
Parallel Computing 36 (2010) 469–485
Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier .com/ locate/parco
Parallelism in simulation and modeling of scale-free complex networks

Tomas Hruz *, Stefan Geisseler, Marcel Schöngens
Institute of Theoretical Computer Science, ETH Zürich, Universitätstrasse 6, 8092 Zürich, Switzerland

a r t i c l e i n f o
Article history:
Received 1 September 2009
Received in revised form 10 April 2010
Accepted 30 April 2010
Available online 11 May 2010

Keywords:
Scale-free networks
Stochastic processes
Non-growing complex networks
0167-8191/$ - see front matter � 2010 Elsevier B.V
doi:10.1016/j.parco.2010.04.004

* Corresponding author.
E-mail address: tomas.hruz@inf.ethz.ch (T. Hruz)
a b s t r a c t

Evolution and structure of very large networks has attracted considerable attention in
recent years. In this paper we study a possibility to simulate stochastic processes which
move edges in a network leading to a scale-free structure. Scale-free networks are charac-
terized by a ‘‘fat-tail” degree distribution with considerably higher presence of so called
hubs – nodes with very high degree. To understand and predict very large networks it is
important to study the possibility of parallel simulation. We consider a class of stochastic
processes which keeps the number of edges in the network constant called equilibrium
networks. This class is characterized by a preferential selection where the edge destina-
tions are chosen according to a preferential function f(k) which depends on the node degree
k. For this class of stochastic processes we prove that it is difficult if not impossible to
design an exact parallel algorithm if the function f(k) is monotonous with an injective
derivative. However, in the important case where f(k) is linear we present a fully scalable
algorithm with almost linear speedup. The experimental results confirm the linear scalabil-
ity on a large processor cluster.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The study of complex networks has attracted considerable attention in recent years. The research community as well as
the public has became sensitive to the fact that various sorts of networks have a profound effect on our lives. We understand
today that our brains, our communication lines, our highways, our flight connections and our social contacts (just to mention
a few examples) exhibit a structure of a complex network with nodes representing the entities and edges representing some
sort of interactions among them. Proliferation of networks has led to a deeper research showing that the behavior and the
growth of such networks are far from being purely random. It often follows certain topological and structural patterns dis-
covered in the theory of scale-free networks and small-worlds [1,10,18,21,7]. Scale-free networks are characterized by a ‘‘fat-
tail” degree distribution with considerably higher presence of so called hubs – nodes with very high degree. Exactly speaking
only the degree distribution P(k) = ak�c, where P(k) denotes the probability of finding a vertex with degree k in the network,
is invariant under scaling. However, all networks having a log–log near linear degree distribution for higher degree k are
studied under the term scale-free networks.

Stochastic processes are often used to model the evolution of complex networks. Such processes consist of simple phe-
nomenological rules describing how the edges and nodes appear and change in the network. A master equation is a differ-
ence (or differential) equation describing the behavior of a certain network quantity under the given stochastic process. The
basic quantity characterizing the complex network is the degree distribution. Degree distribution P(k, t) is the probability
that at any given time t a vertex chosen uniformly at random would have degree equal to k.
. All rights reserved.

.

http://dx.doi.org/10.1016/j.parco.2010.04.004
mailto:tomas.hruz@inf.ethz.ch
http://www.sciencedirect.com/science/journal/01678191
http://www.elsevier.com/locate/parco


470 T. Hruz et al. / Parallel Computing 36 (2010) 469–485
However, even the simplest edge and vertex change rules can lead to a very complicated master equation [13]. In this
situation a simulation of the network stochastic process can bring valuable insight into the behavior and possible solutions
of the master equation. Moreover, some real networks are so large and complicated that the only chance to setup a frame-
work where they could be understood is to simulate them on a large-scale.

For some critical networks like internet it can be necessary in future to have an online prediction model which would
follow and predict the development of the network conditions. Similarly as the weather forecast service observes, simulates
and predicts the behavior of the atmosphere on earth it will be important to know the state and the future development of
the network. In such applications fast parallel algorithms capable of simulating the network processes on a very large scale
are needed. The network simulation systems can also play a central role in understanding and preventing security problems
in large networks. Fast simulations of very large networks can show how the evolution of the underlying network structure
influences the speed and other factors of a security problem spreading over the network.

To understand and predict very large networks it is important to study the possibility of parallel simulation. We concen-
trate on a basic building block of network evolution called preferential selection because it creates a major obstacle to par-
allelization of scale-free models. Preferential selection denotes a step where a network node is selected with a probability
dependent on its degree. This dependency is expressed through a preference function which we discuss in detail in the next
sections. It is a part of a larger step called preferential attachment, where after the node is preferentially selected an edge is
attached to it which was selected during the earlier stages of the stochastic process. We prove a theorem indicating that it
will be very hard (if not impossible) to find efficient and exact parallel algorithms for the general case. However, a very
important special case of linear preferential attachment (for the discussion on importance of the linear case see e.g. [11])
can be simulated in parallel and we provide an algorithm which achieves almost linear speedup in the number of processors.

The principal problem, under which conditions the stochastic processes generating scale-free networks can be parallel-
ized, was not studied in the literature. The authors in [22] consider a problem how to generate in parallel a large, scale-free
network which can be used for testing purposes of simulation frameworks. The proposed method serves perfectly well for
the purposes the authors in [22] consider, however the conditions on the preference function which would allow (resp. not
allow) efficient parallelization are not studied. Moreover, in comparison to the method presented here, the PBA method from
[22] can be used only for one particular preference function f(k) = k, because selecting an edge uniformly at random and
choosing its vertex at random is equivalent to the preference function f(k) = k. Our parallel algorithm allows to consider
any linear preference function. The authors in [22] also develop a method called PK which provides a deterministic construc-
tion of scale-free graphs, however the stochastic process generating the graph is not provided. We think that to identify this
process a new research into equivalence between certain classes of stochastic processes and prescribed scale-free graphs
would be needed. It is known that any prescribed degree distribution in a graph can be achieved under the configuration
model [18].

The class of complex networks similar to our scenario which was considered from the parallelism point of view are small-
world networks. Parallel algorithms for generation of small-world networks has been studied in [2,15]. Small-world net-
works have similar features as scale-free networks (for example small diameter) but the generating stochastic processes
do not use preferential selection which is the main obstacle to the parallelization of scale-free networks as we argue below.
Another field which can be related to our research is the study of parallelism for Monte Carlo methods [23]. Intuitively, a
stochastic process acting on a network can be transformed to a Monte Carlo setting, because the behavior of very large net-
works can be continuously approximated with a partial differential equation [10], where the degree plays a role of spatial
coordinate and discrete time is approximated with continuous time coordinate. However, to understand this relation and
its consequences to parallel simulation of scale-free networks, a new branch of research would be needed.

The stochastic process which we study in this paper provides a simplification of the processes occurring in real complex
networks. The complex network community has proposed more complex processes to model finer phenomena (apart from
scale-free degree distribution) occurring in real networks [5,8]. However, for such stochastic processes a very limited body of
theory exists which would provide a sufficient theoretical analysis (mean-field model) of their behavior not to say an anal-
ysis of their parallelization possibilities. Most studies provide simulation results of proposed models which often illustrate
that the model can capture the features of real complex networks. Moreover, in many proposed processes, preferential
attachment is used as a building block. This is also true for emergent studies of features like network conductivity [17] where
the preferential attachment plays a role of an important building block which is combined with other stochastic rules to ob-
tain a conductivity modeling for internet graphs. Therefore, a deeper study of the preferential attachment provided in our
paper can serve as a starting point to consider more complex scenarios.

Generic simulation systems like [9] can be successfully built on an idea that in many situations even if the preferential
selection is used, approximate solutions are possible. This is for example the case of sparse networks where our theory does
not provide a good prediction. Another such case is discussed in the concluding section where we propose to use the linear
approximation of weak non-linearities of preferential function. However, our analysis in Section 3 shows that in dense
graphs with nonlinear preferential selection if exact solution is needed the preferential selection is an obstacle for an effi-
cient parallelism. In this case the focus should be on parallelly efficient and theoretically well understood approximations
to the given stochastic process.

The present paper is organized as follows. In the next section we define the basic network generating processes and the
related notation. In Section 3 we study the depth of the dependency tree for general preferential attachment, and in Section 4



T. Hruz et al. / Parallel Computing 36 (2010) 469–485 471
we provide a parallel algorithm for the linear preferential selection. We conclude with experimental results and possible
directions of further research.

