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Abstract

The Vehicle Routing Problem with Time Windows (VRPTW) is a well-known and complex combinatorial prob-
lem, which has received considerable attention in recent years. This problem has been addressed using many different
techniques including both exact and heuristic methods. The VRPTW benchmark problems of Solomon [Algorithms
for the vehicle routing and scheduling problems with time window constraints, Operations Research 1987; 35(2):
254–65] have been most commonly chosen to evaluate and compare all algorithms. Results from exact methods have
been improved considerably because of parallel implementations and modern branch-and-cut techniques. However,
24 out of the 56 high order instances from Solomon’s original test set still remain unsolved. Additionally, in many
cases a prohibitive time is needed to find the exact solution. Many of the heuristic methods developed have proved
to be efficient in identifying good solutions in reasonable amounts of time. Unfortunately, whilst the research efforts
based on exact methods have been focused on the total travel distance, the focus of almost all heuristic attempts has
been on the number of vehicles. Consequently, it is more difficult to compare and take advantage of the strong points
from each approach. This paper proposes a robust heuristic approach for the VRPTW using travel distance as the
main objective through an efficient genetic algorithm and a set partitioning formulation. The tests were produced
using real numbers and truncated data type, allowing a direct comparison of its results against previously pub-
lished heuristic and exact methods. Furthermore, computational results show that the proposed heuristic approach
outperforms all previously known and published heuristic methods in terms of the minimal travel distance.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The vehicle routing problem with time windows (VRPTW) has been extensively studied in the op-
erations research community. Firstly, because VRPTW is still one of the most difficult problems in
combinatorial optimization and consequently presents a great challenge. Secondly, in a more practical
aspect, this problem contributes directly to a real opportunity to reduce costs in the important area of
logistics. Transportation management, and more specifically vehicle routing, has a considerable econom-
ical impact on all logistic systems. In the VRPTW, a fleet of K identical vehicles supplies goods to N
customers.All vehicles have the same capacity Q. For each customer i, i=1, . . . , N , the demand of goods,
qi , the service time si , and the time window [ai, bi] to meet the demand in i are known. The component si
represents the loading or unloading service time at the customer i and ai describes the earliest time when
it is possible to start the service. If any vehicle arrives at customer i before ai it must wait. The vehicle
must start the customer service before bi . This type of time window constraints is known as a hard time
window. All vehicle routes start and finish at the central depot. Each customer must be visited once. The
locations of the central depot and all customers, the minimal distance dij and the travel time tij between
all locations are given. The objective is to find the feasible solution with the minimal total travel distance
or with the minimal number of vehicles. In this paper, only the first objective is considered.

Significant improvements in Solomon’s benchmark problem instances were established by Rochat [1]
using a tabu search metaheuristic method. In that publication (1995), Rochat improved or reached 47
heuristic solutions from 56 Solomon’s original instances. Another important characteristic is the post-
optimization technique used by Rochat. This technique consists of saving all partial solutions identified
during the tabu search algorithm for future usage. The routes of each intermediate solution are included
in a set T. Then, after the stop criterion of tabu search has been achieved, the best solution that can
be built using routes from T may be found by solving a set partitioning problem using CPLEX MIP
software. Although Rochat has minimized the travel distance (TD) for the capacitated vehicle routing
problem (CVRP), their results for the Solomon’s test (VRPTW) were obtained using the number of
vehicles (NV) as the first objective.

In general, when heuristic methods were used, the number of vehicles was chosen as the first objective
and the total TD only as the second. However, considering the results for the Solomon’s test problems, the
number of vehicles found was the same in many works, so the second objective, TD, was the distinguishing
criterion. In fact, NV and TD represent concurrent objectives. Strategies which treat each objective
separately in distinguished phases, have reached the best results at the moment in the literature.

Berger et al. [2] have improved some of the results of Solomon’s benchmark using parallel two-
population co-evolution genetic algorithms, Pop1 and Pop2. The objective in Pop1 is to minimize the
total distance for a fixed number of vehicles using feasible individual solutions within the population.
On the other hand, in Pop2 the individual solutions have the number of vehicles fixed in one unit less
than in Pop1, hence in principle they are infeasible solutions. The GA objective in Pop2 is to minimize
the total violated time windows. The global objective is primarily to minimize NV and then to minimize
TD as a secondary objective. Each time a feasible individual is found in Pop2, the population Pop1 is
replaced by Pop2 and the fixed numbers of vehicles considered in both populations are decreased by one.
The algorithm ensures that at least one feasible solution is present in Pop1. Therefore the difference in
the number of vehicle in Pop1 and Pop2 is always equal to one unit.

Berger has also tested the algorithm for the classical 56 Solomon’s instances. Although there are
two parallel evolutions, only one machine was used (Pentium IV 2.4 GHz). The stop criterion was a
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1800-second limit for each run. The parameters were adjusted empirically by running the same Solomon’s
test set before the actual evaluation runs. The parameters were fixed in all instances, except for the
clusterized classes C1 and C2. Berger found 6 new results (R108, R110, RC105, RC106, R210 e R211).
Currently, three out of these continue to be the best known and published solutions (R108, RC105 e
RC106) considering NV as primary objective and TD as secondary objective. One of the most important
advantages of this work is the total NV for all 56 instances of Solomon, with 405 vehicles, one of the
best results in the literature.

