
Supply-chain management is a set of ap-
proaches that help efficiently integrate
suppliers, manufacturers, warehouses, and
retailers so that merchandise is produced

and distributed at the right quantities, to the right
locations, and at the right time. This minimizes
system-wide costs (or maximizes profits) while sat-
isfying service-level requirements.1

A supply chain’s physical structure clearly im-
pacts its performance, so major supply-chain de-
cisions can vary widely: Which suppliers should
we use? How many factories and warehouses
should we have, and where should we locate
them? How do we set the capacity at each facility?
What products should each factory produce?
Given locations and capacities, supply-chain de-
cisions will try to answer other questions: What
quantities should we produce and store at these
locations? What quantities should we move from
location to location, and at what time? (See the
“Supply-Chain Decision Making” sidebar for a
discussion on how previous research has at-
tempted to answer these questions.)

Most of the early supply-chain models are de-
terministic, assuming that decision makers know all
variables of interest before implementing solutions.
However, many decision parameters, such as de-
mands and costs, can change dramatically from de-
cision to implementation time. This calls for
supply-chain design models that address the inher-
ent uncertainties in facility location problems. De-
signing an efficient supply chain can provide a
company with a tremendous competitive advantage
in the marketplace.

This article focuses on integrating decisions at
strategic, tactical, and operational levels. (See the
“Treating Uncertainties in the Supply Chain” side-
bar for a full discussion of related work in this area.)
Specifically, I study strategic location decisions
while taking into account the impact of inventory
and shipment decisions. I also explicitly model sto-
chastic demand and random supply in the supply
chain. (For a more detailed review of joint opti-
mization of decisions from different levels, see my
related research.2 Sunil Chopra and Peter Meindl3

also discuss network design models that consider
both demand and financial uncertainty.)

Basic Model Formulation
For this work, I considered a three-tiered supply-
chain system consisting of one or more suppliers,
distribution centers (DCs), and retailers. Each re-
tailer has uncertain demand. The problem is de-
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termining how many DCs are necessary, where to
locate them, which retailers to assign to each DC,
how often to reorder at the DC, and what level of
safety stock to maintain to minimize total location,
shipment, and inventory costs while ensuring a
specified level of service. (Safety stock is inventory
held in case demand exceeds expectations.)

We can assume that location costs are incurred
when DCs are established. Line-haul transporta-
tion costs are incurred for shipments from a sup-
plier to the DCs. Local transportation costs are
incurred when moving the goods from the DCs
to the retailers. Inventory costs are incurred at
each DC and consist of the carrying cost for the
average inventory used over time as well as safety
stock inventory carried to protect against uncer-
tain retailer demand. We assume that the non-
DC retailers maintain only a minimal amount of
inventory, which I ignore in the model here. (I
discuss how to deal with retailer inventory in the
next section).

The inputs and parameters are

� I, a set of retailers;
� J, a set of candidate DC locations;
� �i, the mean (daily) demand at retailer i for each

i � I;
• , the variance of (daily) demand at retailer I

for each i � I;
• fj, the fixed (annual) cost of locating a DC at j for

each j � J;
• dij, the cost of shipping a unit from DC j to re-

tailer i for each i � I and j � J;
• �, the desired percentage of retailer orders satis-

fied (fill rate);
• �, the weight factor associated with the routing;
• �, the weight factor associated with the shipment

cost;
• �, the weight factor associated with the inventory

cost;
• z�, the standard normal deviate such that P(z �

z� ) = �;
• h, the inventory holding cost per unit of product

per year;
• Fj, the fixed administrative and handling cost of

placing an order at DC j for each j � J;
• L, the DC order lead time in days;
• gj, the fixed shipment cost per shipment from the

supplier to DC j;
• , the cost per unit of a shipment from the sup-

plier to DC j; and 
• �, a constant used to convert daily demand into

annual demand (for example, 365 if demand oc-
curs every day of the year).

The decision variables are

a j

σ i
2

SUPPLY-CHAIN DECISION MAKING

We can roughly classify the necessary decisions in the
supply chain into strategic, tactical, and operational

levels. In the design phase, strategic decision such as facility
location decisions play major roles. Once we’ve determined
the supply chain’s configuration, our focus shifts to tactical
and operational decisions (such as inventory management
decisions on raw materials, intermediate products, and end
products) and production scheduling and product distribu-
tion decisions within the supply chain.