2. Stochastic models of complex network evolution

To model the nodes and the relations of a complex network we consider a multigraph G(V,E) without an orientation,
where V is a set of nodes (vertices) and E is a set of edges. The number of nodes is denoted with N, jVj = N and the number
of edges with L, jEj = L. The basic quantity describing the network evolution is the degree distribution defined as P(k) = N(k)/N,
where N(k) denotes the number of nodes having degree k. The averaging of a quantity X is denoted with hXi or with X.
Specifically, the average degree of the network is denoted with �k, and it equals �k ¼ 2L=N. In the cases where we consider
changes of the quantities like P(k) or N(k) over time, we add the parameter t as in N(k, t) or P(k, t).

The complex network theory recognizes two principal cases with respect to the evolution of the number of edges. First,
there are non-growing or equilibrium networks where the number of edges L is constant or bounded within some interval.
Second, growing or non-equilibrium networks are studied, where during the network evolution the number of nodes and the
number of edges grows substantially and it is not bounded by any constant.

In Process 1 we define a widely studied basic equilibrium process [10,11,13]. We call the process illustrated in Fig. 1 ‘‘Sim-
ple Edge Selection Process” (SESP). One repetition of the process steps called a process loop models one discrete time unit. As
an initial condition we generally suppose a multigraph G(V,E) with L edges and N vertices.

Process 1: SESP

Require: a multigraph G(V,E) with L edges and N vertices.
1: Ns � StepLimit {Initialize the number of process loops.}
2: while number of process loops smaller than Ns do
3: An edge, denoted Ei, is selected uniformly at random.
4: An end vertex, denoted vi, of Ei is selected uniformly at random. The other end vertex will be denoted as vj.
5: A vertex, denoted vl, is selected with a probability proportional to f(k) i.e. with probability f(k)/(Nh fi) where k is the

degree of vl.
6: The edge Ei is rewired from vi to vl i.e. the edge Ei between vi and vj is deleted and a new edge between vl and vj is

created.
7: end while

Non-growing complex networks have been observed in many situations. A typical example is represented by metabolic
networks in living organisms which consist of complex chains of biochemical reactions in the living cell [20,14]. The number
of reactions and substances flowing through the network is constant, however the network is stochastically changing its
topology as a reaction to the changes of the organism state. Another example are neural networks in the brain where the
activity of the connections between neurons are stochastically reconfigured on the fly to reflect the current processing needs.
An overview of further examples together with modeling theory can be found in [19]. Generally, most of the growing net-
works (like for example internet and WWW) will reach a saturation phase because of constraints on resources and energy
which are present in any physical system. Then the stochastic reconfiguration processes will prevail over the growth
processes.
Fig. 1. Illustration of the ‘‘Simple Edge Selection Process” (SESP - see Process 1). The process selects an edge uniformly at random (Picture A) and rewires it
to a node which was preferentially selected (Picture B). A detailed explanation of preferential selection and the process definition is provided in Section 2.
The rewiring is unconditional, this means that there is no test of the connectivity state between vl and vj. During the rewiring operation the following three
cases can occur: (i) there is no edge between the node vl and the node vj, therefore the process does not create a multiple edge or a self loop, (ii) there are
already one or more edges between vl and vj, the process adds another edge between the nodes, and (iii) if vl = vj, the process creates a self-loop.



472 T. Hruz et al. / Parallel Computing 36 (2010) 469–485
Step 5 in Process 1 is called preferential selection, and f(k), k P 0 is a preference function. This is a basic building block of
processes generating scale-free distributions, which are the subjects of study in the theory of complex networks. During the
preferential selection a node is chosen in dependence of its degree. If the function f(k) is increasing, the nodes having more
edges are chosen with higher probability. For example in the case of Internet Web pages the authors are linking pages of
their web sites to other pages already well known to them and these are exactly the web pages having already a lot of links.
This sort of preferential selection is often modeled with the linear preference function f(k) = bk + k0. On the other hand, to
consider non-linearities in f(k) will be necessary if we want to have more accurate models of real networks, because there
are natural constrains (on energy and other resources) which must lead to saturation effects. We denote as hfi the mean va-
lue of f(k) which is generally dependent on time hf iðtÞ ¼

P2L
s¼0f ðsÞPðs; tÞ.

The preferential selection is difficult to parallelize because it depends on global information, namely on the development of
the degree distribution. Closer inspection of the preferential selection suggests that a processing unit needs the whole informa-
tion about the degree distribution whenever it wants to compute the selection probability s(k) = f(k)/(Nhfi). Indeed, we can prove
in Section 3 that this is the case for a considerable range of scale-free networks with nonlinear preference function. Our idea of a
parallel algorithm for linear preference is based on the observation that we can replace the step dependent on the degree distri-
bution with steps where objects are chosen uniformly at random. This makes the process less dependent on the information that
can not be distributed cheaply across the processing units. On the other hand, Steps 3 and 4 of Process 1 have a different character,
independent of the degree distribution, therefore they can be better parallelized. For example, the edges can be distributed be-
tween the processors, and a randomly chosen processor can uniformly at random choose an edge from the set of its local edges.

The master equation describes the time evolution of the degree distribution in the mean-field approximation [4]. It is a
deterministic finite difference equation (or in some cases partial differential equation) which describes the development of
the degree distribution mean value. For Process 1 the master equation [13,10] can be formulated as
Pðk; t þ 1Þ ¼ Pðk; tÞ � f ðkÞ
Nhf iðtÞ Pðk; tÞ þ

f ðk� 1Þ
Nhf iðtÞ Pðk� 1; tÞ � k

N�k
Pðk; tÞ þ kþ 1

N�k
Pðkþ 1; tÞ þ Oð1=N2Þ; ð1Þ
where O(1/N2) denotes the terms dependent on 1/N2 which disappear very quickly for larger networks.
As we illustrated in Fig. 1 the SESP process can create multiple edges and self-loops, therefore we need multigraphs as an

underlying model. Because in the large graph limit the frequency of such artifacts tends to zero [10], the multigraph setting is
standardly used. On the other hand, it would be desirable to have a model allowing only simple edges and no self-loops. In
[13] we investigated the constraints preserving the simple graph structure, and we have shown that the understanding of
these constraints involves a whole hierarchy of object distributions, which makes the exact modeling very difficult.

The preferential selection constitutes an important building block for modeling of complex networks. This can be illus-
trated on another much investigated class of complex networks that describes non-equilibrium resp. growing networks
[3,4]. The basic model of complex network growth is illustrated in Fig. 2. The stochastic process called ‘‘Barabasi–Albert Mod-
el” (BM) can be defined with the following steps, where the initial condition is again a multigraph G(V,E) with L edges and N
vertices. Marginally, it can be noted that this process does not create any new multiple edges and self-loops i.e. it preserves
the simple graph property if the initial configuration is a simple graph.

Process 2: BM

Require: a multigraph G(V,E) with L edges and N vertices.
1: Ns � StepLimit {Initialize the number of process loops.}
2: while number of process loops smaller than Ns do
3: A vertex, denoted vi, added to the existing graph G.
4: A vertex, denoted vj, is selected with a probability proportional to f(k) i.e. with probability f(k)/(Nhfi) where k is the

degree of vj.
5: A new edge Ei is created from vi to vj.
6: end while
The master equation for BM can be formulated [10] as
Nðk; t þ 1Þ ¼ Nðk; tÞ þ k� 1
t�k

Nðk� 1; tÞ � k

t�k
Nðk; tÞ þ dk;1; ð2Þ
where t means discrete time starting at t = 2 and dk,1 is the Kronecker delta. In the basic setting the initial condition is a graph
having 2 vertices and one edge between them, i.e. N(k,2) = 2dk,1.

In the rest of the paper we concentrate on the preferential selection step in the context of Process 1 (SESP), however the
analysis and the parallelization we propose are also applicable for other cases where the preferential selection is used.

3. Parallelism for general preferential selection

To show that parallel simulation is difficult in certain situations we proceed in three steps. In the first part we show that if
the preference function f(k) is monotonous and has an injective derivative then the selection probability s(k) = f(k)/(Nhfi)



Fig. 2. Illustration of Process 2 – growing scale-free network. The process adds a new node to the existing network (Picture A) and preferentially selects a
node from the existing network, which is then connected to the new node (Picture B).

T. Hruz et al. / Parallel Computing 36 (2010) 469–485 473
changes for every node in the network if the degree distribution P(k, t) changes during a discrete time unit (process loop) of
Process 1. In other words, to know the selection probability the information about all nodes in the network is necessary. To
obtain this fact one has to follow the ) direction of Lemma 3 and ) direction of Lemma 4. Lemmas 1 and 2 are technical
tools which are valid for any preference function f(k). On the other hand to obtain Lemma 3 we have to suppose that the
difference (derivative) of the function f(k) is injective. For Lemma 4 to be valid a monotonous function f(k) is necessary.

In the second part we additionally suppose that the network distribution is bounded from above by a scale-free distribu-
tion. Under this condition we show in Theorem 6 that the degree distribution P(k, t) changes with high probability in every
time unit of the Process 1. To prove Theorem 6 we need Lemma 5 which is independent on any concrete degree distribution
class. Now combining Lemmas 1–5 and Theorem 6 we obtain a class of networks, namely the scale-free networks with
monotonous nonlinear function f(k), for which the selection probability s(k) changes with high probability in every time unit
for all nodes in the networks.

In the third part we develop a model of parallel computing which considers dependencies between computation states
based on changes in degree distribution. The idea (captured in the definition of the dependency tree) is to organize the com-
putational states in a tree where the edges model the dependencies of the selection probability on degree distribution. We
summarize our analysis in Theorem 7 about the depth of the dependency tree during the simulation of Process 1.

Additionally we use the following notation. Let [a,b] denote the interval of integers n such that a 6 n 6 b. We denote the
degree of node i in discrete time t of Process 1 by ki(t). Observe, that in each step of the process the connectivity of at most
two vertices vi and vl is changed. By K = {ki(t),kl(t),ki(t + 1),kl(t + 1)} we denote the degrees that get changed in step t and t + 1.
The following Lemma reveals an important connection between these degrees and the development in the degree
distribution.

Lemma 1. For every discrete time t of Process 1 the following equivalence holds:
v i ¼ v l _ kiðtÞ ¼ klðtÞ þ 1() 8k 2 ½0;2L� : Pðk; t þ 1Þ ¼ Pðk; tÞ:
Proof. First we consider ): If vi = vl, then ki(t) – kl(t) + 1. Since from vi = vl it follows directly that " k 2 [0,2L]:
P(k, t + 1) = P(k, t), we only need to consider the case when ki(t) = kl(t) + 1. We decompose the process into two phases. Phase
one is the deletion of the edge (vj,vi) and phase two is the adding of edge (vj,vl). Moreover, N(k, t), N(k, t + 1) only differ in k 2
K. We do not consider vertex vj since no change is caused in any of the two phases. In the first phase vi moves from the set of
vertices with degree ki(t) to the set of vertices with degree ki(t) � 1 = kl(t). We denote the state after phase one and before
phase two by t0. We obtain
NðkiðtÞ; t0Þ ¼ NðkiðtÞ; tÞ � 1;
NðklðtÞ; t0Þ ¼ NðklðtÞ; tÞ þ 1:
For phase two the only thing that happens is that vertex vl moves from the set of vertices with degree kl(t) to the set of ver-
tices with degree kl(t) + 1 = ki(t). Then,
NðkiðtÞ; t þ 1Þ ¼ NðkiðtÞ; t0Þ þ 1;
NðklðtÞ; t þ 1Þ ¼ NðklðtÞ; t0Þ � 1:
Therewith, we get that N(ki(t), t + 1) = N(ki(t), t) and N(kl(t), t + 1) = N(kl(t), t). From the fact that ki(t + 1) = ki(t) � 1 = kl(t) and
kl(t + 1) = kl(t) + 1 = ki(t) we also obtain that N(ki(t + 1), t + 1) = N(ki(t + 1), t) and N(kl(t + 1), t + 1) = N(kl(t + 1), t). Since
P(k, t) = N(k, t)/N we have P(k, t + 1) = P(k, t).



474 T. Hruz et al. / Parallel Computing 36 (2010) 469–485
Now, we consider �: Assume for the sake of contradiction, that vi – vl ^ kl(t) + 1 – ki(t). Consider degree ki(t). In Phase 1
the edge (vj,vi) is removed, s.t. N(ki(t), t0) = N(ki(t), t) � 1. In Phase 2 the edge (vj,vl) is added. If vi – vl we know that
kl(t + 1) = kl(t) + 1. Since kl(t) + 1 – ki(t) it follows that kl(t + 1) – ki(t). That means that vl will not get a degree of ki(t) in
discrete time step t + 1. Further, vl does not contribute to N(ki(t), t + 1). Hence, N(ki(t)) does not change in Phase 2 and we have
N(ki(t), t + 1) = N(ki(t), t0) = N(ki(t),t) � 1. This is a contradiction, because we can derive that P(ki(t), t) – P(ki(t), t + 1). h

The next lemma studies the time development of the preference function mean during the process.

Lemma 2. Let f(k), k P 0 be a preference function in Process 1. For any discrete time t it holds that
hf iðt þ 1Þ � hf iðtÞ ¼ 1
N

f ðkiðtÞ � 1Þ � f ðkiðtÞÞ þ f ðklðtÞ þ 1Þ � f ðklðtÞÞð Þ:
Proof. By definition we obtain
hf iðt þ 1Þ � hf iðtÞ ¼
X2L

k¼0

f ðkÞPðk; t þ 1Þ �
X2L

k¼0

f ðkÞPðk; tÞ:
As mentioned above, only the connectivity of vi and vl is changed and corresponding degrees are K = {ki(t),kl(t), -
ki(t + 1),kl(t + 1)}. Hence,
hf iðt þ 1Þ � hf iðtÞ ¼ 1
N

X
k2K

f ðkÞNðk; t þ 1Þ �
X
k2K

f ðkÞNðk; tÞ
 !

:

For N(k, t + 1) of the first sum, we get the following identities:
NðkiðtÞ; t þ 1Þ ¼ NðkiðtÞ; tÞ � 1;
Nðkiðt þ 1Þ; t þ 1Þ ¼ Nðkiðt þ 1Þ; tÞ þ 1;
NðklðtÞ; t þ 1Þ ¼ NðklðtÞ; tÞ � 1;
Nðklðt þ 1Þ; t þ 1Þ ¼ Nðklðt þ 1Þ; tÞ þ 1:
Therewith, the second sum can be subtracted directly, such that we obtain
hf iðt þ 1Þ � hf iðtÞ ¼ 1
N

f ðkiðt þ 1ÞÞ � f ðkiðtÞÞ þ f ðklðt þ 1ÞÞ � f ðklðtÞÞð Þ

¼ 1
N

f ðkiðtÞ � 1Þ � f ðkiðtÞÞ þ f ðklðtÞ þ 1Þ � f ðklðtÞÞð Þ;
which completes our proof. h

The following lemma is establishing the relation between changes in the degree distribution and the preference function
f.

Lemma 3. Let f(k), k P 0 be a preference function in Process 1 for which the first difference Df(k) = f(k + 1) � f(k) is injective. Then
the degree distribution does not change in one discrete time unit of Process 1 iff the mean hfi of f(k) does not change, i.e.:
8k 2 ½0;2L� : Pðk; t þ 1Þ ¼ Pðk; tÞ () hf iðt þ 1Þ ¼ hf iðtÞ: ð3Þ
Proof. First, we show the direction ) in (3). Given P(k, t + 1) = P(k, t) we have
hf iðtÞ ¼
X2L

k¼0

f ðkÞPðk; tÞ ¼
X2L

k¼0

f ðkÞPðk; t þ 1Þ ¼ hf iðt þ 1Þ:
For the direction � in (3), let us suppose that hfi(t + 1) = hfi(t). If vi = vl we can conclude that P(k, t + 1) = P(k, t) because the
selected edge is detached from the vertex vi and immediately reattached to the same vertex. For vi – vl we have
0 = hfi(t + 1) � hfi(t). By Lemma 2 the following equalities hold
0 ¼ 1
N

f ðkiðtÞ � 1Þ � f ðkiðtÞÞ þ f ðklðtÞ þ 1Þ � f ðklðtÞÞð Þ ¼ 1
N
ðDf ðklðtÞÞ � Df ðkiðtÞ � 1ÞÞ:
Therefore, by injectivity of Df(k) we obtain:
0 ¼ Df ðklðtÞÞ � Df ðkiðtÞ � 1Þ ) Df ðklðtÞÞ ¼ Df ðkiðtÞ � 1Þ ) kiðtÞ ¼ klðtÞ þ 1:
Finally, we can apply Lemma 1 to obtain the desired result. h

The next step in understanding the obstacles in parallelization of the preferential selection is how changes in the mean hfi
of the preference function influence the changes in the selection probability.