Homberger et al. [3] have also presented good results for many Solomon’s benchmark problems using
two evolutionary meta-heuristic methods in a similar two-stage strategy. Two different heuristic methods
were proposed, ES1 and ES2. These heuristic methods reduced the number of vehicles in two class R1
instances (R104 and R112). In the R109 instance, the ES1 strategy still produced a new result, maintaining
NV and reducing TD. In the same way, ES2 improved the results of TD in R105 and R107. In the R2
class, five new results were produced by ES1 and three by ES2. The results in the clusterized classes, C1
and C2, were equivalent to the best known for all problems. ES2 still produced two new results for RC1
and two others for RC2, while ES1 produced two other new results for RC2. In total, a set of 20 new
results were produced, out of which only 2 still continue to be undefeated.

Presently, the best results for the Solomon’s benchmark problems, using NV as primary objective and
TD as secondary objective, are distributed through many publications. They are summarized in [4]. Few
papers on heuristic methods have addressed total TD as the first objective to be minimized, as indicated
in Rousseau et al. [5]. In [6] the authors seem to compare their primary objective, TD, with results from
research efforts in the literature where the focus was on NV, and the specific comparison criteria are
not clear.

While NV was selected in almost all previous efforts based on heuristics, almost all exact works have
elected TD as the only objective. In fact, the choice of the most appropriate objective depends on specific
rules and peculiarities of each individual business. In Brazil, for example, a significant portion of goods
delivering companies have limited the number of vehicles in their own fleet to less or equal to 70% of their
actual requirement. Consequently, a large amount of goods are delivered by third-parties, usually small
business or even self-employed owners of individual trucks. These third-party companies are generally
named “aggregated trucks”. The payment rule applied to aggregated trucks is normally based on the
total travelled distance. In this case, minimization of the TD is the most attractive and primary objective
for the hiring company. Another typical scenario, where the minimization of TD is also appropriate,
occurs when the amount of goods is smaller than the total capacity of the available fleet. Consequently,
many real-life situations justify the study of new algorithms and techniques to improve the VRPTW
results in terms of total travelled distance. The deficiency of heuristic approaches in this direction justifies
this effort.

2. The set partitioning model for the VRPTW

The VRPTW described in the previous section can be formulated as a set partitioning problem (SPP)
as follows:

min
∑
r∈R

crxr (2.1)
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s.t.
∑
r∈R

�irxr = 1 ∀i ∈ C (2.2)

xr ∈ {0.1} (2.3)

where R is the set of routes, C the set of customers, cr the travel distance on the route r, xr the decision
variable, 1 if the route r is considered in the solution and 0 otherwise, �ir the auxiliary parameters to
indicate the set of customers present in each route r, 1 if the customer i is served by the route r and 0
otherwise.

The search for the optimal integer solution, using the SPP model above, where all possible routes
are included in the set R is only possible for instances with a small number of customers. Supposing a
problem with 50 customers where time and capacity constraints are sufficient to restrain possible routes
up to 10 customers, the number of possible routes is

10∑
n=1

(
50!

(50 − n)!
)

≈ 3.8 × 1016 (2.4)

Consequently, it is not possible for the SPP model to handle directly any MIP algorithm even in instances
with 50 customers or less. A common solution is the application of the Dantzig–Wolfe decomposition
method which divides the problem into a master problem, with a reduced number of routes, and a
secondary problem, where the objective is to find routes (columns) with negative reduced cost to be
inserted in the master problem. When no routes with negative reduced cost exist, the solution of the
master problem is the solution of the original global problem. The results in the literature show that it
continues to be very hard to solve to optimality, despite the fact that decomposition seems to be an option
to avoid the increasing number of columns in the original SPP model. Modern branch-and-cut techniques
have been used to improve convergence which made possible the identification of new optimal results
for previously unsolved VRPTW problems in the literature. See [7] and [8] for modern branch-and-cut
techniques applied to routing problems. Exact approaches using Dantzig–Wolfe decomposition for the
VRPTW can be found in [9] and [10]. Many problems, as the majority in the classical Solomon’s test
sets R2 and RC2 continue to be unsolved for 50 and 100 customers. The problems in the real world
normally present more than 100 customers which indicated that heuristic methods for the VRPTW are
also necessary.

3. Genetic and set partitioning two-phase algorithm

The solution framework was motivated by the fact that a local minimum for theVRPTW has a significant
possibility of containing routes that are also found in the global optimum. This fact can be confirmed by the
comparison of the global optimal results produced by exact methods with many of the reasonable quality
results produced by heuristic methods. If several local optimal solutions are produced with reasonable
quality, it is possible to join these routes in a set R and then apply the SPP model described in the previous
section. If the total number of routes considered in the R set is not large enough, a reasonable amount
of time will be required to produce an improved quality solution using R. In addition, the time required
to produce some heuristic quality solution, can be smaller than the amount of time required by heuristic
methods dedicated to a final solution. This occurs because the amin effort is focused on escaping from
local minimal solutions and then on doing fine adjustments to obtain better quality solutions.
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This idea is not entirely new. Rochat [1] has used a similar approach as a post-optimization technique
after a tabu search. However, there are new characteristics in the current proposal. First of all, the focus
of Rochat’s work remained mainly in the quality of the local search result, where the SPP model was
used only as a refinement. Using a different approach, a fast genetic algorithm is proposed here as a
route generator for the main SPP formulation, where both the amount of time required to identify several
local minimal solutions and their diversity are more important than the quality of any single individual
solution. Rochat has also mentioned that no significant improvement in the solution was obtained using
their post-optimization technique, often less than 1%. The second difference with the current approach is
that Rochat used intermediate solutions from a continuous improvement procedure to produce the set of
routes for the SPP run against independent and different local minimal solutions. Finally, the objective
function used by Rochat is the minimization of the number of vehicles rather than the total travel distance
as primary objective.

