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N E U R A L  N E T W O R K S

Integration is important in science and tech-
nology. Scholars all over the world have
presented various numerical integration ap-
proaches1–5 that have effectively solved lots

of practical engineering problems. The digital
proportion-integration-differentiation (PID) con-
troller, for instance, is concerned with numerical
integration. To calculate the definite integration’s
value, researchers often apply the Newton-
Leibniz formula

, (1)

but in many cases, the function f (x) is difficult or
complicated to get. Besides, in engineering practice,
the function f (x) is presented as a function table
rather than an analytic expression, which means we
can’t always use the Newton-Leibniz formula. 

Alternatives to this formula include the Newton-
Cotes, Romberg, and Gauss methods.6–8 Among
them, the Newton-Cotes method is the most com-

mon approach to establishing numerical integra-
tion with an interpolation polynomial. However,
because the convergence of the high-degree New-
ton-Cotes method is poor, researchers seldom use
it in practical calculations. As for the Romberg
method, its convergence speed is fast, and its pre-
cision is high, but it requires intensive calculation.
Finally, the Gauss method’s accuracy is high, it’s
numerically stable, and its convergence speed is
fast, but calculating the node and coefficient is
complicated. It also requires knowledge of the an-
alytic expression of function f (x).

In this article, we present a numerical-integra-
tion method based on neural networks. Our main
idea is to make neural networks’ outputs fit the
function f (x) by training weights with cosine basis
functions. Because quadrature of such functions is
easy, we can approximately consider the numerical
integration of any function f (x) as the integration
of cosine basis functions. It’s well known that the
back-propagation (BP) algorithm isn’t fit for ad-
justing large-scale weights, and although it mini-
mizes unstable behavior, it usually fails. To
effectively solve these problems, we introduce the
momentum,9,10 conjugate gradient (CG),9,11,12 and
truncated Newton (TN)13–15 methods for training
neural networks.

Algorithm Description
Figure 1 illustrates a neural network model based
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on cosine basis functions. We can see that the net-
work consists of one input layer, one hidden layer,
and one output layer. The input layer has only one
input vector X with (N + 1) elements; the hidden
layer consists of an intelligent agent that has (N +
1) neurons; and the output layer has only one out-
put vector Y with (N + 1) elements. The activation
function of the hidden layer unit is a vector CTW
with (N + 1) elements, where W is a weight vector
of the neural network with (N + 1) elements, C is
an activation matrix of the hidden units, and F is
the neural network’s desired output vector.

The following algorithm shows that all of the
neural network’s sample data are synchronously
trained in the form of a vector and not trained
one by one. Therefore, the neural network we in-
troduce here is obviously different from other
neural networks.

If W = [w0, w1, …, wN]T, X = [x0, x1, …, xN]T, Y
= [y(x0), y(x1), …, y(xN)]T, F = [f(x0), f(x1), …,
f(xN)]T, 

and 

, (2)

then we can approximately express the function f (x)
in Equation 1 as 

(3)

or 

Y = CTW, (4)

where x � [0, �]. We define an objective function J
as 

(5)

where 

Ek = F – Yk. (6)

Here, Ek is the error vector between the neural net-
work’s desired and actual outputs, and F is the
neural network’s desired output. To minimize J, we
compute Wk recursively via a simple gradient de-
scent rule,

, (7)

where � > 0 is a learning rate. Differentiating
Equation 5 with respect to Wk, we get 

. (8)

Substituting Equation 8 into Equation 7, we have 

Wk+1 = Wk + �CEk. (9)

To ensure the neural network’s absolute convergence,
it’s important to select a proper learning rate �.

Here’s a proof for the neural network’s
convergence.

Theorem 1: When 0 < � < 2/||C||2, the neural
network algorithm is convergent, where is the
learning rate and C is a matrix produced by cosine
basis functions. See Equation 2.

Proof: Define a Lyapunov function,

. (10)

Therefore, we have

(11)

and

(12)
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Figure 1. The neural network model of the fitting function f(x) . The
network consists of an input layer, a hidden layer, and an output layer.
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According to Equations 11 and 12, we have

(13)

Because

,

if the algorithm is convergent—that is, �Vk < 0—
it’s easy to see from Equation 13 that

or

, (14)

where I is a unit matrix and ||�||2 is the square of
the Euclidean norm.

Because ||I – �C2||2 � (1 – �||C||2)2, consider-
ing � > 0 and ||C||2 > 0 according to Equation 14,
we have (1 – �||C||2)2 < 1 or 0 < � < 2/||C||2. 

Apparently, if the learning rate � satisfies 0 < � <
2/||C||2, then we see from Equation 12 that �Vk <
0. Therefore, the algorithm is convergent and we
prove the theorem completely.