T. Hruz et al. / Parallel Computing 36 (2010) 469–485 475
Lemma 4. Let f(k) P 0, k P 0 be a strictly monotonic (decreasing or increasing) positive preference function in Process 1. If hfi
changes in one discrete time unit of Process 1, then the selection probability s(k) = f(k)/(Nh fi) changes for all vertices i.e.
8v i 2 V :
f ðkiðt þ 1ÞÞ
Nhf iðt þ 1Þ –

f ðkiðtÞÞ
Nhf iðtÞ :
Proof. Because we rewire only one edge from a vertex vi to a vertex vl in one discrete time unit of Process 1, the degree k and
therefore f(k) can change for at most 2 vertices vi and vl. For all other vertices vm we have km(t) = km(t + 1) and only hfi
changes. Thus, the selection probability changes and we obtain
f ðkmðtÞÞ
Nhf iðtÞ –

f ðkmðt þ 1ÞÞ
Nhf iðt þ 1Þ :
For the vertices vi and vl it remains to show that
f ðkiðt þ 1ÞÞ
hf iðt þ 1Þ –

f ðkiðtÞÞ
hf iðtÞ and

f ðklðt þ 1ÞÞ
hf iðt þ 1Þ –

f ðklðtÞÞ
hf iðtÞ :
According to Lemma 3 the mean value hf iðtÞ ¼
P2L

k¼0f ðkÞPðk; tÞ changes if and only if there exists a k for which P(k, t) changes,
therefore vi – vl (in Process 1 if vi = vl the degree distribution P(k, t) does not change because the edge is reattached to the
same vertex) and the graph contains at least 2 vertices.

For all vertices vm 2 V
Nhf iP f ðkmÞ: ð4Þ
This can be seen as follows. Since f and P(k, t) are non-negative functions it follows that
Nhf i ¼ N
X2L

k¼0

f ðkÞPðk; tÞP Nf ðkmÞPðkm; tÞ ¼ f ðkmÞNðkm; tÞP f ðkmÞ;
because vm 2 N(km, t).
Suppose that f(k) is increasing. From the proof of Lemma 1 we know that kl(t + 1) = kl(t) + 1. For vertex vl using Lemma 2

we get
f ðklðt þ 1ÞÞ
hf iðt þ 1Þ ¼

f ðklðtÞ þ 1Þ
hf iðt þ 1Þ ¼

f ðklðtÞ þ 1Þ
hf iðtÞ þ f ðklðtÞþ1Þ�f ðklðtÞÞþf ðkiðtÞ�1Þ�f ðkiðtÞÞ

N

:

It holds f(ki � 1) � f(ki) < 0 since f is strictly monotone increasing. Hence, we derive that
f ðklðt þ 1ÞÞ
hf iðt þ 1Þ > N

f ðklðtÞÞ þ f ðklðtÞ þ 1Þ � f ðklðtÞÞ
Nhf iðtÞ þ f ðklðtÞ þ 1Þ � f ðklðtÞÞ

¼ N
f ðklðtÞÞ þ c
Nhf iðtÞ þ c

;

where c = f(kl(t) + 1) � f(kl(t)). Since inequality (4) NhfiP f(kl) allows to reduce the term removing c, it follows that
f ðklðt þ 1ÞÞ
hf iðt þ 1Þ > N

f ðklðtÞÞ
Nhf iðtÞ ¼

f ðklðtÞÞ
hf iðtÞ :
Now we consider vertex vi. Analogically as above, using Lemma 2 we obtain
f ðkiðt þ 1ÞÞ
hf iðt þ 1Þ ¼

f ðkiðtÞ � 1Þ
hf iðt þ 1Þ ¼

f ðkiðtÞ � 1Þ
hf iðtÞ þ f ðklðtÞþ1Þ�f ðklðtÞÞþf ðkiðtÞ�1Þ�f ðkiðtÞÞ

N

:

Due to strict monotonicity of f it holds that f(kl + 1) � f(kl) > 0 and we get
f ðkiðt þ 1ÞÞ
hf iðt þ 1Þ < N

f ðkiðtÞÞ þ f ðkiðtÞ � 1Þ � f ðkiðtÞÞ
Nhf iðtÞ þ f ðkiðtÞ � 1Þ � f ðkiðtÞÞ

¼ N
f ðkiðtÞÞ þ c
Nhf iðtÞ þ c

;

where c = f(ki(t) � 1) � f(ki(t)). As a result of inequality (4) we can finally derive
f ðkiðt þ 1ÞÞ
hf iðt þ 1Þ < N

f ðkiðtÞÞ
Nhf iðtÞ ¼

f ðkiðtÞÞ
hf iðtÞ :
Analogically for a decreasing positive function f(k) we obtain that
f ðklðt þ 1ÞÞ
hf iðt þ 1Þ <

f ðklðtÞÞ
hf iðtÞ and

f ðkiðt þ 1ÞÞ
hf iðt þ 1Þ >

f ðkiðtÞÞ
hf iðtÞ :
Therefore the selection probability sðkÞ ¼ f ðkÞ
Nhf i changes for all N vertices in G, when hfi changes. h



476 T. Hruz et al. / Parallel Computing 36 (2010) 469–485
Before we can prove Theorem 6 below, which describes how often (probabilistically) the degree distribution changes for a
scale-free network during the process, we need the following technical Lemma 5.

Lemma 5. Let G(t) = (V,E(t)) be a network. The probability that the degree distribution does not change in a single discrete time
step of Process 1 is
Pr 8k 2 ½0;2L� : Pðk; tÞ ¼ Pðk; t þ 1Þ½ � ¼
X2L

k¼1

f ðkÞPðkÞk
hf i2L

þ
X2L

k¼1

f ðk� 1ÞPðk� 1ÞPðkÞk
hf ihki :
Proof. By Lemma 1 we get
Pr 8k 2 ½0;2L� : Pðk; tÞ ¼ Pðk; t þ 1Þ½ � () Pr v i ¼ v l _ kiðtÞ ¼ klðtÞ þ 1½ �;
and since Pr[vi – vj ^ kl(t) + 1 – ki(t)] = 0 (see the proof of Lemma 1) we obtain
Pr 8k 2 ½0;2L� : Pðk; tÞ ¼ Pðk; t þ 1Þ½ � ¼ Pr½v i ¼ v l� þ Pr kiðtÞ ¼ klðtÞ þ 1½ �:
For the first probability we have
Pr½v i ¼ v l� ¼
X2L

k¼0

Pr v i ¼ v ljkiðtÞ ¼ k½ �Pr kiðtÞ ¼ k½ � ¼
X2L

k¼1

f ðkÞ
N � hf i

NðkÞk
2L

;

since there are N(k) vertices each connected to k half-edges, the probability of selecting a half-edge connected to a vertex
with degree k is Pr[ki(t) = k] = (N(k)k)/(2L). By Process 1 the probability of selecting vertex vl with degree k is (f(k)N(k))/(Nhfi),
but out of all N(k) vertices with degree k only one is vi, thus Pr[vi = vljki(t) = k] = f(k)/(Nhfi). Pr[ki(t) = 0] = 0 because vi is se-
lected through an edge selection, therefore the summation can start from 1. By the same argument the second probability
is
Pr klðtÞ þ 1 ¼ kiðtÞ½ � ¼
X2L

k¼0

Pr klðtÞ þ 1 ¼ kiðtÞjkiðtÞ ¼ k½ �Pr kiðtÞ ¼ k½ � ¼
X2L

k¼1

f ðk� 1ÞNðk� 1Þ
N � hf i

NðkÞk
2L

:

Therefore, the overall probability is
Pr 8k 2 ½0;2L� : Pðk; tÞ ¼ Pðk; t þ 1Þ½ � ¼
X2L

k¼1

f ðkÞ
N � hf i

NðkÞk
2L

þ
X2L

k¼1

f ðk� 1ÞNðk� 1Þ
N � hf i

NðkÞk
2L

:

Since P(k) = (N(k))/N and the expected degree per vertex is hki = (2L)/N, we get
Pr 8k 2 ½0;2L� : Pðk; tÞ ¼ Pðk; t þ 1Þ½ � ¼
X2L

k¼1

f ðkÞPðkÞk
hf i2L

þ
X2L

k¼1

f ðk� 1ÞPðk� 1ÞPðkÞk
hf ihki : �
From Lemmas 3 and 4 we know that if the distribution P(k, t) changes then the selection probability s(k) changes for all
vertices. Now we want to know what is the probability that P(k, t) is changed. To estimate this probability we consider a class
of networks for which the degree distribution is bounded from above by a scale-free function. We call a network G = (V,E)
scale-free for the parameters a 2 Rþ and c > 1, if the degree distribution is bounded by
PðkÞ 6 ak�c for k P 1;
1 for k ¼ 0:

(

This class of networks is in fact larger than the one usually understood under the term scale-scale. Moreover, we bound also
the (nonlinear) preference function on the interval [0,2L] to be inside a region illustrated in Fig. 3. The region is bounded
from above by linear function b1k + b0 and from the bottom by b3k � b3. It is possible to consider a larger class of functions
f(k), but this will make the proof more complex and we do not believe it would bring substantially new information. Under
these assumptions we can bound from below the probability of a change in P(k, t) as follows.

Theorem 6. Let G = (V,E) be a scale-free network with parameters c P 2 and let f be a preference function that is bounded by a
region defined as (see Fig. 3)
f ðkÞ 6 b1kþ b0; f ðkÞP
0 for k 2 ½0;1Þ;
b3k� b3 for k P 1;

�

where b1,b3 > 0 and b0 P 0. Then the probability that the degree distribution stays the same in one discrete time step is bounded by
Pr 8k 2 ½0;2L� : Pðk; tÞ ¼ Pðk; t þ 1Þ½ � 6 ab1

b3hki � b3
þ 4ab0 lnð2LÞ

2L b3hki � b3½ � þ
b0

hki b3hki � b3½ � þ
2a2ðb1 þ b0Þ
hki b3hki � b3½ � :



Fig. 3. Illustration of bounding area for the preference function f(k) in Theorem 6.

T. Hruz et al. / Parallel Computing 36 (2010) 469–485 477
Proof. Lemma 5 states that
Pr 8k 2 ½0;2L� : Pðk; tÞ ¼ Pðk; t þ 1Þ½ � ¼
X2L

k¼1

f ðkÞPðkÞk
2Lhf i þ

X2L

k¼1

f ðk� 1ÞPðk� 1ÞPðkÞk
hf ihki : ð5Þ
Under the assumption that the network is scale-free and that f(k) is bounded linearly, for the first summand we get
P2L
k¼1f ðkÞPðkÞk

2Lhf i 6

P2L
k¼1 b1kþ b0ð Þak�ck

2L
P2L

k¼1 bk � b3ð ÞPðkÞ
¼ ab1

P2L
k¼1k2�c þ ab0

P2L
k¼1k1�c

2L b3
P2L

k¼1kPðkÞ � b3
P2L

k¼1PðkÞ
h i :
By definition of
P2L

k¼1kPðkÞ ¼ hki. We bound
P2L

k¼1PðkÞ from above by 1 and by the fact that c P 2, we obtain
P2L
k¼1f ðkÞPðkÞk

2Lhf i 6
ab12Lþ ab0

P2L
k¼1k�1

2L b3hki � b3½ � :
The harmonic series
P2L

k¼1k�1 converges against lnð2LÞ þ �c where �c is the Euler–Mascheroni constant. Thus, for all L P 1 it
holds that lnð2LÞ þ �c < lnð2LÞ þ 1. Consequently,
P2L

k¼1f ðkÞPðkÞk
2Lhf i 6

ab12L
2L b3hki � b3½ � þ

ab0 lnð2LÞ þ 1ð Þ
2L b3hki � b3½ � 6

ab1

b3hki � b3
þ 4ab0 lnð2LÞ

2L b3hki � b3½ � : ð6Þ
Analogously, for the second summand we get
P2L
k¼1f ðk� 1ÞPðk� 1ÞPðkÞk

hf ihki ¼ f ð0ÞPð0ÞPð1Þ þ
P2L

k¼2f ðk� 1ÞPðk� 1ÞPðkÞk
hki
P2L

k¼1f ðkÞPðkÞ
6

b0 þ
P2L

k¼2 b1ðk� 1Þ þ b0ð Þaðk� 1Þ�cak�ck

hki
P2L

k¼1ðb3k� b3ÞPðkÞ
:

For c P 2 we get
P2L
k¼1f ðk� 1ÞPðk� 1ÞPðkÞk

hf ihki 6
b0 þ a2P2L

k¼2 b1ðk� 1Þ þ b0ð Þðk� 1Þ�2k�1

hki b3
P2L

k¼1kPðkÞ � b3
P2L

k¼1
PðkÞ

� � :
Since k�1 is monotone decreasing, k�1
6 (k � 1)�1. Again, we bound

P2L
k¼1PðkÞ from above by 1. By shifting the index of the

sum, we obtain
P2L
k¼1f ðk� 1ÞPðk� 1ÞPðkÞk

hf ihki 6
b0 þ a2P2L�1

k¼1 b1kþ b0ð Þk�2k�1

hki b3
P2L

k¼1kPðkÞ � b3

h i ¼ b0 þ a2b1
P2L�1

k¼1 k�2 þ a2b0
P2L�1

k¼1 k�3

hki b3hki � b3½ � :
It is
P1

k¼1k�x
6 2 for any x P 2 which yields
P2L

k¼1f ðk� 1ÞPðk� 1ÞPðkÞk
hf ihki 6

b0

hki b3hki � b3½ � þ
2a2ðb1 þ b0Þ
hki b3hki � b3½ � : ð7Þ
Substituting (6) and (7) into (5) yields
Pr 8k 2 ½1;2L� : Pðk; tÞ ¼ Pðk; t þ 1Þ½ � 6 ab1

b3hki � b3
þ 4ab0 lnð2LÞ

2L b3hki � b3½ � þ
b0

hki b3hki � b3½ � þ
2a2 b1 þ b0ð Þ
hki b3hki � b3½ � ;
which completes the proof. h



478 T. Hruz et al. / Parallel Computing 36 (2010) 469–485
Let us consider what Theorem 6 means for networks observed in real situations. In [10] p. 80 the authors collected basic
characteristics (average degree, c etc.) from more than 30 real networks. In many important cases like for example the Web,
the average degree hki is larger than 10 and L is much larger than 1000. Already for a value of 1000 the second term in The-
orem 6 is of order 10�2 therefore we can neglect this term for most real networks. In most of the cases c P 2. It is also rea-
sonable to suppose a weak nonlinearity in f(k) therefore we can suppose b0 = b1 = b3 = 1. In Fig. 4 we show how the
probability in Theorem 6 depends on the average degree if we take the above assumptions. It is also clear from Fig. 4 that
our estimate in Theorem 6 is not accurate enough for k 6 6 because probability cannot be larger than 1. We can conclude that
for real networks with average degree larger than 8 the probability that degree distribution changes is larger than 1/2.

To capture the problems in design of parallel simulation algorithms for network processes we consider dependencies be-
tween the computation states. During simulation of the process the network changes its structure and runs through different
states. For a parallelization it is important how the current state depends on its predecessor states. If there is global struc-
tural change in the predecessor state, the current state depends strongly on it, i.e. the state can only be computed when all
information about the predecessor state are available. On the other hand, if the predecessor is subject to smaller changes, the
successor state may be computed in parallel with the predecessor, using only information of the predecessor’s predecessor.
The information needed by Process 1 to compute the next state is the selection probability. That means, a state strongly de-
pends on the predecessor state for which the selection probability changes globally. Now, assume we know any state of a
simulation of Process 1 from discrete time step 0 to T and assume that there are no two states with equal selection proba-
bility for all vertices. With serial computation the complexity is of X(T). We want to investigate how much we can gain from
parallelization methods when repeating exactly the same simulation.

To quantify this gain more formally we introduce a dependency tree. Let GðTÞ ¼ fGð1Þ;Gð2Þ; . . . ;GðTÞg be the set of all
states G(t) = (V,E(t)) of the simulation of Process 1 on some network G. A state GðtÞ 2 G is globally changed, if the selection
probability changes for any vi 2 V of G(t), i.e. "vi 2 V: s(k(t)) – s(k(t � 1)). The starting state G(0) is defined as globally chan-
ged. We say G(tj) strongly depends on G(ti), if ti < tj and G(ti) is globally changed and if for all tk with ti < tk < tj it holds that G(tk)
is not globally changed. Let E be a set of directed edges, where ðGðtiÞ;GðtjÞÞ 2 E iff G(tj) strongly depends on G(ti). Then
ðGðTÞ; EÞ is the dependency tree of GðT Þ.

The dependency tree reflects the obstacles in parallelization under the assumption that all strongly dependent states can-
not be computed before the state they depend on. Under this assumption the best possible method for parallelization would
be to compute any state in parallel which depends on a state that is already computed. The dependency tree exactly repre-
sents this behavior: an edge can be viewed as a computation step which leads from one state to another. If a state has several
outgoing edges, i.e. several other states depend on it, the computation for each outgoing edge is done in parallel.

We can consider the height (depth) of the dependency tree as a measure of parallelization for a given simulation. By def-
inition, any state of the dependency tree has an incoming edge from a different state, except the starting state G(0). Any glob-
ally changed state depends on a globally changed state. There cannot be two globally changed states G(t1) and G(t2) which
depend on the same state (assume w.l.o.g. that t1 < t2, then by definition of strong dependency t1 cannot be globally chan-
ged). Hence, there is exactly one globally changed state for each level of the dependency tree, except for the last level. All non
globally changed states are connected to globally changed states, hence the height of the tree is the number of globally chan-
ged states plus one. We can estimate the expected height of the dependency tree if we know the probability that the degree
distribution changes in one time step of the Process 1. We are aware that the mean depth of the dependency tree as defined
in our situation does not provide a full-blown average case proof in classical models as PRAM, however we believe that our
analysis provides a strong indication that algorithms highly parallel in expected case are prohibited in classical models too.
4 6 8 10 12 14 16 18 20 22 24
0

0.5

1

1.5

2

2.5

Average degree

Pr
ob

ab
ilit

y 
es

tim
at

e

Fig. 4. Dependence of the probability estimate according to Theorem 6 on the average degree. We suppose L = 1000, a = 2, b0 = b1 = b3 = 1.



T. Hruz et al. / Parallel Computing 36 (2010) 469–485 479
Theorem 7. Let f be a strictly monotonic (decreasing or increasing) function with f(k + 1) � f(k) being injective. Assume the degree
distribution changes in one discrete time step with a probability of at least P. Then the expected depth D(T) of the dependency tree
ðGðT Þ; EÞ when simulating T steps of Process 1 is bounded from below by PT, i.e.
E½DðTÞ�P PT:
Proof. If the degree distribution changes in one discrete time step with probability P, then by Lemma 3 it holds that
Pr 8kPðk; tÞ ¼ Pðk; t þ 1Þ½ � ¼ Pr hf iðtÞ ¼ hf iðt þ 1Þ½ �; ð8Þ
if f(k + 1) � f(k) is injective. From Lemma 4 it follows for f being strictly monotonic (decreasing or increasing) that
Pr hf iðtÞ – hf iðt þ 1Þ½ � 6 Pr 8v i 2 V : sðk; tÞ – sðk; t þ 1Þ½ �; ð9Þ
where s(k, t) = f(ki(t))/(Nhfi(t)). Combining (8) and (9) with the premise that a change in the degree distribution is bounded by
P yields
P 6 Pr 8kPðk; tÞ – Pðk; t þ 1Þ½ � 6 Pr 8v i 2 V : sðk; tÞ – sðk; t þ 1Þ½ �:
This means, that the probability that the state at time step t + 1 is globally changed is not less than P.
By definition of the dependency tree, any globally changed state sits on a new level since it is connected to the direct

predecessor state which is globally changed. That means the nth globally changed state is at depth n � 1, because the first
state is globally changed and has depth 0.

Now we count the depth of the dependency tree by introducing a Bernoulli random variable bt with 1 6 t 6 T for any state
G(t) of Process 1, which is 1 if G(t) is globally changed and 0 otherwise. Thus, the depth of the dependency tree is
DðTÞ ¼

PT
t¼1bt . Then the expected depth is
E½DðTÞ� ¼ E
XT

t¼1

bt

" #
¼
XT

t¼1

E½bt�;
where E[bt] = Pr[bt = 1]. By (7) we have Pr[bt = 1] P P and thus
E½DðTÞ�P
XT

t¼1

P ¼ TP;
which completes the proof. h

The expected height of the dependency tree according Theorem 7 can be very large in real networks. As we have dis-
cussed above, one can expect probability P in Theorem 7 to be around 1/2 for many real networks with nonlinear preference
function. Therefore the expected height of dependency tree can reach T/2 where T is the simulation time leading to consid-
erable difficulties in parallelization of such processes. On the other hand, if the process has linear preference function or
approximate results are satisfactory, the highly parallel algorithm presented in the next section can be used.

4. Parallel algorithm for linear preference function

In the previous section we analyzed Process 1 and we have shown that in many cases it is difficult if not impossible to
construct a parallel algorithm. However, as we discussed in the introduction many processes observed in reality are sup-
posed to have linear preference function. Therefore, it would be important to design parallel algorithms to simulate the sto-
chastic processes in these networks. Indeed, as we show in the following section, this is possible for linear preference
function in the form
f ðkÞ ¼ bkþ k0: ð10Þ
To derive a formulation of Process 1 suitable for parallel algorithms we need the concept of half-edges. Half-edge (vi,Ej) is an
object consisting of a node and an adjacent edge. In the following text we denote half-edges as Hi and the set of all half-edges
as H, where its size is H ¼ jHj. Selecting a vertex with linear preference f(k) = k can be done by selecting a half-edge Hi 2 H

uniformly at random and selecting its vertex because each vertex vi in the graph has attached a fraction ki/(2L) = (f(ki)/(Nhfi)
of all half-edges.

The rewiring Step 6 in Process 1 where we rewire an edge by changing one of its end nodes can also be formulated with
half-edges. To represent rewiring we choose a half-edge and move it to some other node i.e. we exchange the node in the
half-edge object with some other node. Because a half-edge is a pair (vi,Ej), exchanging the node vi with vl does not change
the other end of the edge i.e. before the step we have an edge represented by two half-edges (vi,Ej) � (vj,Ej) and after the step
we have an edge (vl,Ej) � (vj,Ej). Therefore, in the following text we use a term ‘‘half-edge rewire” which means exchanging a
vertex in a half-edge, this is equivalent to rewiring of an edge where one end vertex of the edge stays fixed and the other end
vertex is exchanged.



480 T. Hruz et al. / Parallel Computing 36 (2010) 469–485
The parallel algorithm for Process 1 is based on the reformulation of the preferential probability. The selection probability
for a linear preference function (10) can be represented as
sðkiÞ ¼
f ðkiÞ
Nhf i ¼

1
N
� Nk0

Nk0 þ b2L
þ ki

2L
� b2L
Nk0 þ b2L

¼ 1
N
� c þ ki

2L
� ð1� cÞ; ð11Þ
where 1/N is the probability of selecting a vertex uniformly at random and ki/(2L) is a probability of selecting a vertex with
linear preference f(ki) = ki. Additionally, the factors
c ¼ Nk0

Nk0 þ b2L
and 1� c ¼ b2L

Nk0 þ b2L
are constant for a given network and their sum is 1. Therefore according to (11), selecting vi with preference (10) is equiv-
alent to the following two steps:

1. With probability c select vi 2 V uniformly at random.
2. With probability 1 � c select an half-edge Hi uniformly at random and take its vertex vi.

If we formulate the preferential selection probability as above, we can equivalently transform Processes 1 and 3. We re-
place Steps 3–4 of Process 1 with Step 3 of Process 3, and Step 5 is replaced with the ‘‘if-then-else” Steps 5–9 using Eq. (11).
After this transformations the process does not contain any step directly dependent on the selection probability s(k) thus
removing the obstacle which we analyzed in the previous section.

Process 3: SESPL

Require: a multigraph G(V,E) with L edges and N vertices
1: Ns � StepLimit {Initialize the number of process loops.}
2: while number of process loops smaller than Ns do
3: An half-edge Hi is selected uniformly at random. The vertex connected to Hi is denoted vi.
4: A number c 2 [0,1] is selected uniformly at random.
5: if c < Nk0/(Nk0 + b2L) then
6: Select a vertex vl uniformly at random.
7: else
8: Select a half-edge Hl uniformly at random. The corresponding vertex is denoted vl.
9: end if
10: Rewire the half-edge Hi from vi to vl.
11: end while

The possibility to parallelize Process 3 is based on the fact that during the process steps the degree distribution is explic-
itly not used at all. As we have shown in the previous section, if we need to know the degree distribution to compute the
selection probability the computation must basically stop until the full distribution is known. However, as a consequence
of preference function linearity, all probabilistic steps in Process 3 choose an object uniformly at random i.e. the current de-
gree distribution is not used. Because we do not need the degree distribution explicitly the algorithm does not need to know
the identity of the graph vertices.

To explain the idea behind the algorithm in more detail, we need to introduce two sets of new objects: A0 and H0. H0 con-
tains all edges of the original graph represented as pairs of half-edges where the half-edge vertices are elements of a new set
A0 with the size 2L (see Fig. 6). In the following text we call the elements of the set A0 virtual vertices and with a ‘‘map” we
mean a function (which is not necessarily injective) from the set A0 to V. Now we can change Process 3 to the following form:

Process 4: PSESPL

Require a multigraph G(V,E) with L edges and N vertices
1: Ns � StepLimit {Initialize the number of process loops.}
2: while number of process loops smaller than Ns do
3: An half-edge Hi is selected uniformly at random from H0. The vertex connected to Hi is denoted ai 2 A0.
4: A number c 2 [0,1] is selected uniformly at random.
5: if c < Nk0/(Nk0 + b2L) then
6: Select a vertex vl uniformly at random from V.
7: else
8: Select a half-edge Hl uniformly at random. The corresponding vertex is denoted al 2 A0.
9: end if
10: Rewire the half-edge Hi from vi to vl if Step 5 was executed resp. to al if Step 8 was executed.
11: end while



T. Hruz et al. / Parallel Computing 36 (2010) 469–485 481
The main idea in the algorithm design is that it is equivalent to make k steps of the original Process 3 or to make k steps of

Process 4 using the virtual vertices from the set A0 and then to map the virtual vertices to the graph vertices from the set V. In
Fig. 6 we illustrate a few steps of Process 4 showing how the edges can move between the vertices from A0 (virtual) and from
V (original graph). If Al is a virtual vertex and therefore an alias for a real vertex vk, and a half-edge is rewired from Ai to Al,
then as a result at least 2 edges are connected to a single virtual vertex Al. The number of half-edges connected to a single
virtual vertex can be any number between 0 and 2L. The number of virtual vertices acting as an alias for the same real vertex
vk can also be any number between 0 and 2L. The sum of all half-edges connected to all aliases of vk in addition to the half-
edges directly connected with vk represents the degree of vk. Once a virtual vertex Ai has degree 0, no edge will ever be at-
tached to Ai again.

Algorithm 5: Parallel algorithm for Process 4.

Require M computing units
1: E � 2L {L is the number of edges in the network.}
2: Ns � StepLimit {Initialize the number of process steps.}
3: Send E,Ns to every proc. unit
4: {Parallel phase: all processing units work independently.}
5: while all processing units are working do
6: construct the set V, the set of edges E, the set of half-edges H0 and the set of virtual vertices A0.
7: while number of process steps smaller than Ns do
8: execute a process loop of Process 4
9: end while
10: end while
11: {Sequential phase.}
12: for i = 0 to M � 1 do
13: Computing unit M � i computes the map A0 ? V
14: Send the map to the unit M � i � 1
15: end for
16: return The computing unit 1 returns the map A0 ? V {The final map defines the graph after M � I steps of Process 3}
The algorithm has two phases, a parallel phase and a sequential phase (see Fig. 5). The parallel phase comprises Steps 6–9
in Algorithm 5. At the beginning of the parallel phase, every processor constructs its own graph taking the set of L edges and
assigning to every edge two adjacent vertices from A. Also, the set H0 of half-edges and the set V of vertices are constructed.
After that the process loop is repeated (steps 7–9 in Algorithm 5) simulating the stochastic discrete time until the prescribed
number of time steps (process loops) Ns is reached. The basic rewiring situations are illustrated in Fig. 6, the edges can move
between the vertices from sets V,A0.

The sequential phase of the algorithm occurs in a cycle (see Fig. 5 and Steps 12–15 of Algorithm 5). We can suppose that
we have M equivalent processing units U1, . . . ,UM and that the unit UM knows the initial graph. During the sequential phase
the last UM will now replace all the local virtual vertices with real vertices and send the whole graph topology to UM�1. UM�1

can now accept the received topology as the topology UM�1 initially started with, by replacing the own virtual vertices with
real vertices to generate its final graph. This sequential process continues as shown in Algorithm 5 until U1 has replaced its
own virtual vertices. After that U1 returns the final graph.

The parallel speedup of the algorithm is linear in the limit of long process simulation time. The topology of the graph can
be stored simply by memorizing the vertices half-edges are connected with. For M processors and 2L half-edges, the time we
need for the sequential part of the algorithm is O(M�L). Considering that during the parallel phase the processing units work
fully independently, the running time of this phase is approximately T/M, where T is number of process loops (discrete time)
we want to simulate. Together with the sequential part we have a total running time:
TpðM; LÞ ¼ T
M
þ OðM � LÞ ¼ T þ OðM2 � LÞ

M
: ð12Þ
Therefore the parallel speedup on M processors with a large running time T is linear:
Sp ¼ lim
T!1

T �M
T þ OðM2 � LÞ

¼ M: ð13Þ
This is also supported by the experiments where we show that in practical situations the influence of the sequential phase
can be neglected. Moreover, the complexity of the sequential part of the algorithm can be further improved by the observa-
tion that the order in which the maps are applied has no influence on the result. Therefore, we can suppose that a tree orga-
nization of the map transition in a bottom-up fashion can introduce a parallel logarithmic speedup within this phase of the
algorithm.



Fig. 5. The overall structure of the parallel algorithm. The first (major) phase of the algorithm is parallel, where the initial network is sent to all computing
nodes. After that, all processors iterate the Process 4 independently. The iterations are occurring in a virtual manner, i.e. the processors do not know the real
mapping of nodes. The second, normally much faster phase of the algorithm (see the complexity analysis in the text), depicted in Picture B, is sequential,
because the processors are sequentially updating the final mapping of virtual nodes to the network node labels.

Fig. 6. Illustration of Process 4. Picture A represents the initial state of the process, where all L edges in the initial graph are leading to the virtual vertices
from the set A0 and on the left the set all vertices V is represented. Hi denotes the half-edges. Picture B shows the network after the first rewiring process
loop. The half-edge H2 was selected for rewiring in the process Step 3, in Step 8 the half-edge Hk leading to Ak was selected that means the edge A1 � A2 goes
to A1 � Ak. Similarly in Picture C we see the graph after next process loop where in Step 5 a vertex from V was selected. The next process loop (result in
Picture D) is similar moving the edge from A2L�1 to vk. In Picture E and F next two loops of the process are illustrated which create a self loop on a virtual
vertex and rewire another edge between the virtual vertices.

482 T. Hruz et al. / Parallel Computing 36 (2010) 469–485
We can also think of a modified version of the parallel algorithm, where the processing units are simulating a smaller
chunk of process loops (time steps) and the sequential phases of the algorithm are interleaving the parallel phases. In this
case the sequential map reconstruction process has to cycle several times through all processors until the final discrete



T. Hruz et al. / Parallel Computing 36 (2010) 469–485 483
process time is reached. In this case, each processor has to restart the parallel phase with a new set of virtual vertices, once
finished the intermediate mapping step. This version can be useful when each processor has to check or correct its own
progress from time to time, or when we need some intermediate results.
5. Experimental Results

To verify the parallel algorithm from the previous section we developed an experimental framework on the HPC Cluster
Brutus [6] located at ETH Zurich. Brutus is currently ranking 88 in the TOP500 [16] list of high-performance computers. The
Brutus architecture consists of 10,000 cores with several types of AMD processors. The ranking was done on a homogeneous
subsystem of Brutus consisting of 410 nodes with four quad-core AMD Opteron 8380 CPUs and 32 GB of RAM (6560 cores).
All nodes are connected to the cluster’s Gigabit Ethernet backbone, 256 nodes use a high-speed Quadrics QsNetII network
and 508 nodes are connected to a high-speed InfiniBand QDR network. To program the parallel algorithm we used the
MPI library [12].

The performance of the algorithm is measured in seconds. Every measurement consists of three time measures of Algo-
rithm 5: the initialization time during which the initial graph is sent to all computing units (denoted with ‘‘distribute”), time
of parallel computation (‘‘rewire”) and time of the sequential collection phase (‘‘collect”). To reduce the noise, we repeat the
computation for every parameter set 10 times and average the results. The process is simulated for 5 � 108 steps on a network
with 4 � 106 edges and 106 nodes. To consider the parallel speedup, we repeat the same simulation with 1,2,4, . . . ,64 and 128
cores lying on nodes connected with InfiniBand QDR network. As we argued above, it is sufficient to store only half-edges to
represent the graph (the vertices with degree 0 does not need to be stored for our algorithm), therefore to illustrate the scal-
ing with respect to the graph size, we repeat the experiments with 2, 4 and 8 times 106 edges. The sequential part of the
algorithm (collect) is implemented using a bottom-up tree data structure which has logarithmic time dependency on the
number of processors.

The queue management system of Brutus cluster does not allow to have more processes resp. threads on 1 core. However,
we were principally interested whether a hyperthreading or other architectural aspects can bring a principal speedup for our
particular type and implementation of the algorithm. Because the operating system in our algorithm interprets the same se-
quence of instructions, we expected a neglectable effect. This fact is confirmed by our experiments, illustrated in Fig. 7 which
were computed on our development platform where the computation was constrained to 2 cores located on one processor.
In this set of experiments we distributed the task to the increasing number of processes (x-axis) to see how the speedup of
the algorithm depends on the number of parallel processes on one core. The results confirm that in our case it is optimal to
distribute 1 Process per core. Marginally, it is interesting to observe the difference between the even and the odd number of
processes.

In Figs. 8 and 9 we can observe that the parallel algorithm scales linearly over the cluster. For the given number of iter-
ation (5 � 108) the peak performance is achieved with 64 processes allocating 1 process for every core. After that the satura-
tion phase occurs caused by the sequential part of algorithm. The scaling with increasing size of the graph is also linear as
was predicted in the algorithm analysis. This is visible in Fig. 9 where the speedup only differs in the saturation phase where
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 3 4 5 6

#processes per 2 cores vs runtime in s

distribute
rewire
collect

Fig. 7. The results of experiments showing the dependence between number of processes (x-axis) on one core and the algorithm performance (y-axis). The
performance is measured in seconds, and the time bars have three time components: initialization time (distribute), the parallel phase time (rewire) and
the collection time (collect). The process was simulated for 5 � 108 steps on a network with 106 nodes and 4 � 106 edges. The optimal choice in our case is to
allocate 1 process per core because hyperthreading does help only marginally in the case of core overloading with even number of processes.



484 T. Hruz et al. / Parallel Computing 36 (2010) 469–485
the sequential part of the algorithm prevails. During the parallel phase of Algorithm 5 the processors work independently
from each other. This can be observed in both Figs. 8 and 9. The overall speedup does not change its character during the
passage between different nodes which happens at multiples of 16 cores. This shows that if the task is distributed across
more computing nodes resp. processors there is no observable slow-down effect because of the network latency.
6. Conclusions

In our paper we analyzed a parallel simulation of scale-free networks. For a fundamental class of non-growing networks
with linear preference function, we provide a highly parallel algorithm, which has two phases. The first phase is fully parallel
and has speedup M, where M is the number of processing units. The second phase is sequential, but independent on simu-
lation time T, which is the main source of complexity. On the other hand, we theoretically analyzed dependencies which are
prohibiting parallelism for an exact process. Our theoretical interest stems from the difficulties we observed when we tried
to design a parallel algorithm for simulation of general scale-free networks. The difficulties are arising from the fact that
the preferential selection step, which is used in most scale-free network models, is strongly dependent on the degree
 0

 20

 40

 60

 80

100

120

140

160

1 2 4 8 16 32 64 128

#cores vs runtime in s

distribute
rewire
collect

Fig. 8. The figure illustrates a set of experiments for Algorithm 5 where the task is distributed on up to 128 cores. The performance is measured in seconds,
and the bars contain three time components: the initialization time (distribute), the parallel phase time (rewire) and the collection time (collect). The
process was simulated for 5 � 108 steps on a network with 106 nodes and 4 � 106 edges. For fixed number of simulation steps, the sequential part of the
algorithm must prevail, if the number of cores increases over certain threshold.

 1

 2

 4

 8

16

32

2 4 8 16 32 64 128

speedup, different number of edges

2mio edges
4mio edges
8mio edges

Fig. 9. The overall speedup of Algorithm 5 is linear up to the point of saturation where the sequential part prevails. The algorithm also linearly scales with
the size of the graph as is illustrated by three experiments with 2 � 106,4 � 106 and 8 � 106 edges.



T. Hruz et al. / Parallel Computing 36 (2010) 469–485 485
distribution. This in turn changes with high probability during a stochastic equilibrium process which generates scale-free
networks. This is valid for a wide range of nonlinear preference functions.

For many networks, the linear preference function can provide a sufficient approximation for the simulation of network
evolution. However, an interesting future question, which we believe is solvable, is whether one can approximate the non-
linear preference function with a piecewise linear function. To provide a parallel algorithm in this case, it is necessary to con-
sider at least two problems. The first problem is how to handle the transition from one linear function segment to another.
We suppose that a method is needed how to pre-compute larger maps providing sufficient information to handle the tran-
sition to a different linear segment. The second problem is to generalize the factorization in Eq. (11).

Another method to handle the preferential attachment consist in approximations of the process which would allow to
neglect the effect of degree distribution changes. We suppose that such method is possible for a wide class of networks
but more research would be needed to know under which conditions and to which extent such propagation can be neglected.
Naturally, for many practical problems an empirical evidence can be elaborated, how many process steps can be simulated
before a global update of degree distribution is necessary.

Theoretically, it would be interesting to investigate larger classes of preference functions. In Theorem 6, a different meth-
od might be needed to estimate the probability for different classes of networks and preference functions. The estimation
method would also need improvement if we want to consider very sparse networks which have average degree near zero.

Acknowledgement

The authors thank professor Peter Widmayer for inspiring discussions and ongoing support of this project. We would also
like to thank the anonymous reviewers for their suggestions which improved the quality of the paper.

References

[1] R. Albert, A.-L. Barabási, Statistical mechanics of complex networks, Reviews of Modern Physics 74 (2002) 47–97.
[2] D.A. Bader, K. Madduri, Snap, small-world network analysis and partitioning: An open-source parallel graph framework for the exploration of large-

scale networks, in: IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2008, April 2008, pp. 1–12.
[3] A.-L. Barabási, R. Albert, Emergence of scaling in random networks, Science 286 (509) (1999).
[4] A.-L. Barabási, R. Albert, H. Jeong, Mean-field theory for scale-free random networks, Physica A (272) (1999).
[5] S. Boccalettia, V. Latorab, Y. Morenod, M. Chavezf, D.-U. Hwanga, Complex networks: Structure and dynamics, Physics Reports 424 (2006) 175–308.
[6] ETH Cluster Brutus. <http://en.wikipedia.org/wiki/brutus_cluster>, 2009. (Wikipedia on Brutus, the high-performance cluster at ETH Zurich0.
[7] A. Cami, N. Deo, Techniques for analyzing dynamic random graph models of web-like networks: An overview, Networks 51 (4) (2008) 211–255.
[8] L. da Fontoura Costa, O.N. Oliveira Jr., G. Travieso, F.A. Rodrigues, P.R.V. Boas, M.P. Viana, L. Antiqueira, L.E. Correa da Rocha, Analyzing and modeling

real-world phenomena with complex networks: A survey of Applications, arXiv.org, (arXiv:0711.3199v3), 2008.
[9] G. D’Angelo, S. Ferretti, Simulation of scale-free networks, in: Simutools’09: Proceedings of the Second International Conference on Simulation Tools

and Techniques ICST, Belgium, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), Brussels, Belgium,
2009, pp. 1–10.

[10] S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks, Oxford University Press, 2003.
[11] T.S. Evans, A.D.K. Plato, Exact solution for the time evolution of network rewiring models, Physical Review E 75 (056101) (2007).
[12] MPI Forum. <http://www.mpi-forum.org/>, 2009. (World Wide Web electronic publication of official MPI standards documents).
[13] T. Hruz, M. Natora, M. Agrawal, Higher-order distributions and non-growing complex networks without multiple connections, Physical Review E 77

(046101) (2008).
[14] H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.-L. Barabasi, The large-scale organization of metabolic networks, Nature 407 (2000) 651–654.
[15] K. Madduri, D.A. Bader, Compact graph representations and parallel connectivity algorithms for massive dynamic network analysis, in: International

Parallel and Distributed Processing Symposium, 0:1–11, 2009.
[16] H. Meuer, E. Strohmaier, J. Dongarra, H. Simon. <http://www.top500.org>, November 2009. (World Wide Web electronic publication of the Top 500

Supercomputer Sites).
[17] M. Mihail, C. Papadimitriou, A. Saberi, On certain connectivity properties of the internet topology, Journal of Computer and System Sciences 72 (2006)

239–251.
[18] M.E.J. Newman, The structure and function of complex networks, Physical Review E 45 (2) (2003) 167256.
[19] Kwangho Park, Ying-Cheng Lai, Nong Ye, Self-organized scale-free networks, Physical Review E 72 (026131) (2005).
[20] A. Wagner, D.A. Fell, The small-world inside large metabolic networks, Proceedings of the Royal Society of London B 268 (2001) 1803–1810.
[21] D.J. Watts, S.H. Strogatz, Collective dynamics of small-world networks, Nature 393 (1998) 440–442.
[22] A. Yoo, K. Henderson, Parallel generation of massive scale-free graphs. arxiv.org, (arXiv:1003.3684v1), 2010.
[23] A. Youssef, A parallel algorithm for random walk construction with application to the Monte Carlo solution of partial differential equations, IEEE

Transactions on Parallel and Distributed Systems 4 (3) (1993) 355–360.

http://en.wikipedia.org/wiki/brutus_cluster
http://www.mpi-forum.org/
http://www.top500.org

	Parallelism in simulation and modeling of scale-free complex networks
	Introduction
	Stochastic models of complex network evolution
	Parallelism for general preferential selection
	Parallel algorithm for linear preference function
	Experimental Results
	Conclusions
	Acknowledgement
	References