3.1. Searching for local minimal solutions

The objective in the first phase, as summarized above, is to produce high quality routes to be inserted
in the SPP model, Eqs. (2.1) to (2.2). However, to find quality routes is normally a hard task. Many
classical heuristic methods, like PFIH [11] have been proposed in the literature to produce routes for the
VRPTW. If each route is produced independently, without considering the global problem, it is often very
difficult that these routes combined can produce a good solution for the whole problem. It seems there is
no evident way to evaluate the quality of any distinct route separately. Consequently, desirable routes to
be included in the set R of Eq. (2.1), with more chances to produce a nearly optimal solution, are those
routes evaluated as part of a complete solution, i.e., those found in a good local minimal solution.

In order to produce the set of R routes, a fast genetic algorithm was implemented and executed in-
dependently many times. Each independent genetic algorithm execution is considered to be an island
of evolution, because there is no influence or genetic material interchange between them. The island
idea, from the natural evolution theory, is related to a limited set of individuals with more possibility of
occurring a crossover and consequently of exchanging their genetic material. As a result, the evolution
of each island is completely isolated from each other, enabling the necessary diversity. See [12] for more
information about islands in genetic algorithms. Additionally, it is important to distinguish this approach
from re-start methods. In the first approach, the solutions from many islands will be combined afterwards
to obtain a higher end-quality solution using the SPP model.

3.1.1. The genetic algorithm
The first algorithms that use a natural evolution as the central strategy to solve problems were published

in the 1950s, such as Fraser [13] and Box [14]. In 1966, Forgel et al. [15] proposed a method called
Evolutionary Programming. Following that, in 1973, Rochenberg [16] introduced the method so called
Evolution Strategies. The Genetic Algorithm itself, or simply GA, was proposed by Holland [17] in 1975.
All these proposals were based in the natural reproduction, selection and evolution of Darwin’s th eory
[18], 1859. Ever since, GA has been popular because it can contribute to find good solutions for complex
mathematical problems, like the VRP and other NP-hard problems, in a reasonable amount of time.

A basic GA with a global population substitution was used in this work, as illustrated in the pseudo
code of Algorithm 1
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Algorithm 1. Simple GA used to produce fast a local minimum.

Function GA : individual;
begin

TimeIni : = now;
Start_initial_population; /* Using stochastic PFIH
while(now –TimeIni<TimeLimit) do
begin

Individuals_evaluation;
Selection;
Crossover;
Elitism;
Mutation;
Update_population;

end;
return(best_individual_current_generation);

end;

The individual representation is very simple. Each customer has a unique integer identifier i, i =
1, . . . , N , where N is the number of customers. The chromosome was defined as a string of integers,
representing a route to be served by only one vehicle. An individual, who represents a complete solution,
and consequently many routes, is a set of chromosomes. The central depot is not considered in this
representation, because all routes necessarily start and end on it.

3.1.1.1. Initial Population A fast and simple heuristic procedure to distribute all customers in the vehicles,
if used to obtain the first individual generation, can reduce significantly the GA time necessary to reach the
reasonable local minima. Because of this, the heuristic method proposed by Solomon [11], called Push
Forward Insertion Heuristic (PFIH), has been frequently used by many researchers with this purpose.
For a detailed description of the PFIH method, see [19]. In the present work a modified PFIH, called
stochastic PFIH, is applied. In the original PFIH, the Eq. (3.1), defines the first customer in each new
route. As subsequent customers are chosen one by one minimizing the cost, the original PFIH is totally
deterministic. In the proposed stochastic PFIH, a total randomized choice is used to define the first
customer to be inserted in each new route. That is necessary to produce distinguished individuals in the
first GA generation. After the first customer has been randomly selected, the second one will be the one
with the minimal insertion cost. Each feasible customer position in the route in construction is evaluated.
A new route is created only if no more customer feasible insertions are possible.

ci = −�d0i + �bi + �((pi/360)d0i) (3.1)

where � is the 0.7 (empirically calculated by Solomon [11]); � the 0.1 (empirically calculated by Solomon
[11]); � the 0.2 (empirically calculated by Solomon [11]); d0i the distance from customer i to the central
depot; bi the upper time window limit to reach the customer i; pi the polar angle of the customer i from
the central depot.
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3.1.1.2. Selection Through this step, pairs of individuals are selected to crossover. There are many
methods proposed in the literature for selection in GAs. The two most popular are roulette wheel selection
and tournament selection. In the roulette wheel selection method, the probability of an individual to
participate in a crossover is directly proportional to his relative fitness. This method is very sensitive to
the evaluation function and almost always some additional control is necessary, for example fitness scaling.

