European Journal of Operational Research 196 (2009) 688-696

s
UROPEAN JOURNAL OF
PERATIONAL HESEARCH

et

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor ‘—-——.-—~

Innovative Applications of O.R.

Multi-commodity supply network planning in the forest supply chain

Satyaveer S. Chauhan?, Jean-Marc Frayret®*, Luc LeBel ©

2 Concordia University, Montreal, Quebec, Canada

b Ecole polytechnique de Montreal, Quebec, Canada G1K7P4
€Faculte de foresterie et de geomatique, Universite Laval, Quebec, Canada

ARTICLE INFO

Article history:

Received 13 April 2005
Accepted 14 March 2008
Available online 26 March 2008

Keywords:

Supply planning

Integer programming

Dynamic programming
Branch-and-price

Cut-to-length timber procurement

ABSTRACT

We consider in this paper a two echelon timber procurement system in which the first echelon consists of
multiple harvesting blocks and the second echelon consists of multiple mills (e.g., sawmills), both distrib-
uted geographically. Demand is put forward by mills in the form of volumes of logs of specific length and
species. Due to the impact of log handling and sorting on cut-to-length harvester and forwarder produc-
tivity [Gingras, J.-F., Favreau, ]., 2002. Incidence du triage sur la productivité des systémes par bois tron-
connés. Avantage 3], the harvesting cost per unit volume increases as the number of product variety
harvested per block increases. The overall product allocation problem is a large scale mixed integer pro-
gramming problem with the objective of minimizing combined harvesting and aggregated transportation
costs, under demand satisfaction constraints. A heuristic is first introduced then, an algorithm based on
the branch-and-price approach is proposed for larger scale problems. Experimentations compare solu-
tions found with the heuristic with the corresponding optimal solutions obtained with both Cplex (using
the branch-and-bound approach) and the branch-and-price approach. Results demonstrate the good per-
formance level of the heuristic approach for small scale problems, and of the branch-and-price approach

for large scale problems.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The forest supply chain is very specific and quite different from
the traditional manufacturing supply chains for many reasons
(Martell et al., 1998; Bredstrom et al., 2004; Epstein et al., 1999;
Ronnqvist, 2003). For instance, forest management and fiber sup-
ply planning involves many decision problems ranging from long
term strategic forest management (e.g., forest treatment selection,
main access road building, forest camp building) to tactical plan-
ning (e.g., localization and selection of forest blocks to harvest over
a one year horizon, secondary access road building, on site inven-
tory location selection) to short term harvest operations planning
(e.g., machines allocation to blocks, bucking pattern rules selection,
detailed product allocation to mills). Furthermore, because it is dif-
ficult and costly (whenever possible) to have detailed and accurate
information about supply availability (particularly regarding tree
diameter, taper function, species, diameter and knot internal loca-
tion), forest planning is done in a highly stochastic context where
information quality is rather poor, especially in natural forest. Ro-
bust planning under such uncertainty is thus a challenge that must
be addressed by foresters, although it is still mainly a subject for
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researchers. For instance, Boychuk and Martell (1996) address
the problem of timber supply under risk of fire. Along the same
line, Beaudoin et al. (2007) address plan robustness assessment
taking into account multiple sources of uncertainties related
mainly to supply availability and machine capacity.

In this paper, we propose to address the short term supply net-
work planning problem which is to decide what timber assortment
should be produced in pre-selected blocks in order to fulfill the
short terms needs of many geographically distributed mills. The
remainder of this paper is organized in five sections. The next sec-
tion proposes a literature review of the problems addressed in this
paper. Then, Sections 3 and 4 introduce respectively the problem
and its specific formulation. Section 5 is dedicated to the branch-
and-price approach. Empirical evaluation is then presented in Sec-
tion 6. Finally, a conclusion summarizes the proposed approach
and presents some research perspectives.