Researchers have typically treated decisions at different
levels separately. The strategic location theory literature
tends to focus on developing models for determining the
number of distribution centers (DCs) and their locations as
well as DC-retailer assignments. These decisions are evalu-
ated based on resulting operational shipping costs and
strategic location costs. With some notable exceptions, this
work tends to ignore demand uncertainty. Furthermore,
location models typically ignored inventory costs and their
impact on location and shipping costs until recently.1

The inventory literature tends to ignore the strategic lo-
cation decision and its associated costs. One reason for

such a disconnection is that the decision maker doesn’t
possess detailed information at the nonstrategic level in
the strategic design phase, thus facility location decisions
are usually made without many inputs regarding inven-
tory and distribution costs. However, failure to take the re-
lated inventory and shipment costs into consideration
when determining the facility location can lead to sub-
optimal results.2

Thus, to achieve important cost savings, the supply chain
should be optimized as a whole—that is, the major cost fac-
tors that can impact the supply chain’s performance should
be considered jointly in the decision model. This isn’t only
true for decisions at the same level (for instance, it’s well
known that the inventory-management scheme and the
transportation strategy should be integrated), but it also ap-
plies to decisions at different levels.
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• Xj := 1, if retailer j is selected as a DC location,
but 0 otherwise for each j � J, and

• Yij := 1, if retailer i is served by a DC based at lo-
cation j, but 0 otherwise for each i � I and each j
� J.

To simplify notation, I assume all lead times are
equal and the holding cost rates are the same at
different DCs. I use the weight factors �, � to
adjust the relative proportion of different cost
components. 

Working Inventory Cost
For the inventory policy under this system, a DC
orders inventory from the supplier using an (r, Q)
policy with service-level constraints. The frequency
of orders and the order quantity at each DC is de-
termined by the mean demand served by the DC,
which in turn is a function of the assignment of re-
tailers to the DC.

Let Sj denote the set of retailers served by j, Dj
denote the total annual (expected) demand going
through DC

,

and n be the number of shipments per year from

the supplier. The average shipment size in one
shipment from the supplier to DC j is Dj/n, and the
average working inventory cost at DC j is
�hDj/(2n). Assuming we can calculate the delivery
cost from the supplier to DC j as ,
where gj is the fixed cost of placing an order, then
the total annual cost of ordering inventory from the
supplier to DC j is given by

. (1)

The optimal value of n that minimizes this func-
tion is equal to

.

We can express the corresponding total annual
working inventory cost associated with DC j as

. (2) 

Safety Stock Cost
Using Eppen’s classical risk-pooling result, the
amount of safety stock required to ensure that
shortages occur with a probability of � or less is 

.z L i S ijα σΣ ∈
2

2θ β βhD F g a Dj j j j j( )+ +

θ βhD F gj j j/ ( ( ))2 +
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TREATING UNCERTAINTIES

IN THE SUPPLY CHAIN

R esearchers have treated uncertainty in many different
ways within the supply-chain literature, but the work

typically focuses on the strategic, tactical, and operational
levels. The models I review here typically assume full
probabilistic characterization, but the research commu-
nity is increasingly interested in applying learning
techniques to problems without full probabilistic charac-
terizations. When the data available for learning is limited,
or the underlying uncertainty is nonstationary, these ap-
proaches can induce significant error, reducing the effec-
tiveness of the policies derived. However, my colleagues
and I discuss how to incorporate these errors in the model
and describe different ideas in modeling model uncer-
tainty,1 finding the solution to this model using robust op-
timization and its implementation through learning.
These models will be extremely helpful for tactical and
operational decision making.

Strategic Level
At the strategic level, decisions can have a long-lasting im-
pact on the firm’s performance. For instance, facility location

decisions, once implemented, won’t change that often be-
cause of the huge setup costs involved. 

With some notable exceptions, the location literature
tends to ignore demand uncertainty, but doing so can re-
sult in bad facility locations and inefficiency and extra
costs, even if the production, inventory, and shipment
plans are well optimized. Mark Daskin and Susan Owen2

provide an overview of facility location modeling as do
other recent texts.3,4 Additional related works5,6 review
facility location models in dynamic and uncertain envi-
ronments.

Tactical Level
Tactical-level decisions are typically updated every few
months, and they typically include production decisions, in-
ventory, and transportation strategies (such as mode selec-
tion and frequency of visiting customers).

For inventory management problems, the objective is to
decide the frequency and quantities of orders for supplying
DCs and filling retailer orders. An inventory policy’s perfor-
mance is evaluated based on the resulting service levels (the
percentage of retailer orders filled within the acceptable
waiting period), shipping costs, inventory costs, and short-
age costs (those incurred when an order can’t be filled
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The corresponding holding cost for the safety
stock at DC j is

. (3)

Model Formulation
Using the cost items I described earlier, we can for-
mulate the following supply-chain design model.
First, minimize

(4)

which is subject to

, for each i � I (5)

Yij – Xj � 0, for each i � I, j � J (6)

Yij � {0, 1}, for each i � I, j � J (7)

Xj � {0, 1}, for each j � J , (8)

where

q = �hz�

.

The first two terms include the fixed cost of lo-
cating facilities and the delivery costs from the
DCs to the retailers (represented by terms in dij) as
well as the marginal cost of shipping a unit from a
supplier to a DC (represented by terms in aj). The
last two terms are related to inventory costs, which
are nonlinear in the assignment variables. Kj cap-
tures the inventory effects due to the fixed order-
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within an acceptable waiting period). This line of research
tends to incorporate demand uncertainty.7,8

Operational Level
Operational-level decisions deal with detailed short-term op-
erations, including production scheduling and distribution.
Although a vast amount of literature deals with production
scheduling, most of the scheduling papers deal with deter-
ministic problems. (Mike Pinedo9 provides an excellent re-
view of the subject.) In terms of product distribution, a
heavily studied mathematical model is the vehicle routing
problem (VRP), in which a set of customers must be served
by a fleet of vehicles of limited capacity. The vehicles are ini-
tially located at a given depot, and the objective is to find a
set of routes for the vehicles of minimal total length. Each
route begins at the depot, visits a subset of the customers,
and returns to the depot without violating the capacity con-
straint. Paolo Toth and Daniele Vigo10 provide an excellent
review of the model. (For reviews on stochastic VRP, see
other related articles.11,12)
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ing costs at the DC and the fixed transport costs
from a supplier to a DC. Finally, q captures the
safety stock costs at the DCs.4 The value of q de-
pends on the desired service level. The model’s
constraints specify that every retailer must be
served from an open DC. This problem is more
difficult than the standard uncapacitated facility lo-
cation problem, which is already a notorious NP-
hard problem.

To solve this problem, we can either use the col-
umn generation or Lagrangian relaxation ap-
proaches. Both approaches utilize a low-order
polynomial time algorithm for solving a subprob-
lem of the following form. First, minimize

, (9)

which is subject to

Zi � {0, 1} ∀i � I .

For each j � I, define set function gj on Ej � I\{ j} as
follows: for each S � Ej,

. (10)

Let y* be an optimal solution to Pj, with associated
optimal objective value . The minimum reduced
cost set is then the collection of retailers 
i � I with . If , then has non-
negative reduced cost; moreover, we can conclude
that there is no set R � R having a designated DC
j with negative reduced cost. Furthermore, if for
each j � I, we find that , then we can
conclude that there is no set R � R with negative
reduced cost.

Given a finite set E, a real-valued function h(�)
that’s defined on the subsets of E is called submod-
ular if, for every pair S, T � E, we have

h(S) + h(T ) � h(S � T ) + h(S � T ).

Theorem 1: The gj(S) that arises from the pricing
problem is a submodular function.5

The pricing problem in the column generation
phase is thus a submodular function minimization
problem (one for each problem). The result I’ve
presented implies the pricing subproblem is poly-
nomially solvable, but the algorithms (O(n7logn))
still aren’t very efficient. 

Solving the Pricing Problem
Let’s look at a much faster algorithm (O(n2logn)) to
solve the pricing problem.

Lemma 1: Given a retailer j � I, and associated
minimum-reduced-cost set , for every

, ai < 0.