In our experience, when the learning rate � is
equal to 

,

it’s optimal. Hence, in this article, we consider the
optimal learning rate to be �opt = 1.35/||C||2.

We can now use Equation 9 in a computer pro-
gram to adjust the neural network’s weight vector
W and summarize the whole algorithm as follows:

1. Sample uniformly the function f (x) to ob-
tain the neural network’s training sample
vector F—that is, {X, F}, where X = [x0, x1,
…, xN]T and F = [f (x0), f (x1), …, f (xN)]T—
produce the random weight vector W, and
define an arbitrarily small positive real num-
ber Tol. Produce the activation matrix CT of
the neural network’s hidden units, and let �
= 1.35/||C||2.

2. Produce the new predicted neural network
output vector Yk using Equation 4.

3. Compute the error vector Ek and J using
Equations 5 and 6.

4. Update the weight vector Wk+1 using the
BP algorithm according to Equation 9.

5. If J > Tol, go to Step 2. Otherwise, stop the
neural network’s training.

It’s well known that the BP algorithm has a local-
minimization problem. To improve the neural net-
work’s convergence, we can introduce three
optimal approaches to train the neural network’s
weight vector.

Neurocomputing and Optimization
As we mentioned earlier, the BP algorithm isn’t fit
for adjusting large-scale weights. Furthermore, al-
though it minimizes unstable behavior, the BP al-
gorithm isn’t convergent. To effectively solve
these problems, we introduce three optimization
methods.

Momentum Training Algorithm
We know from the last section that the standard
BP algorithm implements the steepest descent
method. At each step, the weight vector is adjusted
in the direction in which the error function de-
creases most rapidly. This direction is determined
by the gradient of the error surface at the current
point in the weight vector space. Using the error’s
gradient, we can update the weight vector adjust-
ments for the connections in a negative direction
to the gradient with a certain rate, which Equation
9 gives.

To prompt the neural network’s learning, we use
the momentum training algorithm.9 Here, we
modify the error function so that a portion of the
previous weight vector is fed through to the cur-
rent weight vector. Hence, the weight vector is up-
dated according to 

Wk+1 = Wk + �CEk + ��Wk, (15)

where � is the momentum factor (0 < � < 1 ).

Conjugate Gradient Training Algorithm
Because learning in realistic neural network ap-
plications often involves adjusting several hun-
dred weights, only optimization approaches
applicable to large-scale problems are relevant as
alternative learning algorithms. The numerical
analysis community’s general opinion is that CG
methods are well suited to effectively handle
large-scale problems.9,11,12 The CG algorithm
combines the advantages of the steepest descent
method’s simplicity and better convergence with-
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out evaluating, inverting, and storing the
Hessian matrix H. Among unconstrained opti-
mization approaches, the CG method is per-
haps the easiest one that applies to large-scale
problems.12

To minimize J, we update  the weight vector Wk

according to a CG rule:

Wk+1 = Wk + �(k)P(k), (16)

where P(k) is a descent direction and �(k) is the
adaptive learning rate with respect to iteration k. 

We can describe the CG algorithm as follows.
Per Equation 8, define g(k) = �J(k) = –CEk:

,

and

.

Here, � (k) is a conjugate search rate. Set P(0) =
–g(0) = CE0, set k = 0, and then compute P(k) =
–g(k) + � (k)P(k – 1). The weight vector is updated
according to Wk+1 = Wk + �(k)P(k).

Truncated Newton Training Algorithm
We know from previous research9,13–15 that the
TN method has a fast convergence rate and is es-
pecially fit for large-scale optimization problems.
If numerical integration is implemented via a
neural network with the TN training algorithm,
the network’s convergence rate will be faster than
that of a neural network with the steepest descent
and CG methods.

To minimize J, we update the weight vector Wk

according to the TN rule

Wk+1 = Wk + �(k)d(k), (17)

where d(k) is a search direction and �(k) is a search
step rate.

We can describe the TN algorithm as follows:

1. Define g(k) = �J(k) = –CEk (see Equation 8)
and H(k) = �2J(k), where g(k) is a gradient
direction and H(k) is the Hessian of the cost
function J(k).

2. Set p(0) = 0, r(0) = –g(k), d(0) = r(0), �0 =
||r(0)||2, and j = 0. 

3. Let q(j) = H(k)d(j). If dT(j)q(j) � 	�j, stop and
output

.

4. Let

,

p( j + 1) = p( j) + �( j)d(j), and r( j + 1) = r( j)
– �( j)q( j). If ||r( j + 1)|| � 
(k)||g(k)||, stop
and output d(k) = p( j + 1), where 
(k) =
min{1/k, ||g(k)||}.