2. Literature review

Due to the divergent nature of the cut-to-length harvesting pro-
cess (i.e., trees are broken down into various type of logs), cut-to-
length timber procurement planning must address two classic
problems. The first problem is a multi-commodity supply planning
problem with multiple sources of supply and multiple points of
consumption. Then, because one also must decide how trees
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should be cut into logs of different length, the second problem is
similar to the classical cutting-stock problem. If treated sequen-
tially, not all supply plans are feasible because the heterogeneous
nature of the forest and trees obviously constraint the supply vol-
ume and the type of logs that can actually be harvested. For in-
stance, if the supply planning decision does not take into account
the diameter distribution of trees, it is possible that the resulting
supply plan proposes to cut long type of log when trees diameter
are too small to permit such a mix of products. Consequently, these
decisions should be somehow coordinated, if not taken simulta-
neously. It is typically a problem of integrated process planning
and operation planning in a context of divergent transformation
process.

Multi-commodity supply network planning problems have
been known and studied by many authors. Typically, in the mul-
ti-commodity distribution problem, a sub-set of plants is identified
from a given set in order to satisfy the demand of a list of custom-
ers for one or more commodities. This kind of problems is usually
characterized by a set of costs (linear or non-linear), including
transportation, production and a fixed cost of choosing a particular
plant. The problem becomes complex when there are capacity con-
straints associated with plants. Krarup and Pruzan (1983) prove
that the problem is NP hard when plants have limited capacities.
For an in-depth review of multi-commodity supply network plan-
ning literature, the interested reader is referred to Aikens (1985).

Although its finality is similar, the problem addressed in this
paper is quite different from the classical multi-commodity distri-
bution problem. It is different in the sense that there is no fixed
cost for choosing any particular block to harvest. Instead, a variable
production cost depends upon the number of different product
types to produce in each block (see Fig. 1).

Although we are not addressing the cutting-stock problem (i.e.,
CSP) in this paper, we provide a selection of references on similar
problems. There are several variant of CSP treated by several authors
for several different context. Oliver (2002) addresses the one-
dimensional cutting-stock problem by proposing linear program-
ming models and approaches based on column generation decom-
position. Along the same line, Umetani et al. (2003) develop an
approach for minimizing the number of patterns used for producing
a specific mix of products. Also, Antonio et al. (1999) proposed two
methods based on dynamic programming to address a large spec-
trum of industrial cutting-stock problems. For the cutting-stock
problem involved in forest operations planning, also referred to as
the forest-level bucking optimization problem, the reader is partic-
ularly referred to Arce et al. (2002) and Laroze (1999).

In the cut-to-length setting, addressed in this paper, trees are
cross-cut directly in the forest and timber (i.e. logs of various sizes)
is supplied to different mills located sometimes far from the forest.
Full length stems are thus cross-cut into logs of different sizes

N+3 product-mix

— —— N+2 product-mix -2
........... N+1 product-mix

- — = N product-mix T

Harvesting cost
\

Total quantity (all products)

Fig. 1. Harvesting scenarios.

according to the mills demand (i.e., demand-oriented bucking
selection problem). In this process, two costs play an important
role: (i) the cost of harvesting (which includes bucking, handling,
and sorting); and (ii) the cost of transportation of the timber to
the mills. Because the introduction of a new product type (i.e.,
log of a specific length and specie) to separate at the stump in
the final felling reduces harvester productivity by 1-4% and for-
warder productivity by 3-7% (Brunberg and Arlinger, 2001; Ging-
ras and Favreau, 2002), harvesting cost, in each block, is a
function of the product-mix and the volume harvested. Given that
blocks and mills are geographically distributed, there is an oppor-
tunity to reduce mills procurement cost by synchronizing bucking
and transportation decisions to decide at the same time what to
produce in each block and what to transport to each mill. In Arce
et al. (2002) and Laroze (1999), the objective function of the for-
est-level bucking optimization problem is to maximize the net
profit of using specific bucking patterns on trees of specific stands
and classes. In these papers, net profit is the maximum of the sum
of the profit per stem using the bucking patterns that satisfy an
aggregated demand. In other words, demand is only known per
product or market type (e.g., export logs, saw logs, pulp logs) and
is not segregated by location. Therefore, because net profit is a
function of transportation cost and distance between mills, blocks
should affect the selection of bucking patterns whenever demand
is known as a mix of specific volumes of products per mill to sup-
ply. This justifies the need to solve the supply network planning
problem taking transportation and harvesting costs into
consideration.

This type of complex problem can be formulated as a mixed
integer programming (MIP) problem because the cost of harvesting
is a non-continuous linear function of the number of product types
to harvest. The difficulty to solve this type of problem is linked to
the combinatorial complexity of the problem. The solution space
indeed increases exponentially as the problem size increases.