In this paper, a k-way tournament selection method is used in the GA. In a k-way tournament, k

individuals are selected randomly. Then, the individual who presents the highest fitness is the winner.
This process is repeated until the number of selected individuals necessary to the crossover phase has
been reached. Two individuals are selected for each crossover, which produces only one new offspring.

3.1.1.3. Fitness The fitness function to evaluate the individuals is always related to the objective function,
but not necessarily identical. The inverse of the total travel distance is used to represent the fitness of the
individuals, Eq. (3.2).

fitness = 1

T D
. (3.2)

3.1.1.4. Crossover In the proposed GA, the search space is limited to the feasible region. Therefore,
every individual is always feasible. Consequently, caution is necessary in the crossover and mutation
operators, because a simple exchange between two customers can violate time and capacity constraints.
Consequently, a more complex operator is necessary to be introduced without bringing a bias in any
particular direction. A new crossover strategy is proposed to address the following features:

• to inherit as many routes as possible from each parent, equally;
• to avoid high distance routes when adjustments are necessary to inherit them;
• to avoid excessive customer exchange during the crossover, increasing the function cost;
• to avoid new individuals with number of vehicles higher than their parents.

In order to achieve these objectives the crossover operator described in the Algorithm 2 was written:

Algorithm 2. Crossover algorithm

function Crossover;
begin

/* FirstStep: entire routes from Parents are inhered by the offspring */
/* one by one route are randomly selected from each parent by turn*/
repeat

/* From Parent #1 in turn */
Copy Random Route from Parent1 to the offspring;
/* From Parent #2 in turn */
Copy Random Route from Parent2 to the offspring;

Until (no more inherited route is feasible)
/* There are no more entire routes from parents individuals possible in the offspring*/
/* SecondStep: insert unrouted customers, if possible, into inherited routes
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Insert Unrouted Customers in Current Routes;
/* ThirdStep: Create new routes for remainders customers */
Insert Remainder Customers in new routes using stochasticPFIH;

end; /* end function;

In the first step, the algorithm makes a randomly route choice from each parent individual in turns.
After all feasible routes have been inserted in the offspring, the insertion of remainder customers are
tested in existing routes (second step). If some customers continue to be unrouted; there is no other option
than to insert them in empty vehicles (new routes). In this step, the stochastic PFIH is again applied
(Fig. 1).

3.1.1.5. Elitism In order to guarantee that GA never retreats in the quality solution, elitism strategy
was adopted. This method consists of bringing the best individual from the current population to the
next population. However, to enable mutation over the previous selected individual, two copies of this
individual are done. The first copy is subject to mutations, while the second remains intact to the next
cycle of evaluation, selection and crossover, as showed in Fig. 2.

3.1.1.6. Mutation A total of eight different operators were used in the mutation phase of the GA proposed.
The mutation process is necessary for the insertion of new characteristics in the current population. Not
considering mutation, the GA search is limited to a very small area of the total feasible search space. In the
present work, some very specialized operators were created to speed up the evolution of the individuals,
as explained below.

Mutation_01 (Random customer migration): This operator chooses a vehicle randomly and a random
customer associated to it; a migration of this customer to other non-empty vehicle is tried. If the insertion
results a feasible route, that is accepted independently of the new function cost (See Fig. 3).

K individuals randomly selected 

The winner 

is selected 

to crossover

Fig. 1. The k-way tournament selection. After the pool has been chosen, the winner is the highest fitness.
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Selection and
Crossover

Mutations

Elitism

Current

Population

New 

Population

Best
Indiv.

Fig. 2. Steps to complete the next population (Next Pop) from the current one (Current Pop). The elitism is emphasized.

A customer 
randomly selected

A vehicle destionation 
randomly selected

If feasible, the best 
order in the new
vehicle is selected 

Fig. 3. Mutation_01: Random customer migration.

The customer which
cause the minor
increased cost is
inserted

A  route is randomly 
selected

All customers from the
other routes are tested
in the

Fig. 4. Mutation_02: Bringing the best customer.

Mutation_02 (Bringing the best customer): This operator chooses a vehicle randomly and searches for
the customer from others vehicles, which represents the minimal increased travel distance (See Fig. 4).

Mutation_03 (Re-insertion using stochastic PFIH): This operator chooses a route randomly and applies
the stochastic PFIH procedure, as described in section “Initial population” (See Fig. 5).

Mutation_04 (Similar customer exchange): This operator chooses a route randomly and searches for a
“similar” time window customer from others vehicles to try an exchange. The “similar” time window is
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New routes are
created using the
stochastic PFIH 

A set of routes are
randomly selected 

All customers are
unrouted 

Fig. 5. Mutation_03: Re-insertion using stochastic PFIH.

A customer randomly
selected One customer by

route is identified with
more similar
time window

The first customer is
changed with other
selected, resulting the
best TD   

Fig. 6. Mutation_04: Similar customer exchange.

Customer interchange 
possibilities:   

A – 1 B – 1 C – 1

A – 2 B – 2 C – 2

A – 3 B – 3 C – 3

A

B C
1

2

3

The best option in terms of
total Travel Distance is 
selected and performed

Fig. 7. Mutation_05: Customer exchange with positive gain.

considered as the minimal difference between the earliest time of two different customers, i.e., ai − aj ,
where i and j are two customers (See Fig. 6).

