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Abstract—This paper presents an efficient mapping scheme for the multilayer perceptron (MLP) network trained using back-

propagation (BP) algorithm on network of workstations (NOWs). Hybrid partitioning (HP) scheme is used to partition the network and

each partition is mapped on to processors in NOWs. We derive the processing time and memory space required to implement the

parallel BP algorithm in NOWs. The performance parameters like speed-up and space reduction factor are evaluated for the HP

scheme and it is compared with earlier work involving vertical partitioning (VP) scheme for mapping the MLP on NOWs. The

performance of the HP scheme is evaluated by solving optical character recognition (OCR) problem in a network of ALPHA machines.

The analytical and experimental performance shows that the proposed parallel algorithm has better speed-up, less communication

time, and better space reduction factor than the earlier algorithm. This paper also presents a simple and efficient static mapping

scheme on heterogeneous system. Using divisible load scheduling theory, a closed-form expression for number of neurons assigned

to each processor in the NOW is obtained. Analytical and experimental results for static mapping problem on NOWs are also

presented.

Index Terms—Multilayer perceptron, back-propagation, network of workstation, optical character recognition, performance measures,

divisible load theory.
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1 INTRODUCTION

IN the last few decades, extensive research has been
carried out in developing the theory and the application

of Artificial Neural Networks (ANNs). ANN has emerged
to be a powerful mathematical tool for solving various
practical problems like pattern classification and recogni-
tion [1], medical imaging [2], speech recognition [3], [4], and
control [5]. Of the many Neural Network (NN) architectures
proposed, the Multilayer Perceptron (MLP) with Back-
Propagation (BP) learning algorithm is found to be effective
for solving a number of real world problems. The speed and
storage space requirements to implement this can be
circumvented using parallel computing techniques [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21]. Since ANNs are inherently suitable for parallel
implementation, a lot of research is being carried out to
implement ANN in commercially available parallel com-
puters like Distributed-memory Message Passing Multi-
processor (DMPM) [6], Connection machine [7], the warp
[8], the MPP [9], and the BBN Butterfly [10]. The MLP
network trained using BP algorithm can be parallelized by
partitioning the number of patterns [11], [12], or by
partitioning the network [20], [21], [22], [23], [24], [25],
[26], or by combination [11]. Several researchers have
developed parallel algorithms for implementing in different
types of parallel computers like transputers [16], systolic
arrays [18], [20], multiple bus system [14], and hypercube
[11], [27] for diverse range of applications. A detailed

survey on parallel implementations of BP algorithm in a
variety of computer architectures is given in [16].

As the cost of dedicated parallel machines is high,
computing on a network-of-workstations (NOWs) is proven
to be economical alternative for a wide range of engineering
applications [24]. The most important feature for these
computing networks is that it enables the use of existing
resources. Furthermore, these resources can be shared with
the other applications that require them. For a small
application, computing on NOW is comparable with
hypercube multiprocessor [25]. Mapping fully connected
MLP on homogeneous SUN 3/50 workstation is considered
in [26].

In [26], the vertical partitioning (VP) scheme is used to
divide the MLP into m equal subnetworks and each
subnetwork is mapped on a processor in the network. In
many real world problems, MLP with an equal number of
neurons in all layers is quite uncommon. From a practical
point of view, the requirement of homogeneous NOW setup
may not be viable and finding optimal mapping of NN
architecture is computationally intensive. The intention of
the present work is to remove these restrictions by focusing
on the development of a very efficient scheme for general
MLP network in heterogeneous NOWs. This paper also
provides a framework for comparing the proposed method
with existing scheme [26].

This paper presents a hybrid partitioning (HP) scheme for
general MLP networkwith parallel BP learning algorithm on
heterogeneous NOWs. The proposed HP scheme avoids
recomputation of weights and require less communication
cycle per pattern. The communication of data among the
processors in the computing network is carried out using
groupedAll-to-All broadcast (GAAB) scheme [29].Wederive
a closed-form expression for training single pattern inNOWs

24 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 1, JANUARY 2005

. The authors are with the Department of Aerospace Engineering, Indian
Institute of Science, Bangalore-560012, India.
E-mail: {suresh99, omkar, mani}@aero.iisc.ernet.in.

Manuscript received 28 Oct. 2003; revised 15 Mar. 2004; accepted 1 June
2004; published online 23 Nov. 2004.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0200-1003.

1045-9219/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society



and also obtain the performance parameters like speed-up,
space reduction factor, and optimal number of processors for
homogeneous environment. In order to compare the pro-
posedschemewithearlierVPscheme [26], the training timeof
VP scheme for single pattern in general MLP network is
derived and also the closed-form expression for the perfor-
mance parameters is obtained. The VP and HP scheme are
evaluated using optical character recognition problems in
homogeneous ALPHA workstations. The analytical and
experimental results show that the proposed HP scheme
performs better than the VP scheme.

Another important issue in parallel algorithm is mapping
the NN architecture onto the computing network. The
optimalmappingproblemdepends on the type of computing
network andworkloads. Based on the type of workloads, the
mapping scheme can be divided into static mapping and
dynamic mapping problems. In the case of static, the NN is
partitioned and mapped on to the computing network and
this partition remains until training process is completed. In
the case of the dynamic mapping problem, the NN partition
will change with time due to other workloads in the
computing network. The mapping problem is a nonlinear
mixed integer programming optimization problem with
communication and memory constraints. The optimal static
mappingofMLPnetwork inmulticomputers is formulatedas
mixed integer programming problem in [28]. The mapping
problem can be solved using approximate linear heuristic
optimizationmethods [14], [22]. An attempt to solve the static
mapping problem using genetic algorithm is described in
[16], [31]. Themappingproblemusing the approximate linear
heuristic methods and genetic algorithm is computationally
intensive.

In this paper, we also present a simple and computa-
tionally less intensive approach for static mapping problem
in NOWs. For static mapping to be meaningful, the
workstations are assumed to run in a single-user environ-
ment. The HP scheme provides a platform to formulate the
static mapping problem as scheduling divisible loads in
NOWs. In recent years, there is a great deal of attention
focused on divisible load scheduling problem in a dis-
tributed computing system/network, consisting of a num-
ber of processors interconnected through communication
links [33]. A divisible load can be divided into any number
of fractions and can be processed independently on the
processors as there are no precedence relationships. In other
words, divisible load has the property that all the elements
in the load require the same type of processing. Recent
research papers in divisible load theory can be found in
[34]. Using the concept of scheduling divisible loads, a
closed-form expression is derived for the number of
neurons assigned to each processor. The analytical and
experimental studies are carried out in a heterogeneous
ALPHA workstations. The results show that the HP scheme
using scheduling divisible loads is computationally less
intensive.

The use of computation intensive applications in NOWs
has the following advantages.NOWSprovide high-degree of
performance isolation, i.e., they allow analysis of behavior on
a node-by-node basis or factor-by-factor basis. NOWs
provide incremental scalability of hardware resources. Well
tuned parallel programs can be easily scaled to large
configurations because additional workstations can always
be added to NOW. The NOW also offer much greater

communication speed at lower price using switch-based
networks such as ATMs. NOWs also provide distributed
service and support, especially for file systems. The techno-
logical evolution allows NOW to support a variety of
disparate workloads, including parallel, sequential, and
interactive jobs, as well as scalable computation intensive
applications [35]. This paper provides a theoretical frame-
work on analytical performance estimation and comparison
of different parallel implementation of BP algorithm in
NOWs.

The paper is organized as follows: In Section 2, we
introduce the BP algorithm and mathematical model for
execution of the algorithm in a uniprocessor simulation.
Section 3 describes the proposed HP scheme and also
derives the training time required to execute the parallel
BP algorithm. In Section 4, we present an earlier VP scheme
and expression for training time. We compare the analytical
performances of both the schemes in Section 5. The optimal
mapping of proposed scheme in heterogeneous NOWs
using divisible load scheduling is presented in Section 6.
Experimental performances of both the schemes on NOWs
are presented in Section 7 and the results are discussed in
Section 8.

2 MATHEMATICAL MODEL FOR BP

In this paper, we consider a fully connected MLP network
trained using BP algorithm with patternwise approach. A
single hidden layer MLP network with a sufficient number
of hidden neurons are sufficient for approximating the
input-output relationship [32]. Hence, in our analysis, we
consider MLP with three layers (l ¼ 0; 1; 2) having Nl

neurons in each layer. The different phases in the learning
algorithm and corresponding processing time are discussed
in the following sections.

2.1 Back-Propagation Algorithm

The BP algorithm is a supervised learning algorithm, and is
used to find suitable weights, such that for a given input
pattern (U0) the network output (Y 2

i ) should match with the
target output (ti). The algorithm is divided into three
phases, namely, forward phase, error BP phase, and weight
update phase. The details on each of these phases and the
time taken to process are discussed below.

Forward phase: For a given input pattern U0, the activation
values of hidden and output layer are computed as follows:

Y l
i ¼ f

XNl�1

j¼1

Wl
ijU

l�1
j

 !
; i ¼ 1; 2; � � � ; N1; ð1Þ

where fð:Þ is a bipolar sigmoidal function. Let tm, ta, and tac
be time taken for one floating point multiplication, addition,
and calculation of activation value, respectively. The time
taken to complete the forward phase (t1) is by

t1 ¼ N1 N0 þN2
� �

Ma þ tac N2 þN1
� �

; ð2Þ

where Ma ¼ tm þ ta.
Error back-propagation phase: In this phase, the deviation

between the network output and the target value is back-
propagated to all the neurons through output weights. The
�2i term for ith neuron in output layer is given by
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�2i ¼ Y 2
i � ti

� �
f 0ð:Þ i ¼ 1; 2; � � � ; N2; ð3Þ

where f 0ð:Þ is the first derivative of the activation function.

The term (�1i ) for ith hidden neuron is given by

�1i ¼ f 0ð:Þ
XN2

j¼1

W 2
ji�

2
j ; i ¼ 1; 2; � � � ; N1: ð4Þ

The time taken to complete the error back-propagation

phase is represented by t2 and is calculated as

t2 ¼ N1N2Ma: ð5Þ

Weight update phase: In this phase, the network weights

are updated and the updation process of any Wl
ij depends

on the value of �lj and Y l�1
i .

Wl
ij ¼ Wl

ij þ ��liY
l�1
j l ¼ 1; 2; ð6Þ

where � is the learning rate. The time taken to update the

weight matrix between the three layers is represented by t3

and it is equal to

t3 ¼ N1 N2 þN0
� �

Ma: ð7Þ

Let tac ¼ �Ma. The total processing time (Tseq) for

training a single pattern is the sum of the time taken to

process the three phases and is given as

Tseq ¼ t1 þ t2 þ t3

¼ N1K þ �N2
� �

Ma;
ð8Þ

where K ¼ 2N0 þ 3N2 þ �.

3 DISTRIBUTED PARALLEL ALGORITHM

In this section,wedescribe theproposedparallelBPalgorithm
to train MLP in homogeneous NOWs.

3.1 Hybrid Partitioning Scheme

The Hybrid partitioning (HP) algorithm is a combination of
neuronal levelaswellassynaptic levelparallelism[16]. Incase
of neuronal level parallelism or vertical slicing, all incoming
weights to the neurons local to the processor is kept in one
processingelement. In synaptic level parallelism, eachprocessor
willhaveonly theoutgoingweightconnectionsof theneurons
local to the processors. In the HP scheme, the hidden layer is
partitioned using neuronal level parallelism and weight
connections are partitioned on the basis of synaptic level
parallelism. The parallel architecture of the MLP network
used in theproposed scheme is shown in theFig. 1. In case of a
homogeneous m-processor network, the hidden layer is
partitioned into N1

m neurons and the input andoutput neurons
are common for all the processors, i.e., the blocks A and B in
Fig. 1 are common for all the processors. The blocksP0,A, and
B are kept at processor p0, blocks Pi, A, and B are kept at
processor pi, respectively. Each processor will store the
weight connections between the neurons local to the
processor.

3.2 Parallel Algorithm

Since we have partitioned the fully connected MLP network
into m partitions and then mapped onto m processors, each
processor is required to communicate with every other
processors to simulate the complete network. Each of the
processors in the network execute three phases of BP training
algorithm. Parallel execution of the three phases and the
correspondingprocessing timeforeachphasesarecalculated.
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Forward phase: In this phase, the activation value of the
neurons local to the processors are calculated. For a given
input pattern, using (1), we can calculate the activation
value for the hidden neurons. But, we need the activation
values and the weight connections (w2

ij) of neurons present
in other processors to calculate the activation values of
output neurons. Broadcasting the weights and activation
values are circumvented by calculating the partial sum of
the activation values of the output neurons. This partial
sum is exchanged between the processors to calculate the
activation values of the output neurons. The approximate
time taken to process the forward phase (to1) is given by

to1 ¼
N1

m
N0 þN2 þ �
� �

Ma þ �N2Ma þ To
com; ð9Þ

where To
com is time taken to communicate the partial sum to

all the processors in the network.
Error propagation phase: In this phase, each processor

calculates the error terms �l for the local neurons. The
approximate time taken for processing error back-propaga-
tion phase (tp2) is

to2 ¼
N1

m
N2Ma: ð10Þ

Weight update phase: In this phase, the weight connec-
tions between the neurons local to that processor alone
are updated. To update the weight connection between
the ith hidden neuron and jth input neuron, we need
activation value at the jth input neuron and �1i term in the
ith hidden neuron. Since both the activation value as well
as the error term are present in the processor, no
intercommunication is required. The processing time to
update the weight connections (to3) is given by

to3 ¼
N1

m
N0 þN2
� �

Ma: ð11Þ

Let To
p be the time taken to train a single pattern in

proposed HP scheme, and it is equal to the algebraic sum of
time taken to process all the three phases.

To
p ¼ to1 þ to2 þ to3 ¼

N1

m
K þN2�

� �
Ma þ To

com: ð12Þ

In the GAAB scheme [29], all the values to be broadcast
are grouped together and broadcasted as a single message.
This reduces the overhead for processing each broadcast.
The communication time to broadcast a message of size D
in GAAB scheme is calculated below:

tcom ¼ m Tini þ Tcg Dð Þð Þ; ð13Þ

where Tc is time taken to send/receive one floating point
number, Tini is communication start-up time, and gðDÞ is
the scaling of grouped broadcast scheme. Normally, gðDÞ is
much less than D, which is the worst case for one-to-one
broadcast scheme [29].

The communication time (To
com) required for broad-

casting data of size N2 is given by

To
com ¼ m Tini þ Tcg N2

� �� �
¼ mAo

comMa; ð14Þ

where Tini ¼ Ma�, tc ¼ Ma�, and Ao
com ¼ �þ �g N2ð Þ.

By substituting (14) in (12), we obtain

To
p ¼ N1

m
K þN2� þmAo

com

� �
Ma: ð15Þ

The processing time in the HP approach shows that the

computation time (the first term in the above equation) will

decrease with the increase in number of processors and

communication time (proportional to number of processors)

as in (14) will increase with the increase in number of

processors.

4 DISTRIBUTED PARALLEL ALGORITHM

We now derive the expression for time taken to train the

MLP with parallel BP algorithm described in [26].

4.1 Vertical Partitioning Scheme

In [26], the MLP network is vertically partitioned (VP) into

m partitions and each partition is mapped on to a processor

in NOWs. In the VP scheme, each layer having Nl neurons,

is divided into Nl

m neurons that are assigned to each

processor in the computing network. The weight connec-

tions are partitioned on the basis of combination of inset

and outset grouping scheme [16]. This leads to duplication

of weight vectors in different processors and results in extra

computation in weight update phase.

4.2 Parallel Algorithm

Parallel execution of the three phases of the BP algorithm

and the corresponding training time for each phase are

calculated for VP scheme.
Forward phase: In order to calculate the activation values

of the output neurons, we need activation value of all the

hidden neurons. Hence, before starting the calculation of

activation values of output neurons, the activation values of

neurons in the hidden layer are exchanged between the

processors. Let the time taken to execute the communication

process be equal to t1com. The time taken to process forward

phase (ts1) is equal to the sum of time taken to compute

activation values of the local neurons and communication

time (t1com).

ts1 ¼
N1

m
N0 þN2 þ �
� �

Ma þ
N2

m
�Ma þ t1com: ð16Þ

Error propagation phase: In order to calculate the term �1 in

the local hidden neurons, we need error term �2 of all the

output neurons present in the other processors. Hence, the

time taken to compute error propagation phase (ts2) is equal

to the sum of the computation time required for calculating

the error terms �l and communication time (t2com) required to

broadcast the term �2.

ts2 ¼
N1

m
N2Ma þ t2com: ð17Þ

Weight update phase: Since the VP scheme has a

duplicated weight vector, we need an extra computational

effort to keep the consistency in the weight connection. The

time taken to process this phase (ts3) is equal to the sum of

the time taken to update the weight connection between the
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neurons local to that processor and the time taken to update
the duplicated weight connections.

ts3 ¼
N1

m
2N2 �N2

m
þN0

� �
Ma: ð18Þ

Let Ts
com ¼ t1com þ t2com. The total processing time in

VP algorithm (Ts
p ) for training a single pattern is the sum

of time taken to process the three phases and is given as

Ts
p ¼ N1

m
K þN2 �N2

m

� �
þ �

N2

m

� �
Ma þ Ts

com: ð19Þ

Using the GAAB scheme given in (13), the total
communication time (Ts

com) required to broadcast the data
of size N1

m and N2

m is given as

Ts
com ¼ mAs

comMa; ð20Þ

where As
com ¼ 2�þ � g N1

m

	 

þ g N2

m

	 
h i
.

The training time (19) can be modified as

Ts
p ¼ N1

m
K þN2 �N2

m

� �
þ �

m
N2 þAs

com

� �
Ma: ð21Þ

The processing time for the VP scheme also shows that
the computation time will decrease with increase in the
number of processors and the communication time will
increase with increase in the number of processors.

5 ANALYTICAL PERFORMANCE COMPARISON

In this section, we calculate the various performance
measures like speed-up, space reduction ratio, maximum
number of processors, and optimal number of processors.
We also provide the processing time difference between the
two methods. Finally, we present the advantages of the
HP scheme over the VP scheme.

5.1 Maximum Number of Processors

Let the maximum number of processors for the VP scheme
be Ms

p and the HP scheme be Mo
p . The maximum number of

processors for the VP scheme is equal to number of hidden
neurons or number of output neurons, whichever is the
minimum, i.e., min N1; N2ð Þ. In most of the practical cases,
Ms

p ¼ N2 since the number of output neurons is always less
than the number of hidden neurons. The maximum number
of processors Mo

p used in the HP scheme is equal to the
number of hidden neurons N1. Since N1 >> N2, the
proposed HP scheme exploits parallelism very well.

5.2 Speed-Up Analysis

Speed-up for m-processor system is the ratio between the
time taken by uniprocessor (m ¼ 1) to the time taken by
parallel algorithm in m-processor network.

SðmÞ ¼ Tseq

Tp
: ð22Þ

From (8) and (15), the speed-up ratio for the proposed
HP scheme (SoðmÞ) can be formulated as

SoðmÞ ¼ N1K þN2�
N1

m K þN2� þmAo
com

: ð23Þ

Similarly, from (8) and (21), speed-up ratio for the
VP scheme (SsðmÞ) is

SsðmÞ ¼ N1K þN2�
N1

m K þN2 � N2

m

� �
þ N2

m � þmAs
com

: ð24Þ

In most of the practical problems, N1 >> N2, then the
term N2� is small and neglected in the speed-up equation.
Hence, the speed-up ratio for both the algorithm is
modified as below:

SoðmÞ ¼ N1K
N1

m K þmAo
com

ð25Þ

SsðmÞ ¼ N1K
N1

m K þ N1N2

m2 ðm� 1Þ þmAs
com

: ð26Þ

If the network size is extremely larger than the number
of processors m, then the speed-up ratio will approach m in
HP approach and it is less than m for VP scheme. This is
due to extra computation required in weight updation
phase and extra communication in exchanging the hidden
neurons activation values.

Suppose, if N1 ¼ N2 ¼ N , then the above equations are
modified as follows:

SoðmÞ ¼ N 5N þ 2�ð Þ
N
m 5N þ ðmþ 1Þ�ð Þ þmAo

com

SsðmÞ ¼ N 5N þ 2�ð Þ
N
m 6N þ 2� � N

m

� �
þmAs

com

:

It is clear from the above equation that if N >> m, then
SoðmÞ converges to m and SsðmÞ converges to 5

6m. Hence,
the speed-up factor for HP scheme is approximately
16 percent more than the VP scheme.

5.3 Storage Space Requirement

The total space requirement to execute the BP algorithm in
single processor (Ms) is the sum of space requirement to
store weight matrix, space required for activation and error
terms.

Ms ¼ N1 N0 þN2 þ 2
� �

þ 2N2 þN0: ð27Þ

The ratio between the space required by a single
processor and the space required for the m-processor
network is defined as space reduction ratio MðmÞ.

MðmÞ ¼ Ms

Mp
: ð28Þ

The total space required to execute the proposed
HP scheme (Mo

p ) in m processors system is the sum of
space requirement to store weight matrix, space required
for activation values, error terms, and the buffer size
required to receive the data from different processors.

Mo
p ¼ N1

m
ðN0 þN2 þ 2Þ þ 3N2 þN0: ð29Þ

The total space required for VP approach (Ms
p) is the sum

of space required for weights, error values, activation
values of the neurons local to the processor, and the buffer
requirement to communicate the data.
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Ms
p ¼ N1

m
Lþ 3N2 þN0 þ 2N1; ð30Þ

where L ¼ 2N2 þN0 þ 1� N2

m . Space reduction ratio for the
proposed HP algorithm (MoðmÞ) is given by the ratio
between (27) and (29)

MoðmÞ ¼ N1 N0 þN2 þ 2ð Þ þ 2N2 þN0

N1

m N0 þN2 þ 2ð Þ þ 3N2 þN0
: ð31Þ

Similarly, space reduction ratio (MsðmÞ) be for the VP
approach

MsðmÞ ¼ N1 N0 þN2 þ 2ð Þ þ 2N2 þN0

N1

m Lþ 3N2 þN0 þ 2N1
: ð32Þ

In case of a larger MLP network configuration and a small
number of processors, the space reduction ratiowill converge
to number of processors (m) in the proposed HP approach,
whereas it will be less than the number of processors for
VP approach. This is due to the fact that the extra space
required to store the duplicated weights and communication
buffer required for activation values of hidden layer in the
VP scheme.

If N1 ¼ N2 ¼ N , then the above equations are modified
as follows:

MoðmÞ ¼ m 2N þ 5ð Þ
2N þ 4mþ 2

MsðmÞ ¼ m 2N þ 5ð Þ
3N þ 6mþ 1� N

m

:

It is clear from above equations that if N >> m, thenMoðmÞ
will converge to m, whereas MsðmÞ will converge to 2

3m.
The results indicate that the proposed HP scheme has better
space reduction ratio.

5.4 Optimal Number of Processors

From (15), it is clear that if we increase the number of
processors, the time taken to communicate will also increase
and the time taken for computation will decrease. The total
processing time will decrease first and then increase after a
certain number of processors. So, there exists an optimal
number of processor m�, for which processing time is
minimum. We calculate the closed form expression for
optimal number of processors for the proposedHPalgorithm
by partially differentiating the training time expression To

p

with respect tom and then equating it to zero.

@To
p

@m
¼ �N1

m2
K þAo

com

� �
Ma: ð33Þ

Hence, optimal number of processors m� is equal to

m� ¼ N1K

Ao
com

� �1
2

: ð34Þ

Similarly for the VP algorithm, we derive a condition for
optimal number of processors by partially differentiating
the equation for processing time Ts

p with respect to m and
equating to zero.

As
comm

3 �A1mþ 2N1N2 ¼ 0; ð35Þ

where A1 ¼ N1ðN2 þKÞ þN2�. From the above equation,
we can observe that obtaining closed-form expression for
m� is difficult.

5.5 Difference between the Processing Times

From (15) and (21), the difference in processing time is
calculated as follows:

Ts
p � To

p ¼ A2 þm As
com �Ao

com

� �� �
Ma; ð36Þ

where A2 ¼ N2 m�1
m

N1

m � �
	 


. The first term in the above
equation is due to recomputation of weights in the
VP algorithm, the second term is due to extra calculation
of activation function for output neurons in HP approach,
and the third term is due to difference between the
communication time. Now, we consider two different
conditions for network architecture with grouped AAB
scheme, namely, 1) the number of neurons in each layers are
equal and 2) the number of neurons in the hidden layer is
greater than the output layer.

Case 1: Now, consider an MLP network with an equal
number of neurons in all the layers, i.e., Nl ¼ N , l ¼ 0; 1; 2.
First, we will find out the difference between the commu-
nication term (As

com �Ao
com) by substituting Nl ¼ N in (20)

and (14) as

As
com �Ao

com ¼ �þ 2�g
N

m

� �
� �gðNÞ

� �
: ð37Þ

Since the communication time will not increase with the
increase in the size of the message size for a grouped AAB
scheme, the terms �g Nð Þ and �g N

m

� �
are neglected. Hence,

the difference between the communication time is approxi-
mately equal to mMa�.

By substituting the difference between the communica-
tion terms and Nl ¼ N in (36), the difference in processing
time is reduced to

Ts
p � To

p ¼ N
m� 1

m

N

m
� �

� �
þm�

� �
Ma: ð38Þ

For analytical study purpose, we assume the value of �
equal to 40 and � equal to 55 as mentioned in [26]. Suppose
each and every processor contains one neuron per layer
(N ¼ m), then the difference between the processing time is
equal to 16mþ 39½ �Ma. From this it is clear that the time
taken by HP scheme is less than the VP scheme. In the
general case, the proposed HP scheme is better than the VP
scheme if � > ðm� 1Þ ��1

m . For a larger number of proces-
sors, the fraction m�1

m is almost equal to 1. Hence, the
condition is further simplified to � > ð� � 1Þ.

Case 2: In general, most of the practical problems will
have more number of hidden neurons than the output
neurons, i.e., N1 >> N2, hence maximum number of
processors for VP scheme described in Section 5 is equal
toN2 andN1 for the HP approach. Letm be equal toN2, the
above equation can be simplified as

Ts
p � To

p ¼ N1 �N1

N2
þ � þN2 �� �ð Þ

� �
Ma: ð39Þ

Time taken to train theMLP using theHP scheme is better

than the VP scheme if � < N1

N2 þ N2

N2�1�. The communication
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time factor (�) will be greater than the activation factor � and,

hence, the HP scheme is more efficient to train the MLP

network using distributed BP algorithm.

5.6 Improvement over a VP Scheme

The improvements of the proposed HP scheme over the VP

scheme [26] are:

. The proposed algorithm uses only one set of
communication, when compared with two sets of
communication used in VP approach.

. Recomputation of weights is avoided in HP Scheme.

. The proposed HP approach can exploit the paralle-
lism by using more number of processors than the
VP scheme.

. Mapping the proposed HP scheme on NOWs is
simpler than the VP scheme. This aspect will
discussed in the next section.

6 MAPPING MLP NETWORK ON NOWS

The mapping problem of MLP network on a NOWs entails

the search for an optimal mapping of the neurons to the

processors so that the training time is minimum. The

mapping involves schemes for assigning neurons to

processors and schemes for communicating data among

the processors in the computing network. A mapping

scheme depends on the network architecture, computing

network, and communication scheme. Here, we develop a

closed-form expression for mapping HP scheme on hetero-

geneous NOWs.
Let m be the number of workstations in the computing

network. In the HP partitioning scheme, mapping the

network on NOWs means dividing the hidden layer

arbitrarily, i.e., the number of neurons in the hidden layer

is divided into m parts and mapped onto the processors.

The timing diagram for different phases of training process
in different processors is shown in Fig. 2. Let ni be the
number of hidden neurons assigned to the processor pi. The
time taken to train single pattern in the processor pi is
expressed as

To
pi
¼ tapi þ tcpi ; ð40Þ

where tapi and tcpi are the time taken to complete commu-
nication and the computation process

tapi ¼ m �i þ �ifðN2Þ
� �

Mi
a

tcpi ¼ ni 2N0 þ 3N2 þ �i
� �

þN2�i
� �

Mi
a:

The Mi
a, �i, �i, �i are corresponding values of the

parameters in processor pi. For a given MLP architecture,
the communication time is linearly proportional to the
number of neurons assigned to the processors and it is
independent of the number of hidden neurons assigned to
the processors. The computation time for any processor has
two components. The first component depends on the
number of hidden neurons assigned to the processor and
the other component is a constant for given MLP architec-
ture. Hence, the computation time taken for processor pi can
be rewritten as

tcpi ¼ nit
i
1 þ ti2; ð41Þ

where ti1 ¼ 2N0 þ 3N2 þ �ið ÞMi
a, t

i
2 ¼ N2�iMi

a.
Let us assume that all the processors in the network will

stop computing at the same time instant. This assumption
has been shown to be necessary and sufficient condition to
obtain optimal processing time [33]. From the timing
diagram, we can write the following equations:

nit
i
1 þ ti2 þ tapi ¼ niþ1t

iþ1
1 þ tiþ1

2 þ tapiþ1
; ð42Þ

i ¼ 1; 2; � � � ;m� 1.
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The above equations can be rewritten as

ni ¼ niþ1fiþ1 þ gi; i ¼ 1; 2; � � � ;m� 1; ð43Þ

where fiþ1 ¼ tiþ1
1

ti
1

and gi ¼
tiþ1
2

þtapiþ1
�ti2�tapi

ti
1

.

From this, it can be seen that there are m� 1 linear

equations withm variables and together with normalization
equation (

Pm
i¼1 ni ¼ N1) we have m equations. Now,

closed-form expression to find the number of neurons

assigned to each processor can be formulated. Each of the ni

in (43) is expressed in terms of nm as

ni ¼ nmLi þNi; i ¼ 1; 2; � � � ;m� 1; ð44Þ

where Li ¼
Qm

j¼iþ1 fj and Ni ¼
Pm�1

p¼i gp
Qp

j¼iþ1 fj, and the
number of neurons (nm) assigned to processor pm is

nm ¼ N1 �XðmÞ
Y ðmÞ ; ð45Þ

where

XðmÞ ¼
Xm�1

i¼1

Xm�1

p¼i

gp
Yp
j¼iþ1

fj

 !

Y ðmÞ ¼ 1þ
Xm�1

i¼1

Ym
j¼iþ1

fj:

Equation (45) shows that there exists an optimal number
of processors (m�) beyond which the training time will not
decrease with increase in the number of processors. The
necessary and sufficient condition for optimal training time
using all the m processors in the network is given by

XðmÞ ¼
Xm�1

i¼1

Xm�1

p¼i

gp
Yp
j¼iþ1

fj

 !
< N1:

From (44) and (45), we can easily calculate the number of
hidden neurons assigned to each processor. We will show
the results obtained and advantage of this DLT approach
through some numerical examples for easy understanding.

6.1 Numerical Example

Let us consider a two-group of workstations connected by
an Ethernet, one of which is a file server. The parameters of
workstation groups is shown in Table 1. The values of actual
parameters are larger than the values shown in Table 1
because calculations are performed by software. To illus-
trate the partitioning and mapping algorithm, we consider a
three layer MLP network as described in Table 2. The
MLP architectures are mapped on to eight workstations
(four in each group). Using the closed-form expression for

partitioning the hidden neurons given in (45), the analytical
training time is calculated for the heterogeneous NOWs. In
case of network N1, nine hidden neurons are assigned to
each processor in the first group (p1 � p4) and 27 hidden
neurons are assigned to each processor in the second group
(p5 � p8). Similarly, for network N2, two hidden neurons are
assigned to each processor in first group and 10 hidden
neurons are assigned to each processor in second group.
The time taken to complete the training process for network
N1 and N2 are 0:0118 and 0:0020 seconds, respectively.

7 EXPERIMENTAL STUDY

In this section, we present the performance of the proposed
HP algorithm in NOWs and compare the results with the
VP approach. Both the algorithms are implemented in
ALPHA machines connected through Ethernet. Eight work-
stations are selected fromgroup “1” for experimental studies.
The values of system parameters are shown in Table 1. In
order to verify the performance of both themethods,we have
chosen optical character recognition problem. The hand-
written numbers 0 through 9 forms the character set. Each
number is represented as 16� 12 (192 bits) bitmap images.
Severalhand-written imagesareusedforeachnumberto train
the neural network. The training set consists of 6; 690 images
and the testing set consists of 3; 330 images, slightly different
from the images used for training.

For comparative analysis, we solve this problem using the
proposedmethodandtheVPmethodgiven in [26].Theneural
network architecture (N3) used for classifying the digital
numbers is 192� 192� 10, i.e., 192 input nodes, 192 hidden
nodes,and10outputnodes.Thenetwork is trainedusingboth
themethods. Network training is stopped if the 95 percent of
patterns are classified accurately or the number of epoch is
equal to5; 000.After the trainingprocess, thenetwork is tested
with3; 330patterns.Among the3; 330 testpatterns, 90percent
of the patterns are classified correctly. The analytical speed-
up factors for both the algorithms are shown in the Fig. 3a.We
can see that theHPschemehasbetter speed-up factor than the
VP scheme. This is due to the fact that computation and
communication overheads aremore in the VP approach than
in the proposed HP method. The analytical space reduction
ratio is shownin theFig. 3b.Thespacereduction factor ismore
for proposed method than for the VP scheme. The total
analytical and experimental time taken for training the
MLP network with different number of processors for
HP and VP schemes are shown in Fig. 4. The analytical
training time is always less than the experimental results
because the synchronization, otherworkloads andoverheads
are not included in our formulation. As we can observe from
the figure, the training time for HP scheme is less than that of
the VP scheme.
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Time Parameter in ALPHA Machines
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Network Architectures



The same experiment is carried out in heterogeneous
NOWs for the HP scheme. For this purpose, four work-
stations from each group are selected. The mapping of
network N3 is calculated using the closed-form expression
given in previous section. In mapping the network on two
workstations group (four in each group), the first group of
workstations assigned 13 hidden neurons each and second
group assigned 37 hidden neurons each. The experimental
time and analytical time taken to simulate the training
process in 8 processors network are 163:48 seconds and
115:24 seconds, respectively. The difference between the
analytical training time and experimental time are due to
synchronization and overheads.

8 RESULTS AND DISCUSSION

In this section,wediscuss the analytical performance, such as
space requirement, speed-up, and optimal number of
processors for a given network configuration. We have
considered two different networks, namely, N1 and N2, for
classifying binary image of numbers as stated in [26] to

evaluate the performances. The major performance factors
like speed-up, storage factor, optimal number of processors,
and processing time at m� are calculated for both the
algorithms. The network configuration for classifying binary
numbers is shown in the Table 2. Table 3 shows the
comparison between performance measures for both the
algorithms. For the network N1, the optimal number of
processors forVPalgorithmis less thanorequal to thenumber
of output neurons 12, whereas in the proposed HP scheme it
can be any value between 1 and N1. Optimal number of
processorsm� for agivennetworkconfigurationN1 is equal to
50 in theHPapproach and it is equal to 6 for theVPalgorithm.
At teh optimal number of processors, the processing time for
proposedHPscheme isapproximately54percent less than for
theVPapproach. Since themaximumnumberofprocessors is
restricted to N2 in the VP approach optimal number
processors is less than or equal to N2. A similar observation
can be made for speed-up, where speed-up is heavily
influencedbythecommunication timeandextracomputation
is required to execute the parallel algorithm.

We can observe fromTable 3 that the proposedHP scheme
has a space reduction ratio of 4:8453 in case of 5-processor
network, whereas 4:3524 is the space reduction ratio for
VP scheme for a given networkN1. The 10 percent less space
reduction is achieved by avoiding the duplicated weight
vector. The same is reflected in computation time. Since the
proposed HP scheme is using single communication set, the
communication time is comparatively less than that of the
VP scheme. This is clear from Table 3, where the commu-
nication time in theproposedHPscheme is equal to 0:0003 for
given network N1 with m ¼ 5. For the same number of
processors and network, the communication time is equal to
0:0007 in the VP algorithm. The same can be observed in case
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Fig. 3. Analytical results for the OCR problem.

Fig. 4. Experimental training time for in NOWs.

TABLE 3
Analytical Comparison



of networkN2. From the above observations, we can say that
the proposed HP scheme is better than the VP scheme for
parallel implementation of BP algorithm.

Fig. 5a shows the speed-up factor (with and without
start-up time) and Fig. 5b shows the space reduction factor
for different number of processors for the network N1 using
both the methods. From the above figure, we can observe
that the HP scheme has better speed-up and space
reduction factor than the VP scheme. In order to verify
the performance of both the methods, we present the
analytical speed-up obtained for various values of �, as
shown in Fig. 6. The figure indicates that the HP method
performs better than the VP scheme.

9 CONCLUSION

In this paper, an optimal implementation of distributed
BP algorithm to train MLP network with single hidden layer
on a ALPHA NOWs is presented. Hybrid partitioning
technique is proposed to partition the network. The parti-
tioned network is mapped onto NOWs. The performance of
the proposed algorithm is compared with the vertical
partitioning [26]. Using the hybrid partitioning scheme,
recomputation ofweights is avoided and the communication
time is reduced. Another advantage in the proposed scheme
is that, a closed-form expression for optimal number of
processors can be formulated. From this, it is possible to
calculate the optimal number of processors for any given
network configuration. This paper also presents a simple
mapping scheme forMLP network onNOWs using divisible
load scheduling concept. The mapping scheme is computa-
tionally less intensive. Analytical results for the benchmark
problems and the experimental results for optical character
recognition problem show that the proposed HP method is
efficient and computationally less intensive than the
VP scheme.
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