A long body of knowledge deals with a variety of MIP problems,
which constitute a subclass of combinatorial optimization prob-
lems (Hans, 2001). Many problem specific algorithms exist for
finding feasible solutions or even optimal solutions. Three basic
methods, branch-and-bound (Mitten, 1970), Cutting plane algo-
rithm, and Dynamic programming are widely used for solving such
problems (Winston, 1993; Murty, 1988; Nemhauser and Wolsey,
1988). Sometimes these methods are used in conjunction with oth-
ers. For example, when cutting plane method is used with branch-
and-bound, the technique is known as branch-and-cut algorithms
(Hoffman and Padberg, 1985), or when column generation (Dant-
zig and Wolfe, 1960) is used in conjunction with branch-and-
bound, it is referred to as branch-and-price (Vance et al., 1994).
The algorithms using branch-and-bound require good starting
bound which is usually obtained by LP relaxations. Lagrangian
relaxation (Geoffrion, 1974; Fisher, 1985) is one of the popular ap-
proaches to obtain such a good bound.

Solving combinatorial optimization problems requires a trade-
off between computational time and quality of the solution. In this
paper we present a heuristic approach in order to quickly find a
good solution, which can be used as an upper bound for the
branch-and-bound algorithm developed to reach the optimal
solution.

3. General problem introduction

Because of the inherent complexity of the problem introduced
in the previous section (i.e., a combined problem of multi-com-
modity supply network planning and forest-level bucking optimi-
zation), we propose to decompose it into two inter-related
problems to be solved iteratively until a solution is reached. The
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theoretical framework presented in Schneeweiss (2003) is used
here to model the proposed planning process (see Fig. 2). In brief,
Schneeweiss models a complex planning problem by decomposing
itinto a top (i.e., an aggregated decision problem such as the capac-
ity planning of multiple facilities or a complex production system)
and a base level (i.e., a more detailed decision planning such as the
operations planning for a short time horizon) problems. Because
the base level problem constraints and/or contribute to the objec-
tive of the top level problem, the top level must be able to ade-
quately anticipate the influence the base level might have on the
top level objective if a particular decision (i.e., top level instruction)
is taken. To do so, the top level possesses some form of anticipation
function of the base level. Schneeweiss (2003) identifies four gen-
eric types of such functions: perfect; approximate explicit reactive;
implicit reactive; and non-reactive.

More specifically, in the context of our problem, the top level
represents an extended version of the classic multi-commodity
supply network planning problem that takes into account the
product-mix dependent production cost. Because taking into ac-
count at this planning level all the details about tree diameter dis-
tribution and taper function would result in an even larger scale
problem to solve, these parameters are only modeled as aggregated
available fiber volume per species and block. Furthermore, at this
level no restriction regarding the product-mix to be harvested is
considered. In other words, we consider that the selection of par-
ticular bucking pattern rules (defined here as a set of bucking pat-
terns specified for each particular class of tree diameter) does not
constraint the mix of product that can be produced. Indeed, many
sets of such rules can generate the same product mix, although the
resulting resource utilization efficiency may differ from one set of
rules to the other. From a modeling perspective, this form of antic-
ipation of the base level is non-reactive as it is not influenced by
the instruction of the top level. In Schneeweiss (2003) terminology,
this type of anticipation is called non-reactive because the top level
is not explicitly aware of the objective function of the base level.

Set of blocks to
be harvested in
period t
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Furthermore, only general features of the base level, such as the
aggregated supply availabilities, are considered. This approach
does not guaranty that the instructions of the top level (i.e., a ten-
tative supply planning solutions of the top level) will be feasible
(i.e., there is at least one set of bucking pattern rules that satisfies
the top level instruction). That is why the base level aims at finding
for each block independently the best set of bucking pattern rules,
also called the reaction of the base level, that satisfies the produc-
tion plan (i.e., target volumes of certain products type for each
block) of the top level taking into account detailed information
about tree diameters distribution and taper function while mini-
mizing resource utilization. The base level consequently consists
in many independent bucking decision sub-systems. Due to the
non-reactive nature of the anticipation, the instruction of the top
level may not be always feasible because of an overestimation of
resource availability. This is why, once the base level reaction is
completely computed for each block, the planning process consist
of analyzing at this stage whether the overall supply plan remains
feasible or not. If not, the aggregated availability must be adjusted
for each block (i.e., increased if availability remains, or decreased in
case of local un feasibility) in order to best match the base level
reaction. Then, the top level can compute another supply plan that
takes into account the new resource availability constraints. This
iterative process continues until a feasible solution is found or
mills demand must be adjusted.

