ f ′′(w)φ2.



The error of approximation.

E := S(w(t)) =

ε4|∇Γεζh(εy)|2w ′′(t)− [ε3∆Γεζh(εy) + εHΓεζ (εy)] w ′(t),

and

εHΓεζ (εy) = ε2(t+εh(εy))|AΓ(εy)|2 +ε3(t+εh(εy))2
8∑

i=1

k3
i (εy)+· · ·

A crucial fact: (L. Simon (1989)) ki = O(r−1) as r → +∞. In
particular

|E (y , t)| ≤ Cε2r(εy)−2.



Equation

∂ttφ+ ∆Γεφ+ Bφ+ f ′(w(t))φ+ N(φ) + E = 0.

makes sense only for |t| < δε−1.

A gluing procedure reduces the full problem to

∂ttφ+ ∆Γεφ+ Bφ+ f ′(w)φ+ N(φ) + E = 0 in R× Γε,

where E and B are the same as before, but cut-off far away. N is
modified by the addition of a small nonlocal operator of φ.

We find a small solution to this problem in two steps.



Infinite dimensional Lyapunov-Schmidt reduction:

Step 1: Given the parameter function h, find a a solution
φ = Φ(h) to the problem

∂ttφ+ ∆Γεφ+ Bφ+ f ′(w(t))φ+ N(φ) + E =

c(y)w ′(t) in R× Γε,∫
R
φ(t, y)w ′(t) dt = 0 for all y ∈ Γε.

Step 2: Find a function h such that for all y ∈ Γε,

c(y) :=
1∫

R w ′2 dt

∫
R

(E + BΦ(h) + N(Φ(h))) w ′dt = 0.



For Step 1 we solve first the linear problem

∂ttφ+ ∆Γεφ+ f ′(w(t))φ = g(t, y)− c(y)w ′(t) in R× Γε

∫
R
φ(y , t)w ′(t) dt = 0 in Γε, c(y) :=

∫
R g(y , t)w ′(t) dt∫

R w ′2 dt
.

There is a unique bounded solution φ := A(g) if g is bounded.
Moreover, for any ν ≥ 0 we have

‖(1 + r(εy)ν)φ‖∞ ≤ C ‖(1 + r(εy))νg‖∞.

Γε ≈ RN−1 around each of its points as ε→ 0, in uniform way.
The problem is qualitatively similar to Γε replaced with RN−1.



Fact: The linear model problem

∂ttφ+ ∆yφ+ f ′(w(t))φ = g(t, y)− c(y)w ′(t) in RN

∫
R
φ(y , t)w ′(t) dt = 0 in RN−1, c(y) :=

∫
R g(y , t)w ′(t) dt∫

R w ′2 dt

has a unique bounded solution φ if g is bounded, and

‖φ‖∞ ≤ C ‖g‖∞.

Let us prove first the a priori estimate:



If the a priori estimate did not hold, there would exist

‖φn‖∞ = 1, ‖gn‖∞ → 0,

∂ttφn + ∆yφn + f ′(w(t))φn = gn(t, y),

∫
R
φn(y , t)w ′(t) dt = 0.

Using maximum principle and local elliptic estimates, we may
assume that φn → φ 6= 0 uniformly over compact sets where

∂ttφ+ ∆yφ+ f ′(w(t))φ = 0,

∫
R
φ(y , t)w ′(t) dt = 0.

Claim: φ = 0, which is a contradiction



A key one-dimensional fact: The spectral gap estimate.

L0(p) := p′′ + f ′(w(t))p

There is a γ > 0 such that if p ∈ H1(R) and
∫

R p w ′ dt = 0 then

−
∫

R
L0(p) p dt =

∫
R

(|p′|2 − f ′(w)p2) dt ≥ γ

∫
R

p2 dt .