5. Let

,

d( j + 1) = r( j +1) + �( j)d(j), �( j + 1) = ||r( j
+ 1)||2 + �2( j)�( j), and j = j + 1.

Go to Step 3.

Neural Network Weights
To compute the numerical integration of function
f(x), we propose the numerical integration theorem
using neural network weights.

Theorem 2: Let f (x) � C[a, b], 0 � a, b � �, and W
= [w0, w1, …, wN]T be the neural networks’ weight
vector. If 

is the neural networks’ output, then 

. (18)
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According to this theorem, we can make three
inferences:

• If a = 0 and b < �, then

(19)

• If a = 0 and b = �, then
(20)

• If a > 0 and b = �, then

(21)

Results and Discussion
Two examples from related research8 can help us

compare the neural network (NN), neural network
momentum training (NNM), neural network con-
jugate gradient training (NNCG), and truncated
Newton training (NNTN) algorithms.

Example 1
The trapezoidal rule for a function f (x) on the in-
terval [0, 2] is

,

and Simpson’s rule for f (x) on the interval [0, 2] is

.

In this article, our rule for f (x) on the interval [0,
2] is

,

where if the length of weight vector W is equal to
30, then N = 29. If we produce a matrix C using
Equation 2 and the random weight vector W with
30 elements, we can define an arbitrary small pos-
itive real number Tol = 10–6. We can then make the
activation matrix CTW of the neural network’s hid-
den units and let �opt = 1.35/||C||2.

Table 1 summarizes the results to seven places
for some elementary functions. We see distinctly
from Table 1 that all the results we obtained using
our four rules (NN, NNM, NNCG, and NNTN)
are better than reported elsewhere.8 Ultimately, the
results we obtained with the NNTN rule are the
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f(x) x2 x4 1/(x + 1) sin(x) ex

Exact value 2.667 6.400 1.099 2.958 1.416 6.389
Trapezoidal 4.000 16.000 1.333 3.326 0.909 8.389
Simpson’s 2.667 6.667 1.111 2.964 1.425 6.421
Neural network rule 2.667 6.400 1.099 2.958 1.415 6.389
Training iterations 9 12 10 10 10 13
Neural network 2.667 6.400 1.099 2.958 1.415 6.388
momentum training
(� = 0.06)
Training iterations 8 9 7 7 7 8
Neural network 2.667 6.400 1.099 2.958 1.415 6.388
conjugate gradient rule
Training iterations 6 7 6 6 6 6 
Neural network 2.667 6.400 1.099 2.958 1.416 6.389
truncated Newton rule
Training iterations 4 4 4 4 4 4

1 2+ x

Table 1. The results of example 1.



JULY/AUGUST 2006 47

best. The results in Table 1 show that the NNTN
method has a faster convergence rate and is espe-
cially fit for the large-scale optimization problems.

Example 2
Compute the following approximation to 

.

From previous work,8 we know that this integral
causes difficulty with the Bomberg integration,
which uses the composite trapezoidal rule to give
preliminary approximations and then applies the
Richardson extrapolation process to improve the ap-
proximations. When we use a composite Simpson’s
rule—subdividing the interval [a, b] into n subinter-
vals and applying Simpson’s rule on each consecu-
tive pair of subintervals—we divide the interval [0,
48] into 100 subintervals, and the result is 58.47028.8

Considering the function has a period equal to �,
and 48 = 15� +0.8761, according to Theorem 2,
our rule for f (x) on the interval [0,48] is

where if the length of weight vector W is equal to
30, then N = 29. We can define an arbitrary small
positive real number Tol = 10–16 and learning rate
�opt = 1.35/||C||2.

Table 2 summarizes the results. To verify their
validity, we use the adaptive Lobatto quadrature
function QUADL in Matlab to compute the integral
of the function

in the interval [0,48]. The result is

.

All the results we obtained using our four rules
(NN, NNM, NNCG, and NNTN) are better than
those reported elsewhere.8 We see again that the
NNTN method has a faster convergence rate.

Our work here establishes a new appli-
cation of neural networks that, com-
bined with advanced optimization
algorithms to numerical integration,

offers a great opportunity for additional develop-
ment and improvements such as designing digital
PID control.

Of course, the neural network model we pre-
sent in this article has some limitations. For ex-
ample, the variable x in Equation 3 is limited from
0 to �—that is, x � [0, �]—so the quadrature in-
terval of function f (x) is also limited from 0 to �.
To extend the quadrature interval of the f (x) and
satisfy the needs of science and engineering prac-
tice, our neural network model will need further
improvement.
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