Within this overall iterative planning process, this paper fo-
cuses on the top level normative decision problem. More specifi-
cally, the problem we propose to address is a single-period
multi-commodity supply planning problem with multiple sources
of supply (i.e., blocks to be harvested) and multiple points of con-
sumption (i.e., mills) and with product-mix dependent production
cost. In this particular setting, blocks are completely harvested (i.e.
no partial harvesting) during the planning period considered. The
selection of the blocks to be harvested during this period to satisfy
mills demand is part of another decision module that is not

Machine-block
allocations for
period t

N

Mills’ demand
for period t

/

Top level: identify for each block to be

Non-reactive anticipation of the base
level: maximum aggregated availability
of fiber in each block to harvest

Volume/block-mill
allocation for period t

harvested the products (i.e., logs of
specific length and specie) that should be
produced and their destination (i.e., mill)

r

T

LN

Top level decision model. normative

Volume/block

Reaction of the base level: harvested

volume of each log type for each block \.| |‘/ each log type requested to each block

r

availability anticipation
for period t
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objective function and constraints

Instruction of the top level: volume of

Bucking pattem rules
selection for block 1
and period ¢

Bucking pattern rules
selection for block 2
and period t
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selection for block H
and period ¢

—~

4

Bucking patterns and
(volume/block)-milf
allocation for period t

L Base level: select independently for each

block to be harvested the bucking pattern
rules that best satisfy the production plan
of the top level given detailed information
about tree diameters distribution per block

Fig. 2. Supply planning.
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described in this paper. The interested reader is referred to Beaud-
oin et al. (2007) for more information.

Concerning demand, we consider that the supply needs of the
mills are known and specified in terms of volume (i.e., m?) of logs
of different sizes in length, minimum small end diameter (SED)
and species. As mentioned earlier, we assume that all blocks are
capable of providing all length of products in limited amounts.
In other words, the aggregated available volume for each species
in each block is known and adjusted iteratively if necessary. In a
context where detailed information about tree diameter distribu-
tion is not known in detail, using aggregated information is the
easiest way to anticipate what could be harvested from specific
blocks. The obvious limit of this approach is that the minimum
SED allowed by mills for each product type makes it more or less
difficult to realize every supply plan (i.e., find a set of bucking
pattern rules). For instance, producing a single product type in
a block, while having a rather large allowed minimum SED for
that product type (which is typical for long length log type), gen-
erally results in an artificially reduced resource availability (be-
cause the part of the tree above the minimum SED is not
available to produce logs). That is why, the introduction of an-
other product type in that block with a smaller minimum allowed
SED may increase resource availability (and production cost as
well). A trade-off between demand satisfaction and production
cost is then necessary. Furthermore, although aggregated infor-
mation about resource availability is often the only source of
information available to foresters, more and more companies
show interest in having more detailed information in order to
better adjust their harvesting operations to their rapidly changing
needs.

4. Specific problem formulation

The objective of the problem we address in this paper is to de-
cide the mix and volume of product that should be harvested in
each block so as to satisfy the demand of each mill at the mini-
mum combined cost of harvesting and transportation to the mills.
As mentioned earlier, the unit harvesting cost per block increases
with the number of product types to be produced in the block.
Consequently, we assume in this model that harvesting cost de-
pends upon the number of product types produced in a block,
as well as the volume of production for each product type. Next,
transportation cost is linear with respect to the volume to be
transported and depends upon the distance between blocks and
mills. Given these specifications, the MIP formulation of this
problem follows:

H set of harvesting blocks

S set of mills

L set of log/product types

K set of species

h,s, I,k indexes of blocks, mills, logs, and tree species, respectively
N IL| (maximum number of product types)

X number of logs produced at h, of log I, using species k for

mill s (decision variable) if n product types are produced
in that block

aﬁs unit transportation cost between h and s for log type [
(dollar/m3)

Vﬁ maximum volume of species k available at h (m3)

If, binary indicator: takes value 1 if h produces n product
types; otherwise 0

Z‘l binary indicator: takes value 1 if block h produces log type
I of species k; otherwise 0

Ok | volume of a log type I of species k (m?/log)

bhn unit harvesting cost if n product types are produced at har-
vesting block h (dollar/m3)

digs demand of sawmill s for log type I of species k (m?)