Mutation_05 (Customer exchange with positive gain): This operator is very expensive in terms of time
complexity, O(nm), where n and m are the number of customers in two routes. Nevertheless, it is very
important to improve the GA convergence. It verifies all possibilities to exchange a couple of customers
and only carries it out if a reduction in the total travel distance is obtained (See Fig. 7).

Mutation_06 (Merge two routes): This operator chooses two random routes and tries to merge them in
a random way. Very often, the remainder customers are inserted in other routes or in a new one. If new
route is necessary, the stochastic PFIH is applied (See Fig. 8).

Mutation_07 (Reinserting customer): This operator chooses a random customer, removes it, and
re-inserts in a better position, i.e., the position in the same route with a minimal travel distance
(See Fig. 9).

Mutation_08 (Route partitioning): This operator chooses a random vehicle, a random customer and
divides this route in two others, using that customer as reference (See Fig. 10).
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Two routes are 
randomly selected All customers from the  

second route are 
inserted in the first if 
possible

It’s possible one or 
more customers stay 
in the original route

Fig. 8. Mutation_06: Merge two routes.

A route is randomly
selected

All customers from the
selected route is 
reinserted one by one
in the best order
(minimal TD)

Fig. 9. Mutation_07: Reinserting customer.

A route is randomly 
selected

The selected route is 
divided in two others, 
using one customer as 
cut point

Fig. 10. Mutation_08: Route partitioning.

3.1.2. Initial set of routes using the whole problem
The framework starts producing an initial set of local minima using the GA described. The flow chart

is showed in the Fig. 11. All routes from the best individual from each island are included in the subset
R. In this phase, many (MAX_ISLAND) independent local minimal solutions are obtained.

3.1.3. Improving the set of routes using a reduced problem
The literature shows research efforts, such as the classical Pethal Methods, that propose the partition

of the problem into sub-regions, and then treating each sub-region as a reduced-order and independent
problem. These sub-region based methods can be useful for problems without capacity and time win-
dow constraints. However, for the VRPTW, any artificial sub-region can have the effect of forcing the
creation of additional routes in the solution; or of routes with higher travel distances. This occurs in the
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Initial Population 
Generation

Stochastic PFIH

(Now – TimeIni) <
TimeLimit

Tournament 
Selection

Elitism

Crossover

Insert the Best 
Individual in R;

Inc(NIsland)

Yes

No

Population
Evaluation

Initial 
Population

New Population

Mutations

NIsland =
MAX_ISLAND

START
NIsland = 0

No

END
Yes

TimeIni = Now

Fig. 11. GA Flow chart proposed. Many evolutions (MAX_ISLAND) are generated and all routes from the best individual are
included in the subset R.

VRPTW because the time window constraints obstruct routes according to the physical proximity of the
customers.

On the other hand, it may be easier for the GA to find out little imperfections in a subset of routes
previously produced, like wrong customer order or changed customers between routes. In this way,
additional evolutions are applied using the GA described above, where a subset of customers is eliminated,
reducing the problem to 30% in size. The customers are grouped in accordance with the intermediate
solution produced using the SPP model over the subset of routes R from the previous phase, described in
Section 3.1.2. Again, many islands of evolution are generated; each island uses a different set of routes,
randomly chosen. The routes from the SPP solution are used only to decide what customer will be inserted
in the subproblem, but new routes are obtained using the stochastic PFIH to generate each initial GA
population. The SPP is solved to optimality, using the GLPK MIP software. Fig. 12 shows the flow of
this process and Fig. 13 summarizes the phases to generate the subproblem.
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Insert the Best 
Individual in R;
Inc(NIsland2)

NIsland2 =
MAX_ISLAND2

SPP MIP is solved
using the current 

set of routes R

No

END
Yes

GA_DT

SPP MIP Solution 
(Local Minimum for 

The VRPTW)

Generate a new 
Reduced Problem

NIsland2 = 0

Fig. 12. Flow chart illustrating the subproblem generation and the GA evolution to improve the set of routes R.

3.2. The complete algorithm

In the previous sections, the proposed GA is applied in two different phases to produce quality routes
to the set R from Eq. (2.1). These routes are from independent local minimal solutions. Initially handling
the whole problem, where all customers are considered, and in a second phase, using a reduced problem.
Even though the quality of these produced routes is directly related to the whole solution quality of the
GA, it is necessary to produce as many routes as possible, increasing the possibility to find the desired
set of routes present in the global optimum.

These two sequential phases can be considered as diversification and intensification steps. The first has
a diversification bias because many independent and fast evolution are done, generating many different
local minimal solutions. Thus, the SPP model is solved to obtain the best combination of routes in an
unique solution. The successive GA evolutions can be considered as an intensification search step because
any subproblem generated will require similar routes solutions, once the customers are divided based on
the SPP solution. In Fig. 13 it is possible to see this tendency in the set of customers to the subproblem.

The framework is composed by successive cycles of diversification and intensification, i.e., islands of
evolution handling the whole problem and the subproblem. Finally, a global set of routes, RGLOBAL, are
constructed to provide a global and final SPP MIP solution, obtaining a near global optimal solution. Since
the entirely framework can be considered as a column generation heuristic method, it is denominated
CGH. All parts together can be showed in Fig. 14.
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Phase II – MAX_ISLAND2 GA_DT 
evolutions using reduced problems

INC(NIsland2)

Fig. 14. Putting all parts together: The entire framework of the CGH.