Proof: Let . Because bi, ci > 0, if ai � 0,
then for any solution with , the objective
function value is strictly greater than that of the
solution obtained from by setting .

Hence we can restrict our search for to re-
tailers in I –, where I – � {i � I\{ j} : ai < 0}. We next
identify a nice structural property of the set by
extending an argument in a related work.6

Let aS = 	i�Sai, bS = 	i�Sbi, and cS = 	i�Sci. Define
a new function

. (11)

Note that hj(x, y, z) is a separable concave function,
and 

minS�I – gj(S) = minS�I – hj(aS, bS, cS). (12)

Because the set of ordered pairs {(aS, bS, cS) : S �
I –} is finite, its convex hull, H, is a convex polyhe-
dron. It now follows from Equation 10 that

minS�I – gj(S ) = minS�I – hj(aS, bS, cS)
� min(A,B,C)�Hhj(A, B, C ).

Because the function hj(A, B, C) is concave in the
variables (A, B, C), the latter minimization problem
attains a minimum at an extreme point of H.

Let (A*, B*, C*) be an extreme point of H. Be-
cause H is a polyhedron, a linear function f on H
exists that attains its unique minimum over H at
(A*, B*, C*). Because f is linear, it has a representa-
tion f(A, B, C) = �A + �B + � C defined by real num-
bers �, �, and �. The uniqueness of (A*, B*, C*) as
the minimizer of f over H assures that we don’t
have � = � = � = 0.

Because H is the convex hull of {(aS, bS, cS) : S �
I –},

�A* + �B* + � C* = min(A,B,C)�H�A + �B + � C
= minS�I – �aS + �bS + � cS
= minS�I – 	i�S(�ai + �bi + � ci).

The set S* = {i : �ai + �bi + � ci < 0} is clearly optimal
for the last optimization problem. Hence, we con-
clude from the uniqueness of (A*, B*, C*) as the
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minimizer of f over H that (A*, B*, C*) = (aS*, bS*,
cS*). Furthermore, .

Note that S* = {i : �ai + �bi + � ci < 0} = {i : � +
�(bi/ai) + � (ci/ai)} > 0} = {i : �xi + � yi < �}, where xi =
–bi/ai and yi = –ci/ai. Note also that xi, yi � 0 for all i.

Although there are infinitely many choices for
the parameters �, �, and �, it turns out that the
number of distinct partitions obtained by varying
the parameters is limited. This follows from a
general result in the theory of VC dimension. To
describe this result, I need to first introduce some
notation.

The VC dimension is defined for any set system
S 
 2X on an arbitrary set X. It’s the supremum of
the sizes of all shattered subsets A 
 X; here, A is
shattered if S|A = 2A—that is, for any B 
 A, a
set S � S exists such that B = A � S. So if H de-
notes the system of all closed half-planes in the
plane, it isn’t difficult to check that the VC di-
mension of the set system H is three, because no
four points in the plane can be shattered by using
only half-planes.

The following well-known result shows that the
number of possible candidates for S* are essen-
tially small.

Lemma 2:7,8 For any set system S of VC dimen-
sion at most d, we have |S|X| � �d(|X|), where

.

This lemma suggests that we need to search
among at most O(n3) possible subsets to deter-
mine S*.

In fact, we can enumerate the candidate solution
more efficiently. We first observe that at the opti-
mal set S*, the parameters �, �, and � satisfy the ad-
ditional properties:

� = 1, 

, and

.

These equations follow from gradient conditions
at the optimal solution because the concave objec-
tive function is of the form h(x, y, z) = x + + 
and 0 � zi � 1 for all i.

We know S* = {i : �ai + �bi + � ci < 0} = {i : � +
� (bi/ai) + � (ci/ai) > 0} = {i : �xi + � yi < �} for some
choice of �, �, and �. Furthermore, the additional
properties let us restrict our search to finding � and
� such that S* = {i : �xi + �yi < 1, � > 0, � >0}. The

possible choices for � and � now lie in the positive
orthant. Furthermore, the inequality �xi + � yi < 1
denotes a half-space in this region.

For each pair of i, j, we solve the equation

This gives rise to a solution (�ij, �ij). We can discard
the solution if any of the �ij, �ij is nonnegative.

Figure 1 uses a three retailer example to illustrate
how to get the optimal set S*. We first sort all the
intersection points according to the value of the �
coordinates. For ease of exposition, I relabeled the
points (�ij, �ij) as (�k, �k) so that �k � �k+1 for all k, k
= 1, 2, …, m, and m � n2.

When � � [0, �1), the changes of possible candi-
dates for S* as � varies follow an obvious pattern. In
Figure 1, the possible candidates are {1, 2, 3}, {1, 2},
and {1} (as � increases). Similarly, the possible candi-
dates for S* are {2, 1, 3}, {2, 1}, and {2} when � � [�1,
�2); the possible candidates for S* are {2, 3, 1}, {2, 3},
and {2} when � � [�2, �3); and the possible candidates
for S* when � � [�3, �) are {3, 2} and {3}, respectively.

More formally, I can describe the algorithm as
follows:

0. Given points (�k, �k), k = 1, 2, 
, m, with �1 �
�2 � 
 � �m.

1. For each k in 0, 1, 2, 
, m (define �0 = 0),
a. For each line i, let �i � (1 – �kxi)/yi —that

is, when the � value is set at �k.
b. Sort the lines in nondecreasing value of

�i. Let k1 � 
 � kn denote the ordering of
the lines when the � value is set at �k.

c. The candidate solutions are {kj, kj+1, 
, kn},
for each j in 1, 2, 
, n, provided �kj

� 0.
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Figure 1. Illustration of the dual algorithm. The
diagram efficiently enumerates the candidate
solutions.
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Because m � n2, we can execute the sorting
procedure in step 0 in O(n2log n) time. To exe-
cute step 1 more efficiently, we use the observa-
tion that we can obtain the ordering obtained for
k = b + 1 in step 1b from the ordering for k = b by
an inversion (that is, by inverting the order of
two adjacent points in the ordering provided by
k = b). This is true because the �j coordinates are
already sorted in nondecreasing order. Hence,
there’s no need to explicitly execute steps 1a and
1b for k > 0. In this way, we can execute step 1 in
O(n2) time. The bulk of the computational
complexity thus lies in step 0, which takes
O(n2log(n)).

(More details on the model and solution algo-
rithm appear elsewhere.9–11)

Model with Unreliable Supply
Except for random demands from customers, other
uncertain factors exist in a supply-chain network,
such as supplier yields and delivery reliability. Ig-
noring these uncertain factors when designing sup-
ply chains can result in inefficient systems. In a
recent work, my student and I discussed a supply-
chain design model that considers uncertain factors
other than demand.12

Specifically, we considered the following mul-
tiperiod problem: in each period, multiple retail-
ers order a specific product from a supplier, and
the supplier ships that product to intermediate fa-
cilities selected from a set of candidate locations.
Distributors can perform some assembly and
packaging activities to satisfy orders from differ-
ent retailers. Due to a certain service require-
ment, some amount of final product inventory
must be kept in these facilities and be ready for
delivery to retailers at the beginning of each pe-
riod. (We assume that more than one facility can
serve any retailer.) However, the amount of final
product delivered on time to a retailer might not
equal the amount this retailer requests from the
supplier because of the quality issues resulting
from different production and assembly capabil-
ities in different facilities, mistakes made during
assembly and packaging operations, the weather,
or other factors that can impact on-time delivery
from facilities to retailers. Decision makers must
consider all these unreliabilities when designing
a supply chain.

We modeled the amount of goods delivered
from a facility to a retailer by the product of this re-
tailer’s order quantity and a random variable asso-
ciated with this facility, which is called the reliability
coefficient. This method is prevalent in the random
yield literature.12,13

Model Formulation
In our previous work, we also considered facility
location, working inventory, and safety stock costs
at facilities as well as the penalty and transporta-
tion costs associated with retailers.12 Given the re-
tail price of the product at each retailer, our
model’s objective is to maximize the expected an-
nual profit. We define the following additional no-
tation for this problem:

� c, the purchasing price from the supplier per unit
of product;

• Rj, the reliability coefficient associated with fa-
cility j, j � J, which is a random variable between
0 and 1 (let �j = E(Rj) and );

• pi, the retail price at retailer i per unit of product,
i � I;

• �i, the penalty cost of lost good will at retailer i
per unit of product, i � I; and

• vi, the salvage value at retailer i per unit of prod-
uct, i � I.

The decision variables include

• Xj, 

and
• Qij, the order quantity at facility j � J from re-

tailer i � I in each period. (We assume that the
order quantity from retailer i to facility j is the
same in each period.)

Let X denote the 1 � m matrix (Xj, j � J) and Q
denote the n � m matrix (Qij, i � I, j � J). RjQij rep-
resents the actual quantity retailer i receives from
facility j in each period if retailer i orders Qij from
facility j, and the reliability coefficient associated
with facility j is Rj.

We assume that open facilities only deliver prod-
ucts to retailers at the beginning of every period
and that each retailer acts like a newsboy in the
newsboy problem and maintains only a minimal
amount of inventory. (In the newsboy problem,
which is a famous stochastic inventory control
problem, we can determine the optimal order
quantity if only one order can be placed before ac-
tual demand is realized,  given a known stochastic
distribution for a product’s demand.) We can there-
fore ignore the holding cost of the retailers’ inven-
tory in the integrated model.

We formulate retailer i’s (i � I) inventory prob-
lem as a classic newsboy problem.14

Maximize

1
0

facility is open
otherwise

j J∈⎧
⎨
⎩

τ j jVar R2 = ( )
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subject to Qij � 0 j � J.

Integrated Model
We assume that the per-unit purchase and trans-
portation costs are based on the quantity ordered,
not the quantity actually received by the retailers.12

Based on this assumption, we formulate problem P.

Maximize

subject to i � I, j � J

Qij � 0 i � I, j � J

Xj � {0, 1} j � J,

where 

The objective here is to maximize the entire sys-
tem’s expected annual profit including all facilities
and retailers. In the objective function, the first term
represents the facility location cost for opening fa-
cilities, and the second term is the annual purchas-
ing cost from the supplier. The third and forth
terms represent the working inventory and safety
stock costs associated with each facility, respectively.
The last term is the profit earned for the retailers.

The first constraint stipulates that retailers can
only order from open facilities. We use an expo-
nential function to formulate this restriction in-
stead of other commonly used methods such as the
big-M method because of the exponential func-

tion’s quick convergence property. (Using the big-
M method, we would model the constraint as Qij <=
M.Xj, where M is a big constant.) We use the pos-
itive constant � in the first constraint to expedite
the convergence.

Let (X*, Q*) denote the optimal solution to
problem P. Because problem P is a highly nonlin-
ear and mixed-integer optimization problem, with
neither a convex nor a concave objective function,
it’s difficult to solve directly using any standard al-
gorithm. We first study the relationship between
problem P and its Lagrangian dual problem by re-
laxing the first constraint.12 Here’s problem LR:

subject to

Qij � 0 i � I, j � J

Xj � {0, 1} j � J,

Let � denote the n � m matrix (	ij, i � I, j � J), and
rewrite the objective function of problem LR as

Because X and Q are independent in problem LR,
we can determine the optimal solutions for X and Q
separately. Because Xj � {0, 1}, ∀j � J, we can directly
determine its optimal solution using its correspond-
ing coefficient, –fj + 	i�I	ij. If the coefficient of Xj is
positive, then Xj = 1; if it’s negative, Xj = 0. If the co-
efficient of Xj equals 0, we use the following rule to
get a feasible solution: Xj = 0 when Qij = 0, and Xj = 1;
otherwise, ∀i � I. In a previous work, we proposed
an algorithm12 based on the bisection search and the
outer approximation algorithm15,16 and showed that
it’s more efficient than the outer approximation al-
gorithm when applied to this problem.

Parameter Uncertainty
All the models I’ve just discussed assume that the
decision maker knows the demand parameters—
that is, the mean �i and the standard deviation 
i of
retailer i’s demand. Larry Snyder, Mark Daskin,
and C.P. Teo17 presented a stochastic version of the
model in the “Basic Model Formulation” section
that explicitly handles parameter uncertainty by de-
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scribing parameters via discrete scenarios, each
with a specified probability of occurrence. The goal
is to choose DC locations, assign retailers to DCs,
and set inventory levels at DCs to minimize the to-
tal system-wide cost. To model this problem, we
need to define the following additional notation: S
is the set of scenarios indexed by s.