P, Min transportation and production cost

N
Z Z Z Z Z(bh,ﬂ + a‘ﬁs) " Okl 'X;:.I.s.n

n=1 heH keK IleL seS

Subject to

N

Z Z Oyt Xpjon = dies VI€L and (1)
n=1 heH

seSkek.

SN S K .<Z-Iy YheH and ne{l1,2,... N} (2)
keK leL seS

Xesn <Z-Jiy VheH, kek, 3)
lel, seS, ne{l,2,...,N}

Ju=10,1}, 4)
S>> Ju= Y n-I vheH, (5)
keK el nel2,..N

"<1 vheH, (6)
nel2,..N

I"={0,1} VheH and ne{1,2,... N}, (7
S>3 auXf . <Vi vkeK, heH (8)
leL  seS ne{12...N}

X, =>0 VheH, keK, seS and

ne{l1,2,...,N}. )

Constraint (1) stipulates that the total quantity, corresponding
to a particular product type, received by any mill from all harvest-
ing blocks must match the corresponding demand of that product
type. Constraint (2) guarantees that the decision variables corre-
sponding to n-product type takes positive values only if the corre-
sponding binary variable Iﬁ is positive. Z is a big number, bigger
than the combined demand. Constraint (3) and (4) state that if
block h is involved in the harvesting of product of type [ and spe-
cies k, then the corresponding binary variable]ﬂ_, should take a po-
sitive value. Constraints (5) to (7) are used to select the appropriate
cost parameters in the objective function. Finally, constraint (8)
corresponds to the resource constraints which indicate that total
harvested volume should not go beyond the aggregated resource
availability.

Problem P is a large MIP problem. The main challenge to solve
it arises from the dependence of one binary variable over others. In
other words, the setting of one binary variable to one (selection of
a particular production scenario) forces all other inter-related bin-
ary variables to become zero, which in turn invalidates the current
set of cost in the objective function, and forces the system to opti-
mize with the new set of parameters. As stated previously, branch-
and-bound approach is required to reach the optimal solution. In
the approach proposed here, we first present an algorithm to find
a good and feasible solution that can be used as an upper bound
for the branch-and-bound algorithm if the optimal solution is of
prime importance.

5. Properties and algorithm

In this section we propose to analyze some of the properties of a
local optimal solution, and develop algorithms to solve the
problem.

5.1. Optimal algorithm for a special case

Let us consider a case of single sawmill and multiple harvesting
blocks such that the transportation cost is either negligible compare
to harvesting costs or the same for all blocks. Let us also assume that
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the available volume of fiber in each block is sufficient to meet the
mills’ total demand. In the above setting we can solve the problem
to optimality using the algorithm described below. A property of
such model is that the cost structure is only influenced by the unit
harvesting cost of each block (itself being a function of the number
of product type harvested) and not by the total volume harvested
in the corresponding blocks. Indeed, because of the sufficient re-
source availability in each block, splitting the mills demand for a par-
ticular product type would only results in increasing the unit
production cost of at least one block. Furthermore, this unit cost is
only specified for a given product type number in terms of volume
(m?) of harvested fiber and not for a particular product-mix. Conse-
quently the objective becomes to decide how many product types to
produce in each block. This special case of the problem can be solved
using an adaptation of an algorithm, based on dynamic program-
ming and presented in Chauhan et al. (2002).

Let us define a function ¢(h, a) where h is the block index and a
denotes the number of product type harvested in this block. ¢(h, a)
denotes the minimum cost of harvesting a product types in blocks 1
to h. For example ¢(3, 8) denotes the cost of harvesting eight prod-
uct types from the first three (indexed 1, 2 and 3) blocks. We also
define X[h, a] a two-dimension array which denotes the number of
product types harvested in block h if a total of a product types are
to be harvested in the first h harvesting blocks (i.e., from 1 to h).