Using maximum principle we find |φ(y , t)| ≤ Ce−|t|. Set
ϕ(y) =

∫
R φ

2(y , t) dt. Then

∆yϕ(y) = 2

∫
R
φ∆φ(y , t) dt + 2

∫
R
|∇yφ(y , t)|2 dt ≥

−2

∫
R
φ∂ttφ+ f ′(w)φ2 dt =

2

∫
R

(|φt |2 − f ′(w)φ2) dt ≥ γϕ(y).

−∆yϕ(y) + γϕ(y) ≤ 0

and ϕ ≥ 0 bounded, implies ϕ ≡ 0, hence φ = 0, a contradiction.
This proves the a priori estimate.



Existence: take g compactly supported. Set H be the space of all
φ ∈ H1(RN) with∫

R
φ(y , t)w ′(t) dt = 0 for all y ∈ RN−1.

H is a closed subspace of H1(RN).



The problem: φ ∈ H and

∂ttφ+ ∆yφ+ f ′(w(t))φ = g(t, y)− w ′(t)

∫
R g(y , τ)w ′(τ) dτ∫

R w ′2 dτ
,

can be written variationally as that of minimizing in H the energy

I (φ) =
1

2

∫
RN

|∇yφ|2 + |φt |2 − f ′(w)φ2 +

∫
RN

gφ

I is coercive in H thanks to the 1d spectral gap estimate.
Existence in the general case follows by the L∞-a priori estimate
and approximations.



We write the problem of Step 1,

∂ttφ+ ∆Γεφ+ Bφ+ f ′(w(t))φ+ N(φ) + E =

c(y)w ′(t) in R× Γε,∫
R
φ(t, y)w ′(t) dt = 0 for all y ∈ Γε,

in fixed point form

φ = A(Bφ+ N(φ) + E ).

Contraction mapping principle implies the existence of a unique
solution φ := Φ(h) with

‖(1 + r 2(εy))φ‖∞ = O(ε2).



Finally, we carry out Step 2. We need to find h such that∫
R

[E + BΦ(h) + N(Φ(h))] (ε−1y , t) w ′(t) dt = 0 ∀ y ∈ Γ.

Since

−E (ε−1y , t) = ε2tw ′(t) |AΓ(y)|2+ε3[∆Γh(y)+|AΓ(y)|2h(y) ] w ′(t)

+ ε3t2w ′(t)
8∑

j=1

kj(y)3 + smaller terms

the problem becomes

JΓ(h) := ∆Γh + |AΓ|2h = c
8∑

i=1

k3
i +N (h) in Γ,

where N (h) is a small operator.



Fact: Let 0 < σ < 1. Then if

‖(1 + r 4+σ) g‖L∞(Γ) < +∞

there is a unique solution h = T (g) to the problem

JΓ[h] := ∆Γh + |AΓ(y)|2h = g(y) in Γ.

with

‖(1 + r)2+σ h‖L∞(Γ) ≤ C ‖(1 + r)4+σ g‖L∞(Γ) .



We want to solve

JΓ(h) := ∆Γh + |AΓ|2h = c
8∑

i=1

k3
i +N (h) in Γ,

using a fixed point formulation for the operator T above.
In N (h) everything decays O(r−4−σ), but we only have

8∑
i=1

k3
i = O(r−3).



Two more facts:

I There is a function p smooth, with
p(π2 − θ) = −p(θ) for all θ ∈ (0, π4 ) such that

8∑
i=1

ki (y)3 =
p(θ)

r 3
+ O(r−4−σ).

I There exists a smooth function h0(r , θ) such that
h0 = O(r−1) and for some σ > 0,

JΓ[h0] =
p(θ)

r 3
+ O(r−4−σ) as r → +∞.



JΓ(h) := ∆Γh + |AΓ|2h = c
8∑

i=1

k3
i + O(r−4−σ) in Γ.

Our final problem then becomes h = h0 + h1 where

h1 = T (O(r−4−σ) +N (h0 + h1))

which we can solve for h1 = O(r−2−σ), using contraction mapping
principle, keeping track of Lipschitz dependence in h of the objects
involved in in N (h).



