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Abstract

Electric bus scheduling problem can be defined as vehicle scheduling problem with route and fueling time constraints
(VSPRFTC). Every vehicle’s travel miles (route time) after charging is limited, thus the vehicle must be recharged after
taking several trips and the minimal charging time (fueling time) must be satisfied. A multiple ant colony algorithm
(ACA) was presented to solve VSPRFTC based on ACA used to solve traveling salesman problem (TSP), a new metaheu-
ristic approach inspired by the foraging behavior of real colonies of ants. The VSPRFTC considered in this paper mini-
mizes a multiple, hierarchical objective function: the first objective is to minimize the number of tours (or vehicles) and the
second is to minimize the total deadhead time. New improvement of ACA as well as detailed operating steps was provided
on the basis of former algorithm. Then in order to settle contradiction between accelerating convergence and avoiding pre-
maturity or stagnation, improvement on route construction rule and Pheromone updating rule was adopted. A group fea-
sible trip sets (blocks) had been produced after the process of applying ACA. In dealing with the fueling time constraint a
bipartite graphic model and its optimization algorithm are developed for trip set connecting in a hub and spoke network
system to minimize the number of vehicle required. The maximum matching of the bipartite graph is obtained by calcu-
lating the maximum inflow with the Ford–Fulkerson algorithm. At last, an example was analyzed to demonstrate the cor-
rectness of the application of this algorithm. It proved to be more efficient and robust in solving this problem.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

As a splendid and excellent demonstration of ‘‘Green Olympics, Scientific Olympics’’, electric bus would be
put into use in scope of regional in some area of Beijing, China. Because of the big difference of dynamical and
drive characteristics between electric bus and traditional bus, the charging time (fueling time) of electric bus
requires four to five hours and the travel miles (route time) after each charging is limited, it would affect the
normal operation of public traffic if characteristic of electric bus was not considered. Studies of scheduling
problem of electric bus become more and more important.
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Real world transit scheduling is very complicated. The large numbers of trips, links, and paths to be con-
sidered rapidly increase the number of variables and constraints in any model developed. The transit sched-
uling problem belongs to the general class of vehicle scheduling problems (VSP). The VSP is a classical
optimization problem which is faced in the operational planning of public transportation systems. It consists
in assigning a set of scheduled trips to a set of available vehicles starting from one or more depot have to col-
lectively visit a number of demand points and then return to the depot from which they start, in such a way
that each trip is associated to one vehicle and a cost function is minimized [1]. These problems in general are
very hard to solve and belong to a class of problems referred to as NP-hard. In general, these problems can be
solved using heuristics. Electric bus scheduling problem can be defined as vehicle scheduling problem with
route and fueling time constraints (VSPRFTC). Every vehicle’s travel miles (route time) after charging is lim-
ited, thus the vehicle must be recharged after taking several trips and the minimal charging time (fueling time)
must be satisfied. However, in VSPRFTC, the following conditions should be satisfied [2]:

• An objective function given in advance is optimized.
• Each trip is run by exactly one vehicle.
• Every vehicle can only take on one trip at the same time.
• Satisfy the timing between trips every vehicle taking, and the start time of the next trip must posterior to the

end time of the previous one.
• Each block of trips starts and ends at the same depot.
• Every vehicle must be refueled when it can not take any trips.
• Satisfy the fueling time of every vehicle, and the vehicle should put into use again when the fueling process

is finished.
• Each depot has a given maximum number of vehicles (capacity).
• All operational constraints, including any restriction on the total time a vehicle spends away from the

depot, are satisfied.

Due to fuel restrictions, route time constraints had been considered in the formulation for solving real
world problems. Ref. [3] referred to a vehicle scheduling problem that considers route time constraints as
VSPLPR with the following description: ‘‘In the vehicle scheduling problem with length of path restrictions
(VSPLPR), constraints are placed on the length of time a vehicle may spend away from the depot or the mile-
age a vehicle may cover without returning to the depot for service’’. There is also some recognition of these
constraints in the literature in the SDVS context. These models only consider the time difference between one
pull-out and the corresponding pull-in. This makes the models unsuitable for considering fuel consumption
concerns. Ref. [4] presented a formulation and computational procedure for solving the multiple depot vehicle
scheduling with route time constraints.

There is no convenient solution to VSPRFTC of electric bus, as far as we know. The paper try to provide an
approach to formulating and solving the VSPRFTC of electric bus in the case of multi-lines through applied
ant colony algorithm.

2. Mathematical formulation of VSPRFTC

Ref. [5] the fleet of a public transportation company is subdivided into depots. The set of depots is denoted
by D. With each depot d 2 D we associate a start point d+ and an end point d� where its vehicles start and
terminate their daily duty. The number of available vehicles, the depots’ capacity is denoted by v. Every vehi-
cle’s driving range is denoted by rk. A given timetable defines L timetabled trips, denoted by I, that are used to
carry passengers. We associate with each i 2 I a first stop dsi, a last stop dei, a timetable departure time s0i
which could shift between ½�se; sl�, a actual departure time si 2 ½s0i � se; s0i þ sl�, an travel time ei ¼ si þ ti,
an arrival time ei ¼ si þ ti and a travel range is mi.

There are further types of trips, all running without passengers: A pull-out trip connecting some start point
d+ with some first stop dsi, a pull-in trip connecting some last stop dei with some end point d�, and a dead-
head trip connecting some last stop dei with some succeeding first stop dsj. For notational simplicity, we call all
these trips unloaded trips. Let tij denote the duration of the deadhead trip from i to j including some layover
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time. The travel range of the deadhead trip from i to j is denoted by mij. The idle time of the deadhead
trip from i to j is denoted by vij ¼ sj � ei, and vij P tij ensure the timing between trips. Whenever, we call
the corresponding deadhead trip compatible A vehicle schedule or duty is a chain of trips such that the
first trip is a pull-out trip, and the last trip is a pull-in trip and the trips and unloaded trips occur alternately
[6].
Plea
Com
xijk ¼
1 vehicle k taking deadhead trip from i to j;
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The objective (3) aims at minimizing total idle time; Constraints (4) ensure that the number of vehicle
should not exceed the max number of vehicle in depots; Constraints (5) and (6) ensure that every trip should
only be take by one vehicle; Constraints (7) ensure that a vehicle is starting from and returning to the same
depot; Constraints (8) limit the travel time of every vehicle after being charged.

3. Application of ant colony algorithm on VSPRFTC

This paper presents a multiple ant colony system for VSPRFTC. Algorithm is based on ant colony optimi-
zation (ACO), a new metaheuristic approach inspired by the foraging behavior of real colonies of ants.The
basic ACO idea is that a large number of simple artificial agents are able to build good solutions to hard com-
binatorial optimization problems via low-level based communications. Real ants cooperate in their search for
food by depositing chemical traces (pheromones) on the floor. Artificial ants cooperate by using a common
memory that corresponds to the pheromone deposited by real ants. This artificial pheromone is one of the
most important components of ant colony optimization and is used for constructing new solutions. In the
ACO metaheuristic, artificial pheromone is accumulated at run-time during the computation. Artificial ants
are implemented as parallel processes whose role is to build problem solutions using a constructive procedure
driven by a combination of artificial pheromone, problem data and a heuristic function used to evaluate suc-
cessive constructive steps.

Successful ant colony algorithms have been developed for several combinatorial optimization problems.
Such as TSP, VRP (vehicle routing problem), and so on.

Based on the successful of the application of ant colony algorithm to TSP, ant colony algorithm was
adopted in solving VSPRFTC. According to the characteristic of this problem, some changes was induced
as follows [7].
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• The difference between the end time of trip i and the start time of trip j is seen as distance.
• A Tabuk list of forbidden moves also includes the nodes which can not satisfy the timing of trips.
• The limit route time of electric vehicle is considered like the limit supply of vehicle in VRP, and the allowed

nodes to which ant could move must satisfy the limit.
• solution sets is divided into several subsets. The subsets contains a set of trips which a vehicle can take on

after being charged.
• Arrange the feasible blocks (trip sets) to vehicles according the fueling (charging) time.
3.1. Basic Principles of ant colony algorithm

This section introduces and presents the original ant colony algorithm (ACA) applied to the traveling sales-
man problem (TSP) Indeed, algorithm has been proposed to solve a VSPRFTC where both the number of vehi-
cles and the deadhead time have to be minimized. This multiple objective minimization is achieved by using 3
artificial ant colonies based on ACA. The TSP is the problem of finding a shortest closed tour which visits all the
cities in a given set. ACA is applied to the TSP by associating two measures to each arc of the TSP graph: the
closeness gij, and the pheromone trail sij. Closeness, defined as the inverse of the arc length, is a static heuristic
value, that never changes for a given problem instance, while the pheromone trail is dynamically changed by
ants at run-time. Therefore, the most important component of ACA is the management of pheromone trails
which are used, in conjunction with the objective function, for constructing new solutions. Informally, phero-
mone levels give a measure of how desirable it is to insert a given arc in a solution. Pheromone trails are used for
exploration and exploitation. Exploration concerns the probabilistic choice of the components used to con-
struct a solution: a higher probability is given to elements with a strong pheromone trail. Exploitation chooses
the component that maximizes a blend of pheromone trail values and heuristic evaluations.

m, the number of ants; sij, the intensity in arc (i, j); gij, the visibility in arc (i, j); Dsk
ij, the quantity of pher-

omone levels in arc (i, j) of ant k; P k
ij; the probability of moving from present node i to another node j;

aða P 0Þ, the relative influence of trail; bðb P 0Þ, the relative influence of visibility; qð0 6 q 6 1Þ, the perma-
nence of trail, 1 � q is known as evaporation; Nk

i , the feasible nodes of ant k in node i; Q, the quantity of pher-
omone the ant leaves [8].

3.1.1. Route construction

ACA goal is to find a shortest tour. In ACA m ants build tours in parallel, where m is a parameter. Each
ant is randomly assigned to a starting node and has to build a solution, that is, a complete tour. A tour is built
node by node: each ant iteratively adds new nodes until all nodes have been visited. When ant k is located in
node i, it chooses the next node j probabilistically in the set of feasible nodesi according to pk

ijðtÞ.
In the ant colony algorithm original version formula for pk

ijðtÞ is
Plea
Com
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0 else:
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: ð9Þ
3.1.2. Trail updating

The rules of trail updating can be expressed as three mode, they are ant-density, ant-quantity, ant-cycle. Dsk
ij

of ant-cycle:
Dsk
ijðt; t þ nÞ ¼

Q3

Lk Arcði; jÞ in the trail of ant k;

0 else:

(
ð10Þ
After iteration is complete, that is when all the ants have completed their solutions, the pheromone levels are
updated to:
sijðt þ nÞ ¼ q � sijðtÞ þ Dsijðt; t þ nÞ; ð11Þ

Dsijðt; t þ nÞ ¼
Xm

k¼1

Dsk
ijðt; t þ nÞ: ð12Þ
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3.2. Improvement on basic principles of ant colony algorithm

The basic principles of ant colony algorithm updating pheromone and confirming the probability of trail
select with fixed mode, ignoring the practical state of algorithm searching, and the contradiction between
accelerating constringency and avoiding prematurity and stagnancy often comes into being. So Improving
on the basic principles of ant colony algorithm is significant.

3.2.1. Route construction

The number of next nodes which ant k in node i could select is represented by winkðiÞ. In basic ant colony
algorithm, winkðiÞ ¼ cntðallowedkÞ, cntðallowedkÞ denotes the number of nodes in set allowedk. The value of
winkðiÞ should be adjusted dynamically [9].
Plea
Com
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�
ð13Þ
The sum of ants is represented by M, there are r trails from node i, the number of ants pass node i is Yi, and
Yi is distributing in r trails with number a1; a2; . . . ; ar
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Use for reference the idea of Ant-Qalgorithm of Dorigo, the meliorative route construction rule can be
expressed as follows:
j ¼

According P ij Select j;
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lij ¼ di0 þ d0j � dij, called saving.
jij ¼ ðQi þ qiÞ=Q, variable induced considering the constraint of the range of electric vehicle.
P is a random number, accords with uniform distribution on (0,1), r1, r0 changed dynamic according with

the process of the algorithm.

3.2.2. Pheromone updating

Pheromone local updating tactic means ant’s one pace moving, during the course of constructing the solu-
tion, leads to pheromone’s updating at the corresponding arc.

On the one hand, local updating may enforce all of the ant’s cooperation in an iterative cycle, on the other
hand, it also can enforce to search the untouched arc, to prevent algorithm maturating early at a certain extent

Attraction: Set the number of ants crossing node i equal to Y ðiÞ, the number of crossing directed arc(i, j)
equal to a then F ij ¼ aj=Y ðiÞ means ant’s attraction at directed arc(i, j)

While updating the local pheromone, set the quantity of once released pheromone equal to Q, if Fij and Q

are too large they will limit the algorithm’s global behavior. If they are too small, they will effect the algo-
rithm’s convergence speed. So applying the next tactic: variable Q(t) stands for pheromone, when Fij is larger
the Q(t) is smaller and
QðtÞ ¼ Q�ð1� F ijÞ: ð16Þ
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Algorithm’s local updating rules:
Plea
Com
snew
ij ¼ q � sold

ij þ Dsij 8 i; j; i 6¼ j; ð17Þ

Dsij ¼
Xm

k¼1

Dsk
ij; ð18Þ

Dsk
ij ¼

Q1ð1� F ijÞ if Ant move from i to j;

0 else:

�
ð19Þ
After finishing the local solution’s optimization, updating every arc’s pheromone track globally, applied the
following new rules:
snew
ij ¼ q � sold

ij þ
Xm

k¼1

Dsk
ij þ r � Ds�ij; ð20Þ

Dsk
ij ¼

1=Lk route of ant k including arcði; jÞ;
0 else:

(
ð21Þ

Ds�ij ¼
1=L� if ði; jÞ belongs to the latest optimal route;

0 else:

�
ð22Þ
sold
ij and snew

ij stands for the former and updating pheromone thickness at arc(i, j); Lk presents for the length
of route constructed by the k ant; L* stands for latest optimal route length; r stands for the quantity of the
elitist ant. When updating the tracks, we should consider not only the current iterative’s effect on the quantity
of track, but also its effect on the latest global optimal solution, this ensures the pheromone thickness included
by the optimal solution’s arc can be enforced, then this solution can be selected by larger probability in the
following iterative, this protect the optimal solution, lest it degenerates.

3.2.3. Multiple ant colonies

A solution model in which each ant builds a single tour (Fig. 1) was presented. The solution is represented
as follows: First, the depot with all its connections to/from the trips is duplicated a number of times equal to
the number of available vehicles. Distances between copies of the depot are set to zero. This approach makes
VSPRFTC closer to the traditional traveling salesman problem [10].

This paper considers a more elaborated VSPRFTC with two objective functions: (i) the minimization of the
number of tours (or vehicles) and (ii) the minimization of the total deadhead time, where number of tours min-
imization takes precedence over deadhead time minimization.
Fig. 1. Feasible solutions for a VSPRFTC (duplicated depots are black points while trips are white points).
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In the algorithm (Figs. 2 and 3) both objectives are optimized simultaneously by coordinating the activities
of 3 ACA based colonies. The goal of the first colony, ACA-INI, is to try to get the initialized feasible solution
and ascertain the lower value of vehicles needed; The goal of the second colony, ACA-BUS, is to try to dimin-
ish the number of vehicles used, while the third colony, ACA-TIME, optimizes the feasible solutions found by
ACA-BUS. Both colonies use independent pheromone trails but collaborate by sharing the variable wgb. Ini-
tially, wgb is a feasible solution found by ACA-INI. Then, wgb is improved by the two colonies. When ACA-
BUS is activated, it tries to find a feasible solution with one vehicle less than the number of vehicles used in
wgb. The goal of ACA-TIME is to optimize the total deadhead time of solutions that use as many vehicles as
vehicles used in wgb. wgb is updated each time one of the colonies computes an improved feasible solution. In
case the improved solution contains less vehicles than the vehicles used in wgb, algorithm kills ACA-TIME and
ACA-BUS. Then, the process is iterated and two new colonies are activated, working with the new, reduced
number of vehicles.

4. bipartite graphic model for fueling time constraint

Feasible trip sets (blocks) can be presented after the process of applying ant colony algorithm. And the fuel-
ing time constraint (trip set connecting problem) should also be considered. A bipartite graphic model and its
optimization algorithm are developed for trip set connecting in a hub and spoke network system to minimize
the number of vehicle required. First, the trip set connecting problem is converted into the trip set pairing con-
necting problem, and a bipartite graphic model describing the trip set pairing connecting problem is built.
Please cite this article in press as: H. Wang, J. Shen, Heuristic approaches for solving transit vehicle ..., Appl. Math.
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Thus, an optimal trip set connecting problem is transformed to the maximum matching problem of the bipar-
tite graphic model. Then, an assistant graph with single source and sink is created based on the bipartite gra-
phic model. The maximum matching of the bipartite graph is obtained by calculating the maximum inflow
with the Ford–Fulkerson algorithm, and a trip set connecting schedule with minimum vehicle number is
accordingly produced. The process can be described as Fig. 4.

P free, represents the free vehicles.
Order(i), serial number of every free vehicle, vehicle will be arranged early or late according it.
mfree, the number of free vehicles.
P free, free vehicle set.
F ðiÞ, set represents the trip sets taken by vehicle i.
Fig. 4. Process of agorithm.
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5. Computational example

The correlative parameter of vehicle is: route time constraint = 420 min, fueling time constraint = 180 min;
the applying control parameter is: Ant number M ¼ 60; ncmax ¼ 40; sij ¼ 10, The Max pheromones = 100, the
Min pheromones = 2, a ¼ 1; b ¼ 1; c ¼ 0:5; k ¼ 0:5; q1 ¼ 0:85; q2 ¼ 0:95;Q1 ¼ 10;Q2 ¼ 50;Q3 ¼ 100; r0 ¼
r1 ¼ 1. Consider the 3 deports 3 routes 261 trips VSPRFTC showing in the Tables 1–5.

Vehicles needed of every deport changing with time can be seen in Fig. 5.Using the algorithms presented, 6
deadhead trips (Table 6) was inserted to the current timetable and three vehicles was saved, 37 feasible trip sets
were acquired. Considering that the vehicle can be reused after being fueled, we can see that it is enough for 34
Electric Vehicles (Table 7) to carry out these trips by applying bipartite graphic algorithm. Obviously, this pro-
Table 1
Routes information

Route Deport Route time (min)

1 A 48
2 B 48
3 C 59

Table 2
Deadhead time information

Departure deport Arrival deport Deadhead time (min)

A C 20
C A 20
B C 15
C B 15
A B 25
B A 25

Table 3
Timetable of route 1

Trip Departure time Trip Departure time Trip Departure time Trip Departure time Trip Departure time

1 5:10 23 7:24 45 9:18 67 14:52 89 17:21
2 5:18 24 7:28 46 9:30 68 15:02 90 17:27
3 5:26 25 7:32 47 9:44 69 15:10 91 17:33
4 5:34 26 7:36 48 9:58 70 15:18 92 17:39
5 5:42 27 7:40 49 10:14 71 15:26 93 17:45
6 5:50 28 7:44 50 10:30 72 15:33 94 17:51
7 5:57 29 7:48 51 10:46 73 15:40 95 17:59
8 6:04 30 7:52 52 11:02 74 15:47 96 18:07
9 6:10 31 7:56 53 11:18 75 15:54 97 18:15

10 6:16 32 8:00 54 11:34 76 16:01 98 18:23
11 6:22 33 8:04 55 11:50 77 16:08 99 18:31
12 6:28 34 8:08 56 12:06 78 16:15 100 18:40
13 6:34 35 8:12 57 12:22 79 16:21 101 18:50
14 6:40 36 8:16 58 12:38 80 16:27 102 19:00
15 6:46 37 8:20 59 12:55 81 16:33 103 19:10
16 6:52 38 8:24 60 13:10 82 16:39 104 19:25
17 6:58 39 8:28 61 13:25 83 16:45 105 19:40
18 7:04 40 8:34 62 13:40 84 16:51 106 19:55
19 7:08 41 8:40 63 13:55 85 16:57 107 20:10
20 7:12 42 8:48 64 14:10 86 17:03 108 20:25
21 7:16 43 8:56 65 14:24 87 17:09 109 20:40
22 7:20 44 9:06 66 14:38 88 17:15 110 20:55
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Table 4
Timetable of route 2

Trip Departure time Trip Departure time Trip Departure time Trip Departure time Trip Departure time

111 5:30 133 8:00 155 12:00 177 16:27 199 18:05
112 5:44 134 8:06 156 12:16 178 16:34 200 18:09
113 5:52 135 8:12 157 12:32 179 16:41 201 18:13
114 6:00 136 8:18 158 12:48 180 16:47 202 18:17
115 6:08 137 8:26 159 13:04 181 16:53 203 18:21
116 6:16 138 8:34 160 13:21 182 16:57 204 18:25
117 6:23 139 8:42 161 13:36 183 17:01 205 18:29
118 6:30 140 8:50 162 13:51 184 17:05 206 18:35
119 6:36 141 8:58 163 14:06 185 17:09 207 18:41
120 6:42 142 9:06 164 14:21 186 17:13 208 18:49
121 6:48 143 9:14 165 14:36 187 17:17 209 18:57
122 6:54 144 9:22 166 14:50 188 17:21 210 19:06
123 7:00 145 9:32 167 15:04 189 17:25 211 19:16
124 7:06 146 9:44 168 15:18 190 17:29 212 19:26
125 7:12 147 9:56 169 15:28 191 17:33 213 19:36
126 7:18 148 10:10 170 15:36 192 17:37 214 19:51
127 7:24 149 10:24 171 15:44 193 17:41 215 20:06
128 7:30 150 10:40 172 15:52 194 17:45 216 20:21
129 7:36 151 10:56 173 15:59 195 17:49 217 20:36
130 7:42 152 11:12 174 16:06 196 17:53 218 20:51
131 7:48 153 11:28 175 16:13 197 17:57 219 21:06
132 7:54 154 11:44 176 16:20 198 18:01 220 21:21

Table 5
Timetable of route 3

Trip Departure time Trip Departure time Trip Departure time Trip Departure time Trip Departure time

221 8:00 230 10:00 239 12:20 248 14:40 257 16:20
222 8:12 231 10:15 240 12:36 249 14:55 258 16:30
223 8:24 232 10:30 241 12:52 250 15:10 259 16:40
224 8:36 233 10:45 242 13:08 251 15:20 260 16:50
225 8:48 234 11:00 243 13:24 252 15:30 261 17:00
226 9:00 235 11:16 244 13:40 253 15:40
227 9:15 236 11:32 245 13:55 254 15:50
228 9:30 237 11:48 246 14:10 255 16:00
229 9:45 238 12:04 247 14:25 256 16:10

Table 6
Deadhead trips

Dead head trip Departure deport Departure time Arrival deport Arrival time

DHAC1 A 8:24 C 8:44
DHAC2 A 8:36 C 8:56
DHAB1 A 8:44 B 9:09
DHAB2 A 8:52 B 9:17
DHCB1 C 17:09 B 17:24
DHCB2 C 17:19 B 17:34
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ject not only meets the range of public transport electric vehicle time limited but also can meet each dispatch
missions request, it is a feasible solution to above vehicle scheduling problem.
Please cite this article in press as: H. Wang, J. Shen, Heuristic approaches for solving transit vehicle ..., Appl. Math.
Comput. (2007), doi:10.1016/j.amc.2007.02.141



Table 7
scheduling result

Vehicle Trips Work time Spread time

1 1! 8! 16! 27! 41! 46! 50! 54! 58! 62! fueling! 91! 98 576 841
2 2! 9! 19! 31! 79! 90! 97! 103! 107 432 940
3 3! 10! 18! 30!DHAB1! 170! 177! 187! 200 409 811
4 111! 117! 125! 135! 171! 178! 190! 202! 210 432 864
5 4! 12! 22! 34! 43! 47! 52! 56! 59! 63! fueling! 93 528 779
6 5! 13! 23! 35! 74! 82 288 705
7 112! 119! 128! 136! 142! 147! 151! 155! 161! 165! fueling 480 760
8 6! 14! 24! 37! 71! 78! 87! 95! 101! 105! fueling 480 1058
9 113! 120! 129! 137! 143! 167! 172! 179! 191! 203! fueling 480 977

10 7! 15! 26! DHAC1! 225! 251! 257 341 682
11 114! 121! 133! 140! 146! 150! 154! 158! 162! 166! fueling! 207! 213! 217 624 924
12 115! 123! 131! 173! 181! 194! 206! 212! 216! 220! fueling 480 1141
13 116! 124! 132! 139! 145! 149! 152! 156! 159! 163! fueling 528 753
14 11! 20! 33!DHAB2! 144! 148! 153! 157! 160! 164! fueling 457 707
15 118! 127! 174! 182! 195 240 727
16 122! 130! 138! 169! 176! 185! 197! 208 384 763
17 17! 29!DHAC2! 254! 260 234 651
18 21! 36! 44! 48! 51! 55! 61! 65! 70! 77! fueling 480 760
19 126! 134! 141! 168! 175! 184 288 635
20 25! 38! 69! 76! 84! 92! 99! 104! 108 432 821
21 28! 40! 67! 73! 81! 89 288 625
22 221! 226! 230! 234! 238! 242! 246! 250! fueling 472 669
23 32! 42! 66! 72! 80! 88! 96! 102! 106! 110! fueling 480 1003
24 222! 227! 231! 235! 239! 243! 247! 252! fueling 472 677
25 223! 228! 232! 236! 240! 244! 248! 253! fueling 472 675
26 39! 45! 49! 53! 57! 60! 64! 68! 75! 83! fueling 528 780
27 224! 229! 233! 237! 241! 245! 249! 255! fueling 472 683
28 256! DHCB1! 189 122 123
29 180! 192! 204! 211! 215! 219 59 59
30 183! 196 96 100
31 86! 94! 100 144 145
32 186! 199! 209! 214! 218 240 266
33 DHCB2! 193! 205 111 118
34 188! 201 96 100
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6. Conclusion

One aim of creating an ACA for VSPRFTC is to advance our knowledge of the problem itself. Anther is to
find a better solution method. New formulations for VSPRFTC of Electric bus were presented. The solving
process had been detached into two steps. In step 1, a new ant colony optimization based approach to solve
VSPRFTC of electric bus was introduced. In particular, algorithm has been designed to solve VSPRFTC with
two objective functions: (i) the minimization of the number of tours (or vehicles) and (ii) the minimization of
the total deadhead time, where number of tours minimization takes precedence over deadhead time minimi-
zation. Our algorithm introduces a new methodology for optimizing multiple objective functions. The basic
idea is to coordinate the activity of different ant colonies, each of them optimizing a different objective. These
colonies work by using independent pheromone trails but they collaborate by exchanging information. All
trips had been assigned to vehicles after this algorithm finished. In step 2, in dealing with the fueling time con-
straint a bipartite graphic model and its optimization algorithm are developed for trip set connecting in a hub
and spoke network system to minimize the number of vehicle required. The maximum matching of the bipar-
tite graph is obtained by calculating the maximum inflow with the Ford–Fulkerson algorithm. A solution
obtained by using this algorithm to solve the real-world VSPRFTC. From the result on the test problem,
we can conclude that the model, the heuristic procedures are quite successful in solving VSPRFTC.
Please cite this article in press as: H. Wang, J. Shen, Heuristic approaches for solving transit vehicle ..., Appl. Math.
Comput. (2007), doi:10.1016/j.amc.2007.02.141
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Fig. 5. vehicles needed of every deport changing with time.
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