The proposed recursive algorithm follows:

Algorithm 1

1. Set ¢(h,0)=0forh=1,2... H.
2. Set ¢(1,a) =a.b;, and X[1, a]=afora=1,2...,A.
3. Forh=2,....H
Fora=1,2,...,A
i. Set U= Minjcyea{p(h —1,a — X) +X - byy}.
ii. If ¢(h—1,a)<U then set ¢(h,a)=¢(h—1,a) and
X[h,a] = 0. else
iii. Set ¢(h,a) =U and X[h,a] =x
In this case X[h, a] contains the x for which U is found
4. Stop.

5.1.1. Explanation

Let us consider that we are dealing with the step where h = 3. At
this step, the values of all ¢(2,a) for a=1,2,...,A have already
been calculated. Now at the step (i) of the algorithm, the cost of
harvesting a =1,2,...,A products from the first three blocks is
computed. Assume a = 5, we want to know how much it costs to
produce five product types using the first three harvesting blocks
(since h = 3). The available options are to produce either one prod-
uct type in the third block and four product types in the first two
blocks, or two product types in the third block and three product
types in the first two, and so on. Since the harvesting cost of all
combinations of producing 1, 2,...,5 product types using the first
two blocks is already calculated, the cost of producing five product
types using the first three blocks is easy to compute. At this step, it
is possible that harvesting all five product types from the first two
blocks is cheaper than sharing the product types among three
blocks. If it is the case, at step (ii), X[3, 5] is set to 0. In other words,
it means that the third block produces nothing if the objective was
to harvest five product types using the first three blocks. At step
(iii), the cost is set in X[h,a] if the third block produces at least
one product type.

5.1.2. Example

In order to help the reader better understand this procedure, let
us consider the following example. Assume there are three har-
vesting blocks and three product types, and the harvesting costs

are as follows: by; =05, by, =06, b;3=07, by, =0.56,
bys = 0.6, by3 = 0.71, bs; = 0.6, b3, = 0.62, b33 = 0.65.

Step 1:

¢(1,0) = 0,¢(2,0) = 0¢(3,0) = 0.

Step 2:

¢(1,1)=0.5, #(1,2)=1.2, ¢(1,3)=2.1.
X[1,1]1=1, X[1,2]=2, X[1,3]=3
Step 3:

(h=2,a=1), ¢(2,1)=0.5, X[2,1]=0
(h=2,a=2),¢(2,2)=1.06, X[2,2]=1
(h=2,a=3), ¢(2,3) =17, X[2,3]=2
(h=3,a=1), ¢(3,1)=0.5, X[3,1]=0
(h=3,a=2), ¢3,2)=1.06, X[3,2]=0
(h=3,a=3), ¢(3,3) =166, X3,3]=1

In this example we want to know how many product types to
produce in each block. Since our objective is to harvest three prod-
uct types using three blocks, X[3, 3] shows that it is optimal to har-
vest only one product in block three. Then, there are two products
remaining and two blocks. X[2,2] shows that it is optimal to har-
vest only one product in block 2. Once again, there is 1 product
remaining and 1 block. X[1,1] proposes to harvest only one product
in block 1.

Now, assume that we want to harvest three products using the
first two blocks. Then X[2, 3], proposes to harvest two products in
block 2 and 1 product in block 1.

The computation of each ¢(p,a) requires A+ 1 steps. Conse-
quently, the total steps involve in the algorithm are
S SH (A+1)orA-H-(A+1) to find the optimal value of the
special case problem.

The above algorithm identifies how many product types
should be harvested from each block. The next step is to identify
specific product types and corresponding volume to be harvested
in these blocks. This step is rather straight forward. To do so, we
first sort the blocks selected for harvesting in increasing order of
harvesting cost (note that the above algorithm will tell how many
product types to be harvested from each block and therefore the
harvesting cost for the block). Next we sort the product types in
decreasing order of demanded volume. Finally, we select the first
block on the list and allocate as many number of product types
from the product type list as it is selected for that block. Then,
we take the second block and do the same until no blocks are left
in the block list.

5.2. General case

For the study of the general case we now drop the index n,
which correspond to the cost type, from xf,, .. Now the following
holds for the general case.