The Jacobi operator

JΓ[h] = ∆Γh + |AΓ(y)|2h,

is the linearization of the mean curvature, when normal
perturbations are considered. In the case of a minimal graph
x9 = F (x ′), if we linearize along vertical perturbations we get

H ′(F )[φ] = ∇ ·

(
∇φ√

1 + |∇F |2
− (∇F · ∇φ)

(1 + |∇F |2)
3
2

∇F

)
.

These two operators are linked through the relation

JΓ[h] = H ′(F )[φ], where φ(x ′) =
√

1 + |∇F (x ′)|2 h(x ′,F (x ′)).

The relation JΓ0 [h] = H ′(F0)[
√

1 + |∇F0|2h] also holds.



Next we discuss the proofs of the facts used above:

1. If g = O(r−4−σ) there is a unique solution to JΓ[h] = g with

‖(1 + r)2+σ h‖L∞(Γ) ≤ C ‖(1 + r)4+σ g‖L∞(Γ) .

2. There is a function p smooth, with
p(π2 − θ) = −p(θ) for all θ ∈ (0, π4 ) such that

8∑
i=1

ki (y)3 =
p(θ)

r 3
+ O(r−4−σ).

3. There exists h0(r , θ) such that h0 = O(r−1) and

JΓ[h0] =
p(θ)

r 3
+ O(r−4−σ) as r → +∞.



The closeness between JΓ0 and JΓ .

Let p ∈ Γ with r(p)� 1. There is a unique π(p) ∈ Γ0 such that
π(p) = p + tpν(p).
Let us assume

h̃(π(y)) = h(y), for all y ∈ Γ, r(y) > r0.

Then
JΓ[h](y) =

[JΓ0 [h0]+O(r−2−σ)D2
Γ0

h0+O(r−3−σ)DΓ0h0+O(r−4−σ)h0 ] (π(y)) .

We keep in mind that JΓ0 [h] = H ′(F0)[
√

1 + |∇F0|2h] and make
explicit computations.



We compute explicitly

H ′(F0)[φ] =
1

r 7 sin3(2θ)

{
(9g 2 w̃ r 3φθ)θ + (r 5g ′

2
w̃φr )r

− 3(gg ′ w̃ r 4φr )θ − 3(gg ′ w̃ r 4φθ)r

}
+

1

r 7 sin3(2θ)

{
(r−1 w̃φθ)θ + (r w̃φr )r

}
,

where

w̃(r , θ) :=
sin3 2θ

(r−4 + 9g 2 + g ′2)
3
2

.



Further expand

L[φ] := H ′(F0)[φ] := L0 + L1,

with

L0[φ] =
1

r 7 sin3(2θ)

{
(9g 2 w̃0r 3φθ)θ + (r 5g ′

2
w̃0φr )r

− 3(gg ′ w̃0r 4φr )θ − 3(gg ′ w̃0r 4φθ)r

}
+

1

r 7 sin3(2θ)

{
(r−1 w̃0φθ)θ + (r w̃0φr )r

}
,

where

w̃0(θ) :=
sin3 2θ

(9g 2 + g ′2)
3
2

.



An important fact: If 0 < σ < 1 there is a positive supersolution
φ̄ = O(r−σ) to

−L[φ̄] ≥ 1

r 4+σ
in Γ

We have that

L0[r−σq(θ)] =
1

r 4+σ

9g
4−σ

3

sin3 2θ

[
g

2
3 sin3 2θ

(9g 2 + g ′2)
3
2

( g
σ
3 q )′

]′
=

1

r 4+σ
.

if and only if q(θ) solves the ODE[
g

2
3 sin3 2θ

(9g 2 + g ′2)
3
2

( g
σ
3 q )′

]′
=

1

9
sin3 2θg(θ)−

4−σ
3 , .



A solution in (π4 ,
π
2 ):

q(θ) =
1

9
g−

σ
3 (θ)

∫ θ

π
4

( 9g 2 + g ′2 )
3
2

g
2
3 sin3(2s)

ds

∫ π
2

s
g−

4−σ
3 (τ) sin3(2τ) dτ .

Since g ′(π4 ) > 0, q is defined up to π
4 and can be extended

smoothly (evenly) to (0, π4 ). Thus and φ̄ := q(θ)r−σ satisfies

−L0(φ̄) = r−4−µ in R8.

We can show that also −L(φ̄) ≥ r−4−σ for all large r . Thus

−JΓ0 [h̄] ≥ r−4−σ, h̄ =
φ√

1 + |∇F0|2
∼ r−2−σ



The closeness of JΓ and JΓ0 makes h̄ to induce a positive
supersolution ĥ ∼ r−2−σ to

−JΓ[ĥ] ≥ r−4−σ in Γ.

We conclude by a barrier argument that Fact 1 holds: if
‖(1 + r 4+σ) g‖L∞(Γ) < +∞ there is a unique h with JΓ[h] = g and

‖(1 + r)2+σ h‖L∞(Γ) ≤ C ‖(1 + r)4+σ g‖L∞(Γ) .



Let k0
i (y) be the principal curvatures of Γ0.

The following hold:

•
8∑

i=1

ki (y)3 =
8∑

i=1

k0
i (π(y))3 + O(r−4−σ)

•
8∑

i=1

k0
i (y)3 =

p(θ)

r 3
+ O(r−4−σ)

p smooth, p(π2 − θ) = −p(θ) for all θ ∈ (0, π4 ).

We claim: there exists a smooth function h∗(r , θ) such that
h∗ = O(r−1) and for some σ > 0,

JΓ0 [h∗] =
p(θ)

r 3
+ O(r−4−σ) as r → +∞.



Setting h0(y) = h∗(π(y)) we then get h0 = O(r−1) and

JΓ(h) := ∆Γh + |AΓ|2h = c
8∑

i=1

k3
i + O(r−4−σ) in Γ,

namely the validity of Fact 2.

Construction of h∗.
We argue as before (separation of variables) to find q(θ) solution of

L0(r q(θ)) =
p(θ)

r 3
, θ ∈ (

π

4
,
π

2
).

q(θ) = −1

9
g

1
3 (θ)

∫ θ

π
4

( 9g 2+g ′
2

)
3
2

g−
2
3 ds

sin3(2s)

∫ π
2

s
p(τ)g−

5
3 (τ) sin3(2τ) dτ .



Let η(s) = 1 for s < 1, = 0 for s > 2 be a smooth cut-off function.
Then

φ0(r , θ) := (1− η(s)) r q(θ) in (
π

4
,
π

2
), s = r 2g(θ).

satisfies

L(φ0) =
p(θ)

r 3
+ O(r−4− 1

3 ).

Finally, the function

h∗ =
φ0√

1 + |∇F0|2
= O(r−1)

extended oddly through θ = π
4 satisfies

JΓ0 [h∗] =
p(θ)

r 3
+ O(r−4− 1

3 )

as desired.



Loosely speaking: The method described above applies to find an
entire solution uε to ∆u + u − u3 = 0 with transition set near
Γε = ε−1Γ whenever Γ is a minimal hypersurface in RN , that splits
the space into two components, and for which enough control at
infinity is present to invert globally its Jacobi operator.



An important example for N = 3: finite Morse index
solutions.

Theorem (D., Kowalczyk, Wei (2009))

Let Γ be a complete, embedded minimal surface in R3 with finite
total curvature:

∫
Γ |K | <∞,K Gauss curvature.

If Γ is non-degenerate, namely its bounded Jacobi fields originate
only from rigid motions, then for small ε > 0 there is a solution uε
to (AC) with

uε(x) ≈ w(t), x = y + tνε(y).

In addition i(uε) = i(Γ) where i denotes Morse index.

Examples: nondegeneracy and Morse index are known for the catenoid
and Costa-Hoffmann-Meeks surfaces (Nayatani (1990), Morabito,
(2008)).



Γ = a catenoid: ∃ uε(x) = w(ζ) + O(ε), x = y + tνε(y).

uε axially symmetric: uε(x) = uε(
√

x2
1 + x2

2 , x3), x3 rotation axis

coordinate. i(uε) = 1



Γ = CHM surface genus ` ≥ 1:

∃ uε(x) = w(ζ) + O(ε), x = y + ζνε(y). i(uε) = 2`+ 3.



• Nondegeneracy: The only nontrivial bounded solutions of

JΓ(φ) = ∆Γφ− 2Kφ = 0

arise from translations and rotation about the common symmetry
axis (x3) of the ends: νi (x) i = 1, 2, 3, x2ν1(x)− x1ν2(x).

• i(Γ), the Morse index of Γ, is the number of negative eigenvalues
of JΓ in L∞(Γ). This number is finite⇐⇒ Γ has finite total
curvature.

• i(Γ) = 0 for the plane, = 1 for the catenoid and = 2`+ 3 for the
CHM surface genus `.



Morse index of a solution u of (AC), i(u): roughly, the number of
negative eigenvalues of the linearized operator, namely those of the
problem

∆φ+ (1− 3u2)φ+ λφ = 0 φ ∈ L∞(RN).

De Giorgi solution: “stable”, i(u) = 0 since λ = 0 is an eigenvalue
with eigenfunction ∂xN

u > 0.

i(u) = 0 =⇒ DG statement for N = 2 (Dancer). Open if N ≥ 3.

A recent result: i(u) = 0 does not imply DG statement for N = 8
(Example by Pacard and Wei).



Another application of the BDG minimal graph:
Overdetermined semilinear equation
Ω smooth domain, f Lipschitz

∆u + f (u) = 0, u > 0 in Ω, u ∈ L∞(Ω) (S)

u = 0, ∂νu = constant on ∂Ω

Let us assume that (S) is solvable. What can we say about the
geometry of Ω?

Serrin (1971) proved that if Ω is bounded and there is a solution
to (S) then Ω must be a ball.

We consider the case of an entire epigraph

Ω = {(x ′, xN) / x ′ ∈ RN−1, xN > ϕ(x ′)}, Γ = ∂Ω.



Ω = {(x ′, xN) / x ′ ∈ RN−1, xN > ϕ(x ′)}, Γ = ∂Ω.

I Berestycki, Caffarelli and Nirenberg (1997) proved that if ϕ is
Lispchitz and asymptotically flat then it must be linear and u
depends on only one variable. They conjecture that this
should be true for any arbitrary smooth function ϕ.

I Farina and Valdinoci (2009) lifted asymptotic flatness for
N = 2, 3 and for N = 4, 5 and f (u) = u − u3.



Theorem (D., Pacard, Wei (2010))

In Dimension N ≥ 9 there exists a solution to Problem (S) with
f (u) = u − u3, in an entire epigraph Ω which is not a half-space.

The proof consists of finding the region Ω in the form

∂Ω = {y + εh(εy)ν(εy) / y ∈ Γε}.

for h a small decaying function on Γ. Here Γ is a BDG graph.
We set

u0(x) = w(t), x = y + (t + εh(εy))ν(εy) Ω = {t > 0}.



At main order φ should satisfy

∂ttφ+ ∆Γεφ+ f ′(w(t))φ = E

φ(0, y) = 0, φt(0, y) =≈ αε = constant

E = ∆u0 + f (u0) =

ε4|∇Γεζh(εy)|2w ′′(t)− [ε3∆Γεζh(εy) + εHΓεζ (εy)] w ′(t),

E = εHΓ(εy) w ′(t) + O(ε2)



The construction carries over for regions whose boundaries are
more general surfaces.

Let us assume, more generally that Γ is a smooth surface such that

HΓ ≡ H = constant

Namely Γ is a constant mean curvature surface.

For x = y + ε(t + εh(εy)), we look now for a solution for t > 0
with

u(t, y) = w(t) + φ(t, y), φ(0, y) = 0.



Imposing α = (H/w ′(0))
∫∞

0 w ′(t)2dt. we can solve

ψ′′ + f ′(w(t))ψ = Hw ′(t), t > 0, ψ(0) = 0, ψ′(0) = α

which is solvable for ψ bounded. Then the approximation
u1(x) = w(t) + εψ(t) produces a new error of order ε2. And the
equation for φ = εψ(t) + φ1 now becomes

∂ttφ1 + ∆Γεφ1 + f ′(w(t))φ1 = E1 = O(ε2)

φ1(0, y) = 0, φ1,t(0, y) = 0



The construction follows a scheme similar to that for the entire
solution, but it is more subtle in both theories needed in Steps 1
and 2.



The case N = 2: Very few solutions known with 1 ≤ i(u) < +∞.

• Dang, Fife, Peletier (1992). The cross saddle solution:
u(x1, x2) > 0 for x1, x2 > 0,

u(x1, x2) = −u(−x1, x2) = −u(x1,−x2).

Nodal set two lines (4 ends). Super-subsolutions in first quadrant.

• Alessio, Calamai, Montecchiari (2007). Extension: saddle
solution with dihedral symmetry. Nodal set k lines (2k ends),
k ≥ 2. Presumably i(u) = k − 1.



The saddle solutions



A result: Existence of entire solutions with embedded level set and
finite number of transition lines of ∆u + u − u3 = 0 in R2:

Solutions with k “nearly parallel” transition lines are found for any
k ≥ 1.



Theorem ( del Pino, Kowalczyk, Pacard, Wei (2007) )

If f satisfies
√

2

24
f ′′(z) = e−2

√
2f (z), f ′(0) = 0,

and fε(z) :=
√

2 log 1
ε + f (εz), then there exists a solution uε to

(AC) in R2 with

uε(x1, x2) = w(x1 + fε(x2) ) + w(x1 − fε(x2) − 1 + o(1)

as ε→ 0+. Here w(s) = tanh(s/
√

2).

This solution has 2 transition lines.

f (z) = A|z |+ B + o(1) as z → ±∞.



More in general: the equilibrium of k far-apart, embedded transition

lines is governed by the Toda system, a classical integrable model for

scattering of particles on a line under the action of a repulsive

exponential potential:



uε(x1, x2) =
k∑

j=1

(−1)j−1w(x1 − fε,j(x2) ) − 1

2
(1 + (−1)k) + o(1)



The Toda system:

√
2

24
f ′′j = e−

√
2(fj−fj−1) − e−

√
2(fj+1−fj ), j = 1, . . . k ,

f0 ≡ −∞, fk+1 ≡ +∞.

Given a solution f (with asymptotically linear components), if we
scale

fε,j(z) :=
√

2 (j − k + 1

2
) log

1

ε
+ fj(εz),

then there is a solution with k transitions:

uε(x1, x2) =
k∑

j=1

(−1)j−1w(x1 − fε,j(x2) ) − 1

2
(1 + (−1)k) + o(1)



I Pacard and Ritoré (2002) found a solution with a transition
layer across a nondegenerate minimal submanifold of
codimension 1 in a compact manifold.

I Kowalczyk (2002) found such a solution associated to a
nondegenerate segment of a planar domain, with Neumann
boundary conditions. D., Kowalczyk, Wei (2005) found
multiple interfaces in that setting, with equilibrium driven by
the Toda system.

I We believe the nodal set of any finite Morse index solutions in
R2 must be asymptotic to an even, finite number of rays.



We conjecture: The 4-end (two-line) solution is a limit case of a
continuum of solutions with Morse index 1 that has the cross
saddle as the other endpoint All intermediate slopes missing. This
is also the case for k > 2.



2-line transition layer and 4 end saddle: Do they connect?



Do they connect?



General 2k-end



Some evidence:
A result: (D., Kowalczyk, Pacard) given a nondegenerate 2k-end
solution u, the class of all 2k-end solutions nearby constitutes a
2k-dimensional manifold.

This is the case for the solution with k nearly parallel transition
lines and the cross saddle (Kowalczyk, Liu (2009)). For 2
transition lines we thus have one parameter (ε) besides translations
and rotations.


