MA609 Análisis II. Semestre 2010-02

Profesor: Rafael Correa Auxiliares: Cristopher Hermosilla y Emilio Vilches

Trabajo Dirigido # 1

23 de agosto de 2010

- **P1.** Sea $(X, \|\cdot\|)$ un espacio de Banach. Pruebe que una sucesión $(x_n)_{n\in\mathbb{N}}$ converge a $x\in X$ si y sólo si $x^*(x_n)\to x^*(x)$ uniformemente sobre $x^*\in\partial B_{X^*}(0,1)$.
- P2. Series de Neumann y aproximaciones sucesivas

Sea E un espacio de Banach , $A:E\to E$ un operador lineal continuo tal que $\|A\|<1$ y sea I el operador identidad en E.

a) Pruebe que I-A posee una inversa continua sobre E dada por la serie de Neumann:

$$(I-A)^{-1} = \sum_{k=0}^{\infty} A^k$$

y satisface:

$$||(I-A)^{-1}|| \le \frac{1}{1-||A||}.$$

b) Pruebe usando el teorema de punto fijo de Banach que la ecuación

$$\varphi - A\varphi = f$$

posee una única solución para todo $f \in E$.

- c) Dé un esquema iterativo para encontrar la solución de la ecuación.
- d) Describa la ecuación y el método iterativo de resolución para el operador $J: \mathcal{C}([0,1]) \to \mathcal{C}([0,1])$ definido por:

$$(J(f))(x) = \int_0^1 K(x, y)f(y)dy$$

con $K:[0,1]\times[0,1]$ continua y tal que: $\sup_{x\in[0,1]}\int_0^1|K(x,y)|dy<1.$

P3. Definimos E el espacio de funciones continuas $f:[0,1]\to\mathbb{C}$ tales que

$$||f||_E = \sup_{t \in (0,1]} \frac{|f(t)|}{t} < \infty$$

 $(E, \|\cdot\|_E)$ es un espacio de Banach sobre \mathbb{C} .

Definimos $Tf(x) = \frac{1}{x} \int_0^x f(t) dt$.

a) Pruebe que $T: E \to E$ y que $||T|| \le 1/2$. Para $\lambda \in \mathbb{C}$, $\text{Re}(\lambda) > 0$ definimos

$$\varphi_{\lambda}(t) = t^{\lambda}, \quad t \in (0, 1].$$

b) Probar que si $Re(\lambda) \geq 1$ entonces $\varphi_{\lambda} \in E$ y que

$$T\varphi_{\lambda} = \frac{1}{\lambda + 1}\varphi_{\lambda}.$$

c) Probar que si $\text{Re}(\lambda) < 1$ entonces $T - \frac{1}{1+\lambda}I$ es inyectiva.

Hint: resolver la ecuación

$$\lambda u - tu' = 0 \quad \text{in } (0, 1]$$

utilizando el factor integrante $t^{-\lambda-1}$.

- d) Probar que si $\operatorname{Re}(\lambda) < 1$ entonces $T \frac{1}{1+\lambda}I$ es sobreyectiva.
- e) Encuentre $\sigma(T)$, indicando los valores propios de T. ¿Es T compacto?. Pruebe que

$$||T|| = 1/2$$

- **P4.** a) Sea X evn de dimensión infinita, pruebe que si X^* es separable entonces X también, para ello :
 - (i) Sea $\langle f_n \rangle_{n \in \mathbb{N}}$ denso en X^* . Demuestre la existencia de $\{x_n\}_{n \in \mathbb{N}}$ unitarios tales que $|f_n(x_n)| \geq \frac{1}{2} \|f_n\|$.
 - (ii) Demuestre que $\langle \{x_n\}_{n\in\mathbb{N}} \rangle$ es denso en X. *Hint:* Proceda por contradicción y utilice un corolario de Hahn-Banach.
 - (iii) Concluya.
 - b) Probaremos ahora que el recíproco no es cierto. Para esto consideramos el espacio ℓ^1 y probaremos que su dual se identifica con ℓ^{∞} , proponiendo la isometría:

$$\Phi: \ell^{\infty} \longrightarrow (\ell^{1})^{*}$$

$$a = (a_{i})_{i \in \mathbb{N}} \longrightarrow \varphi_{a}$$

con $\varphi_a(x_i)_i = \sum_{i \in \mathbb{N}} a_i x_i$. Pruebe que:

- (i) $\varphi_a \in (\ell^1)^*$ y que Φ es una isometría.
- (ii) Pruebe que Φ es sobreyectiva. Para esto se recomienda construir una preimagen de un elemento $x' \in (\ell^1)^*$ a través de sus evaluaciones sobre la base canónica $a_i := x'(e_i)$, probar que esto entrega una sucesión a acotada y argumentando sobre un denso apropiado concluir que $\Phi(a) = x'$.
- (iii) Demuestre que ℓ^{∞} no es separable. Hint: Considere $D = \{0,1\}^{\mathbb{N}}$ y note que para todo par de puntos $a,b \in D, a \neq b$ se tiene que $||a-b||_{\infty} = 1$.
- (iv) Con esto observe que Φ es la identificación entre ambos espacios, y usando que l^{∞} no es separable concluya.