Proposition 1. There exists an optimal solution in which, for any mill
s and for a given product type | of a specific species k

Xl € {0}u{dys} for heE(s), (10)

where E(s) c {H} or

Xis # {0y U{dis) for he{1,2,... H} \E(s). (11)
But in this case Vi — 3", s> ot - Xy < ot - Xy for h € H\ E(s)

except may be for at most one h.

Proof. Let X = {x],.},h € H, s € S be a feasible solution to the prob-
lem. Assume that the supply corresponding to block hq,h; € H,
respectively x;'; and x;7, do not verify the conditions of Proposi-
tion 1 for sawmill s. In other words
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xz.ll.s ¢ {O} u {dl‘lc,s} and V;:l

h
- Z Z “’<~I‘Xl<.ll.s = o)

seS  lel
and

Xs #{0} Uf{dist and Ve =37 S o xi o > o
seS lel
Assume that the cost per m® of harvesting and transporting
from h; is higher than the cost from h,, we have

(b +a2) = (bpyn + ai?). (12)

S — Mi hy hy hy
Now choose & =Min(V,2 =3 o> i om - X7, X)) and set

hy  _ yha h oy S :
Vs = Xas + 00 Yihs = X5 — 0- Now define the new solution set

Y = {y}, .}, by replacing in X, x| by y}' . and X%, by y;3.. The new
solution obtained (i) remains feasible because the harvested vol-
ume is only switched from one block to the other with respect to
availability constraints; (ii) the harvesting cost function corre-
sponding to block h, remains the same as before since the above
mechanism do not add any new product type in forest h; (i.e., only
a volume of a product type and species already harvested is added);
(iii) the number of product types harvested in block h; as well as the
total harvesting cost of the block may reduce by one unit if § = fo,_S.

Consequently, from the inequality (12) and the fact that costs
are positive (b, 5 +a1) - X + (b, o+ a[2) - X, = (byyn + 4l
yﬁ’,‘s +(bpyn + af;) . yz_z,_sf The above inequality shows that any
solution not verifying the conditions of Proposition 1 cannot be
the optimal solution because there is potentially at least one better

solution. This completes the proof. O

Now, if two or more sawmills (for a particular product) are sup-
plied from two or more blocks, then the satisfaction of Proposition
1 does not guaranty that the solution is optimal, especially if the
condition of the Proposition 2 is satisfied.

Proposition 2. Assume that the conditions of Proposition 1 apply,
then ifxif,?q ¢{0,dxq} withp € {hy,h,} CHand q € {s1,5,} CS, then
the solution is not optimal.

Proof. Let X be a set of feasible solutions which does not satisfy the
conditions of Proposition 2. For any pair of harvesting blocks h;, h,
and sawmills sq, s,, either of the following must hold

(bhl.n,,] + aﬂl) + (bhz-,nhz + a?;;)

< (bhlﬂh1 +a?;2) + <bh2~"h2 + a?;)’ (13)
or,
(bh1~”h] + a?;) + (bhz-”h2 + a?;)

= <bh1-nhl + (17_;2> + (thv”hZ + (1;21). (14)

Now, define &; = Min(x}}, X7, ) and &, = Min(x}, . x3,). If
(13) holds (the opposite is true if (14) holds) then define a new
solution set Y same as set X and set the following variables as fol-
I?IWS: y;:llc.m = X?;(.S1 + 6]' y?i.sz = X:Izcsz + 51’ y?}(,sz = x?llc,sz - 51 and
yl.i.ﬁ = Xl.lzc.sl — o

The new solution Y remains feasible because the harvested
volume is only switched from one block to the other with respect
to availability constraints. Also, the above procedure does not add
any new product type to any block and may even reduce the
number of product types from a block. In the resulting solution, the
harvesting cost function associated with the blocks either reduces
or remains the same. Even if the harvesting cost remains the same
for all blocks, the total cost corresponding to the new solution
reduces according to relation (13). O

5.3. Scenario improvement heuristic

The Propositions 1 and 2 provide necessary conditions for a solu-
tion to be optimal. In this section we develop a heuristic approach

which always satisfies the above conditions and gradually improve
the solution. The idea is to start with a given scenario (i.e. chosen
product-mix for each block) and improve it (i.e. change the prod-
uct-mix for one or more block) in order to reduce the overall cost.
Once harvesting scenario is set the problem becomes a simple lin-
ear programming problem and because of the structure we can
use well-known transportation simplex algorithm (by balancing
the demand and supply) to find an optimal solution for the given
harvesting scenario. The steps of the algorithm are as follows:

1. Introduce the harvesting cost of each block associated with the
current solution (based on current product-mix).

2. Compute the reduced cost corresponding to all non-basic vari-
ables for the current solution. Select the M variables with high-
est reduced cost. The value of M depends upon the user. For a
given set of costs, the problem is a linear programming problem
from which it is easy to calculate dual cost vector and reduced
costs.