The whole process showed in Fig. 14 can be summarized as follows. At first, MAX_ISLAND islands
of GA evolutions are generated considering the original instances of Solomon, represented by the blocks
with labels A, B and C. The set of routes R are coming up using the routes from the best individuals from
each island, block B. When the number of evolutions NIsland achieves the maximal number of islands
(MAX_ISLAND) the SPP is solved using the GLPK MIP package over the set of routes R, block D. Based
on the SPP solution, the algorithm decides how the customers will be clustered to generate many different
reduced problems. As mentioned before, each route found in the SPP solution has the possibility of 30%
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of having its customers inserted in a reduced problem. This step is represented by the block E in Fig. 14.
Again, the same GA is executed to optimize travel distance over this reduced problem, block F. Here, the
only parameter changed in the GA is the time horizont, reduced to 50%. In the same way, many islands
are generated (MAX_ISLAND2), but then with different set of customers, because the routes selected
are different each time. When MAX_ISLAND2 is reached, the set R contains additional routes. This step
can be considered as an improvement in the former result, because the division of the customers based
on the current SPP solution will lead the search in that region. The entire set of routes R is added to the
global set RGLOBAL and made empty. If time is not reached (Total Time, block I), the cycle described starts
again. Actually, the process can be also interrupted between any GA generations and is not represented
in the flow chart to simplify it. When the limited time expires, normally after many cycles, the global
set RGLOBAL is used in the final SPP formulation, where all produced routes are considered. The MIP
GLPK package is also used to find an integer optimal solution considering this set RGLOBAL. The results
in the next section show that this local minimum is very close or even coincident with the global optimal
solution.

4. Computational results

The Solomon’s test set was proposed in 1987 [11] for three different customers space classes: the
classes R1 and R2 have customers randomly disposed; the classes C1 and C2 have customers clustered
in some groups; and, finally, the classes RC1 and RC2 contain a subset of customers randomly disposed
and the other part clustered. The distance between two customers is the simple euclidean distance. One
unit of time is necessary to run one unit of distance by any vehicle. Each customer i has a time window
[ai, bi], which represents the time interval to arrive in that customer. Different capacity constraints are
considered for the vehicle in each class of instance, as well as the demands from the customers. There
are a total of 56 instances for each dimension category problem, that are 25, 50 and 100 customers.
Because the Solomon’s test set represents relatively well different kinds of scenarios, it has been chosen
to evaluate many solution proposals in the literature. However, the incomplete definition of the problem
has resulted in different assumptions, and consequently it is more difficult to compare the works. The
first lack of agreement in the literature is the objective function of the problem. Many different objectives
have been chosen in the literature for the Solomon’s test set, like total travel distance minimization,
number of vehicle minimization, total wait time minimization and the combinations of them. The sec-
ond important lack of agreement is related to the data type, real or truncated numbers. Many authors
justify the use of integer numbers, to reduce the influence of computer hardware, but in other cases the
double precision arithmetic has been chosen. However, the instances of Solomon continue to be the best
way to evaluate a new approach, and were used in this work. In order to reduce these weaknesses men-
tioned above and make possible a more complete comparison, both real and integer numbers have been
considered.

4.1. General GA parameters adjustment

Appropriated adjustment of parameters in GAs can make a significant difference in terms of perfor-
mance. Some values can provide very high performance in specific instances while giving premature
convergence in others, even over the same kind of problems. Today, robust GAs with very specialized
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Table 1
Average time to generate islands of evolution. The stochastic PFIH time is included

Classes Original problem (s) Reduced problem (s)

R1 10 02
R2 21 05
C1 10 03
C2 54 11
RC1 09 02
RC2 56 12

and complex operators are developed for many problems. For the VRPTW, these characteristics are very
critical, because there is not only one kind of instance but many classes of problems. For example, some
instances are very relaxed in terms of time window constraints. In other instances, customer sequences
are absolutely necessary to satisfy time restrictions.

In this work it is possible to define a satisfactory set of operators to allow a fast algorithm. Considering
the set partitioning problem used to complete the search, there is not much possibility to entrap in the
local minimum, once the GA has many opportunities to obtain different solutions.

In Fig. 14, MAX_POP represents the constant used to define the number of generations used in the GA
for the original problem. The value of 170 is empirically chosen to MAX_POP. Differently, the number
of generation used in the same GA for the reduced problem, MAX_POP2, is 120. Using these parameters
it is possible to generate an island of evolution sufficiently fast. In Table 1 it is shown the average time
measured by islands of evolution using each Solomon’s classes of problems.

The k-way tournament selection process is tested using groups of 2, 3 and 4 individuals. Groups of
3 randomly selected individuals have obtained the best results. It is fixed, before adjusting all other
parameters.

The number of times to execute all mutation operators is adjusted empirically as follows. The oper-
ators are divided in two blocks, one that increases the diversification search (block A) and another that
permits an intensification search (block B). In this work, intensification stands for the operation in a
current solution which ensures a positive gain in the travel distance. On the other hand, diversification
stands for random moves which can deteriorate the current solution. If a preponderant intensification
search is used in the GA, the population generally stops in a premature local minimum. In opposite,
an excessive diversification search is equivalent to a random and/or blind search in the feasible solu-
tion space.

Initially, the numbers of execution for these blocks applied in each GA generation were decided
by feeling, considering basically the time complexity cost of the related algorithm. This procedure
has enabled to find the best rate of each block in total, using empirical tests. Tests have been done
using different problem types. After the best mutation amount was selected for these two blocks, a
fine adjustment is done, changing the number of execution for each specific mutation. These two
steps are repeated many times, sequentially, using different problems. Finally, all parameters were
fixed to test the solution for all instances. The values of the parameters found can be seen in
Tables 2 and 3.
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Table 2
Number of executions by mutation operator in each GA generation

Mutation operator Execution/Generation

Mutation_01 (Random customer migration) 20
Mutation_02 (Bringing the best customer) 10
Mutation_03 (Re-insertion using stochastic PFIH) 1
Mutation_04 (Similar customer exchange) 20
Mutation_05 (Customer exchange with positive gain) 2
Mutation_06 (Merge two routes) 1
Mutation_07 (Reinserting customer) 30
Mutation_08 (Route partitioning) 1

Table 3
Additional parameters used in the GA

GA Parameter (description) Value

MAX_POP (number of generations in the GA - whole problem) 170
MAX_POP2 (number of generations in the GA- reduced problem) 120
Number of individuals in all Population 31
MAX_EVOL (number of islands for each cycle - whole problem) 8
MAX_EVOL2 (number of islands for each cycle - reduced problem) 25
TIME_LIMIT (Total time limit) 60 min

4.2. Results for total distance minimization

The proposed heuristic method, CGH is evaluated using 56 Solomon’s problems with 100 customers.
Although many heuristic approaches have been tested using this Solomon’s test set, there is no infor-
mation about previous heuristic methods considering total travel distance as the first objective together
with integer numbers (first decimal truncated) to make possible the comparison with exact method so-
lutions. Although data type seems to be a simple detail, it can change significantly the results because
it can decide if a route will be feasible or not. The inputs of the problem like coordinates, capacity,
customer demands and others are multiplied by 10 and all subsequent calculations are truncated to
integers.

Table 4 shows the results obtained by the CGH for all Solomon’s problems with 100 customers and the
exact results obtained by optimization methods, when they are known. The objective function applied is
only the total TD. The NV found in the solutions were presented only as reference. Results emphasized in
bold in Table 4 represent the exact solution reached by CGH. The blank cells in the exact solution column
mean that the exact solution for these problems has not been obtained yet. The CGH results represent
the best after 3 algorithm runs. The time limit to the execution is 60 min, including many intermediate
MIP solutions (block D in Fig. 14). These SPP problems, although always executed to optimality, have
few routes and do not represent an expressive time spender. The final SPP solved (block J in Fig. 14) can
spend a bit more time, in spite of the set RGLOBAL still continue small. The necessary time in this step are
not included in the limited time of 60 min. No limit is imposed to any MIP steps in the algorithm. Even
the last stage generally the results of the SPP problem come up after few seconds.
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Table 4
Known exact solutions from the literature and the best CGH results (3 runs). Emphasized in bold the CGH results means the
optimal solution was reached. NV—Number of Vehicles, TD–Total Distance

The results show that many previously known optimal solutions from exact methods have been reached,
24 out of 33 (72.7%). Globally, the TD average results are only 0.29% higher considering the 33 instances
where the optimal solutions are known. In RC101, RC103 and RC201, the numbers of used vehicle in the
solution are not the same. Larsen [9] suggests heuristic methods using TD as the only objective and the
truncated number criterion, making it easier to compare the results between the algorithms. The results
presented here, seem to be the first in this way, and consequently current heuristic benchmark under these
conditions.

It is possible to improve the knowledge of the heuristic performance under the same arithmetic
assumptions and the same objective adopted in exact works.
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Table 5
Best total distance (TD) published heuristic results and CGH results using real arithmetic (double precision). The results are
emphasized in bold when CGH overcomes the previous best solutions

Problem Previous best CGH Problem Previous best CGH
TD solution TD solution

Ref. NV TD NV TD Ref. NV TD NV TD

R101 [20] 19 1645.79 20 1642.870 R201 [21] 4 1252.37 9 1148.483
R102 [1] 17 1486.12 18 1472.620 R202 [1] 4 *1088.07 7 1049.737
R103 [1] 14 *1213.62 14 1213.620 R203 [22] 3 939.54 5 900.080
R104 [1] 10 *982.01 11 986.096 R204 [23] 2 825.52 4 772.330
R105 [1] 14 1377.11 15 1360.783 R205 [5] 3 994.42 6 970.886
R106 [22] 12 1251.98 13 1241.518 R206 [24] 3 906.14 5 898.914
R107 [25] 10 1104.66 11 1076.125 R207 [1] 3 *814.78 4 834.930
R108 [26] 9 960.88 10 948.573 R208 [22] 2 726.75 3 723.610
R109 [21] 11 1194.73 13 1151.839 R209 [20] 3 909.16 6 879.531
R110 [1] 11 *1080.36 12 1092.347 R210 [22] 3 939.34 7 932.887
R111 [5] 10 1096.72 12 1053.496 R211 [23] 2 892.71 5 787.511
R112 [1] 10 *953.63 10 960.675
C101 [1] 10 828.94 10 828.94 C201 [1] 3 591.56 3 591.56
C102 [1] 10 828.94 10 828.94 C202 [1] 3 591.56 3 591.56
C103 [1] 10 828.06 10 828.06 C203 [1] 3 591.17 3 591.17
C104 [1] 10 824.78 10 824.78 C204 [1] 3 590.60 3 590.60
C105 [1] 10 828.94 10 828.94 C205 [1] 3 588.88 3 588.88
C106 [1] 10 828.94 10 828.94 C206 [1] 3 588.49 3 588.49
C107 [1] 10 828.94 10 828.94 C207 [1] 3 588.29 3 588.29
C108 [1] 10 828.94 10 828.94 C208 [1] 3 588.32 3 588.32
C109 [1] 10 828.94 10 828.94
RC101 [1] 15 *1623.58 16 1639.968 RC201 [22] 4 1406.91 9 1274.537
RC102 [1] 13 *1477.54 14 1466.840 RC202 [1] 4 *1165.57 8 1113.526
RC103 [27] 11 1261.67 11 1264.707 RC203 [28] 3 1049.62 5 945.960
RC104 [29] 10 1135.48 10 1135.520 RC204 [22] 3 798.41 4 799.670
RC105 [26] 13 1629.44 16 1518.600 RC205 [22] 4 1297.19 7 1161.810
RC106 [1] 12 *1384.92 13 1377.352 RC206 [20] 3 1146.32 7 1059.886
RC107 [25] 11 1230.48 12 1212.830 RC207 [23] 3 1061.14 7 976.396
RC108 [30] 10 1139.82 11 1117.526 RC208 [31] 3 828.14 5 795.391

Additionally, the same heuristic CGH is tested making use of real arithmetic (double precision) and
the results are also compared with real arithmetic heuristic solutions in the literature, although few works
have considered Solomon’s benchmark problems minimizing TD. The results are presented in Table 5
together with the best solution known in the literature. It is possible to see that the algorithm proposed
continues to be very competitive in terms of total TD. Although some works have considered TD as the
first objective [5,6,30], the best previous result comes from heuristic methods minimizing the number of
vehicles as the first objective, becoming difficult to compare with CGH results. Following, Table 6 shows
the results by problem class, including results from other relevant works in the literature. In this table, the
increased percentages from the best results (TD%) are presented for each author. The CGH has reduced
significantly the best results. Another interesting fact is that the previous best results considering TD
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Table 6
The results in the literature using real arithmetic for each problem class and the CGH results. The best TD results were considered

R1 C1 RC1 R2 C2 RC2

Published Best NV 12.25 10.00 13.00 2.91 3.00 6.00
TD 1195.63 828.38 1360.37 935.35 589.86 1094.16

Taillard [30] NV 12.17 10.00 11.50 2.82 3.00 3.38
TD 1209.35 828.38 1389.22 980.27 589.86 1117.44
TD% +1.1 0.0 +2.1 +4.8 0.0 +2.1

Rousseau [5] NV 12.83 10.00 12.50 3.18 3.00 3.75
TD 1201.10 828.38 1370.26 966.94 594.01 1113.29
TD% +0.5 0.0 +0.7 +3.4 +0.7 +1.7

Tan [6] NV 13.83 10.11 13.63 3.82 3.25 7.00
TD 1260.71 859.81 1447.06 1058.52 617.10 1169.41
TD% +5.4 +3.8 +6.4 +13.2 +4.6 +6.9

Kilby [32] NV 12.67 10.00 12.12 3.00 3.00 3.38
TD 1200.33 830.75 1388.15 966.56 592.24 1133.42
TD% +0.4 +0.3 +2.0 +3.3 +0.4 +3.6

Homberger [21] NV 12.00 10.00 11.63 2.73 3.00 3.25
TD 1226.38 828.38 1392.57 969.95 589.86 1144.43
TD% +2.6 0.0 +2.4 +3.7 0.0 +4.6

Berger [2] NV 11.92 10.00 11.50 2.73 3.00 3.25
TD 1221.10 828.48 1389.89 975.43 589.93 1159.37
TD% +2.1 0.0 +2.2 +4.3 0.0 +6.0

CGH NV 13.33 10.00 13.00 4.64 3.00 6.00
TD 1196.8 828.38 1341.7 899.9 589.86 1015.9
TD% 0.10% 0.00% −1.37% −3.79% 0.00% −7.15%

do not match with the best results considering NV only for 10 problems indicated with (*) in Table 5 as
summarized in [4]. All these results came from the Rochat work [1], which reports a better TD but worse
NV, with one more vehicle.

In Table 7 is possible to see the gain obtained with the SPP formulation over the set of routes R.
Those results confirm the viability of this hybrid CGH approach for TD minimization in the
VRPTW.

5. Conclusions

This paper presents a contribution to overcome two of the main weaknesses in the VRPTW literature.
Firstly, the behaviour of a heuristic method is compared against exact methods, considering the num-
ber of global optimal solutions found using the same assumptions used in the exact methods: truncated
calculation and total distance minimization. Secondly, few papers have addressed distance minimiza-
tion using heuristic methods. The results obtained by CGH are very expressive, establishing many new
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Table 7
The best Genetic Algorithm (GA) parcial solutions found and the final CGH results. The last column reports the percentages
gain with the SPP MIP formulation

benchmark solutions. It is possible to see that the number of vehicles and total distance are very competi-
tive objectives, because the CGH results overcome the previous minimal TD results, generally increasing
the number of vehicles.
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