The parameters include

� �is, the mean daily demand at retailer i in sce-
nario s for i � I, s � S;

• , the variance of daily demand at retailer i in
scenario s for i � I, s � S;

• dijs, the per-unit cost to ship from DC j to retailer
i in scenario s for i � I, j � J, s � S; and

• qs, the probability that scenario s occurs for s � S.

The decision variables include

• xj := 1, if j is selected as a facility location, but 0
otherwise for each j � J, and

• yijs := 1, if retailer i � I is served by DC j � J in
scenario s � S but 0 otherwise.

Now we can model this problem as follows. Min-
imize

,

which is subject to

for each i � I, s � S

Yijs – Xj � 0 for each i � I, j � J, s � S

Yij � {0, 1} for each i � I, j � J, s � S

Xj � {0, 1} for each j � J,

where

q = �hz� .

The authors also presented a Lagrangian-
relaxation-based solution algorithm for this model.18

They showed that the Lagrangian subproblem is a
nonlinear integer program, but we can solve it by us-
ing a low-order polynomial algorithm. The authors

also presented quantitative and qualitative computa-
tional results on problems with up to 150 nodes and
nine scenarios, and described both algorithms’ per-
formance and solution behavior as key parameters
changed. One of their major findings was that the
stochastic (or min-expected-cost) solutions and the
individual scenario solutions differed substantially in
their choices of DC locations. This suggests that
each of the single-scenario solutions would perform
poorly in long-run expected cost. Furthermore, they
observed that implementing the stochastic solution
would entail roughly 8 percent regret on average and
nearly 25 percent regret in the worst case. (The re-
gret of a scenario is the difference [absolute or per-
centage] between the cost of the chosen solution
under a given scenario and the cost of the optimal so-
lution for that scenario.) Finally, they noted that, on
average, half the retailers were assigned to different
DCs in different scenarios, indicating the value of let-
ting retailer assignments was scenario-dependent.

The algorithms I’ve reviewed here can
also apply to a range of other concave
cost-minimization problems. I believe
the field offers many interesting future

research problems. The “Basic Model Formula-
tion” section in this article, for example, uses direct
shipping to estimate the distribution cost, but a
more realistic modeling of the vehicle routing cost
could provide more valuable information on the
benefit of integrating decisions from different lev-
els.19 Decision makers must also consider other im-
portant factors when designing a supply chain, such
as exchange rates, production scheduling require-
ments, sale prices, sourcing flexibility, and import
tariffs. In particular, future research related to ro-
bustness and risk management is important. Other
disciplines such as financial engineering offer some
risk-management tools, but the question is how to
apply them to supply-chain design problems.

One of the first papers along this line20 applied
the conditional value-at-risk (CVaR) idea21 to a lo-
cation model. CVaR approximately equals the av-
erage of the worst-case � percent scenarios. The
model minimizes the expected regret with respect
to an endogenously selected subset of worst-case
scenarios with a collective probability of occurrence
that is at most 1 – �. This model, the �-reliable
mean-excess regret model, demonstrated significant
improvements over the �-reliable p-median mini-
max regret model in numerical tests. In addition,
the paper’s authors presented a heuristic that effi-
ciently solves the �-reliable p-median minimax re-
gret model by solving a series of mean-excess
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subproblems. My colleagues and I plan to apply the
CVaR concept to the supply-chain design models I
describe here in this article.

Unlike the classical facility location models that
implicitly assume facilities will never fail, Snyder and
Daskin22 proposed location models in which facili-
ties do fail from time to time due to poor weather,
disasters, changes of ownership, or other factors.
They applied a reliability concept to the median and
uncapacitated facility location problems and pre-
sented an optimal Lagrangian relaxation algorithm.
My colleagues and I23 have proposed an approxima-
tion algorithm for the Snyder and Daskin models22

and a worst-case bound for the algorithm. We also
derived a model that deals with the more general
case in which each facility has a different probabil-
ity of failing. It would be interesting to apply the
same reliability concept to the supply-chain design
models I review in this article.
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