3. For each M decision variable, using Proposition 1 and 2, we
check if the cost can improve by tentatively introducing the
variables into the basis. Then we calculate the real cost (based
on the real allocation) for each M cases.

4. We select the variable which improves the cost the most and
introduce it in the basis. If this solution is better than the best
solution we obtained so far, we replace the best solution by the
current solution. If the cost does not improve for all the selected
M non-basic variables, then we stop, otherwise go to step 1.

In the algorithm we check M number of non-basic variables be-
cause the cost does not remain the same when we change the
number of product type to be harvested (i.e., as the allocation
changes, the harvesting cost may also change). If the cost were
constant, then selecting a variable with the positive reduced cost
would definitely improve the solution (simplex method). We
choose M variables to investigate based on the experience from
the experimentation.

The above approach is good to get a good starting upper bound
for the problem. Since, the algorithm does not involve binary vari-
ables, the total number of variables required by the algorithm are
H =« (S« K« P+ K) whereas the number of ordinary variables re-
quired in the BIP formulation is K « P (H * S« K « P) and the num-
ber of binary variables are H « (2 x P x K). The second advantage of
the algorithm is that the solution is always feasible whereas the
solution obtained by solving the relaxed problem of Pj, to get an
initial lower bound, may not be feasible.

For real instances of the problem, the algorithm performed very
well because the harvesting and transportation costs generally dif-
fer significantly from one forest to other. If these costs are very
close to each other, then the algorithm performance tends to dete-
riorate. This motivated us to develop another approach which is
capable of providing better results. In the next section we propose
branch-and-price approach for the exact solution. As mentioned
before, this level of the problem has missing information about
the type of patterns used in the forest (which depends upon trees
distribution in the forest, taper profile, the demand assigned to the
block, etc.). In this approach we assume that a particular product
must be supplied to a sawmill by a single block. In other words
we assume that the capacity of the block is sufficient. We will
use the above heuristic to compute the initial starting solution
and the upper bound.

6. Branch-and-price approach

In this section we first propose a different formulation of the
above problem and then discuss the solution approach. We also
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use additional notations to simplify the formulation. Let r denotes
the total number of product types demanded by all sawmills, i.e.,
r={1|dys > 0,le€LkeK,secS}|where| | represent the cardi-
nality of a set. We define the binary vector [B], ; and its compo-
nents by, where these components sequentially represent the
positive value if demand of product type (k,[) for sawmill s is posi-
tive else zero. In other words, each component of B represent a par-
ticular item for a particular sawmill. For instance, if we have two
log lengths, two species and three sawmill then the first compo-
nent of B correspond to d; ; 1, the 2nd correspond to d; >, the 3rd
correspond to d; 11, the 5th correspond to d; ;> and so on.

We similarly define a column vector [X"],,, which represents
the supply for sawmill s from block h. Consequently, each compo-
nent of X represents the supply of a particular item for a given saw-
mill. For example, the 5th component of [X"] will represent supply
of wood type (1,1) (log type 1, species type 1) to sawmill 2 by
block h. The possibility of having several feasible harvesting plans
for each block resulted in several columns (i.e., X") for the corre-
sponding block h. We denote by G" the set of all feasible columns
corresponding to block h. In order to identify each column of G",
we introduce the index i (i.e., X! is ith element of G"). We denote
the components of vector [X/] by Xnij where j € {1,2,...,1}.

Let us define a binary variables z!!, corresponding to each column i
associated with block h. z!' takes a positive value (2! = 1) if the col-
umn, i, is selected or zero otherwise. The cost associated with column
i of block h is denoted by ¢! and is calculated on the production and
supply represented by the column. