MA57H Tópicos en Análisis Convexo I. Semestre 2010-02

Profesor: Rafael Correa Auxiliares: Cristopher Hermosilla y Emilio Vilches

Auxiliar 4

Miércoles 20 de Octubre de 2010

P1. Continuidad de funciones convexas.

- a) Sean K un subconjunto convexo no vacío de un espacio vectorial normado $(X, \|\cdot\|)$ y f una función convexa de K en \mathbb{R} . Denotamos por int K el interior de K. Supongamos que existe un punto $x_0 \in \text{int } K$ tal que f es acotada en una vecindad de x_0 , mas precisamente, existe r > 0 y $M \in \mathbb{R}$ tales que la bola cerrada $\overline{B}(x_0, r)$ de centro x_0 y radio r esta contenida en K y $f(x) \leq M$ para todo $x \in \overline{B}(x_0, r)$.
 - 1) Mostrar que para todo $x \in K$

$$f(x_0) \le f(x) + \frac{M - f(x_0)}{r} ||x - x_0||.$$

2) Mostrar que para todo $x \in B(x_0, r)$

$$f(x) \le f(x_0) + \frac{M - f(x_0)}{r} ||x - x_0||.$$

- 3) Deducir que f es continua en x_0 .
- 4) Mostrar que f es acotada en una vecindad de todo punto de int K y deduzca que f es continua sobre int K.
- 5) Muestre que f es localmente lipschitziana sobre int K, es decir, para todo $x \in \text{int } K$ existe r > 0 y L > 0 tal que la bola B(x, r) esta contenida en K y

$$\forall x_1, y_1 \in B(x, r), \quad |f(x_1) - f(x_2)| \le L||x_1 - x_2||.$$

- b) Sea K un abierto convexo no vacío de \mathbb{R}^n y f una función convexa de K en \mathbb{R} . Muestre que f es continua sobre K y localmente lipschitziana sobre K.
- P2. Ejemplos de funciones convexas. Sean X, Y dos e.v.n. y $(H, \langle \cdot, \cdot \rangle)$ un espacio de Hilbert.
 - a) La función indicatriz de un conjunto $\emptyset \neq C \subset X$, es la función definida por

$$I_C(x) := \begin{cases} 0 & \text{si } x \in C \\ +\infty & \text{si } x \notin C, \end{cases}$$

Pruebe que I_C es convexa si y sólo si C es convexo.

b) Sean $g:[a,b]\to\mathbb{R}$ una función creciente y $c\in[a,b]$. Pruebe que la función $f:[a,b]\to\mathbb{R}$ definida por

$$f(x) = \int_{c}^{x} g(t)dt$$

es convexa

c) Sea $F: X \times Y \to \overline{\mathbb{R}}$ una función convexa. Pruebe que la función marginal $p: Y \to \overline{\mathbb{R}}$ definida por

$$p(y) = \inf_{x \in X} F(x, y)$$

es convexa.

d) Sea $C \subset X \times \mathbb{R}$ un convexo. Pruebe que la función $f: X \to \overline{\mathbb{R}}$ definida por

$$f(x) := \inf\{\lambda \in \mathbb{R} \mid (x, \lambda) \in C\}$$

es convexa.

e) Sean $f\colon X\to \overline{\mathbb{R}}$ una función convexa y $A\colon X\to Y$ una aplicación lineal. Pruebe que la función $g\colon Y\to \overline{\mathbb{R}}$ definida por

$$g(y) = \inf\{f(x) \mid Ax = y\}$$

es convexa.

f)Sean $f,g\colon X\to\overline{\mathbb{R}}$ funciones convexas. Pruebe que la ínf-convolución de f con g definida por

$$f\Box g := \inf\{f(y) + g(x - y), y \in X\}$$

es convexa.

g) Sea $a: X \times X \to \mathbb{R}$ una forma bilineal simétrica sobre X y $A: X \to X$ una aplicación lineal tal que $a(x,Ax) \geq 0$ para todo $x \in X$. Pruebe que la función $f: X \to \mathbb{R}$ definida por

$$f(x) := a(x, Ax)$$

es convexa.

h) Sea $\{f_i \colon X \to \overline{\mathbb{R}}, i \in I\}$ un conjunto arbitrario de funciones convexas. Pruebe que $\sup_{i \in I} f_i \colon X \to \overline{\mathbb{R}},$ definida por

$$\left(\sup_{i\in I} f_i\right)(x) := \sup_{i\in I} f_i(x)$$

es convexa.

i) Si $f: H \to \overline{\mathbb{R}}$ convexa. Pruebe que la conjugada de Legendre-Fenchel $f^*: H^* \to \overline{\mathbb{R}}$ definida por

$$f^*(x^*) := \sup\{\langle x^*, y \rangle - f(y) \mid y \in H\}$$

es convexa.

j) Sea $\emptyset \neq C \subset H.$ Pruebe que la función de Asplund definida por

$$f(x) := ||x||^2 - d^2(x, C).$$

es convexa.

k) Sea $f\colon X\to \overline{\mathbb{R}}$. Pruebe que la función perspectiva de una función convexa f, definida por $g\colon X\times \mathbb{R}_+\to \overline{\mathbb{R}}$ con

$$g(x,t) := tf(x/t)$$

es convexa.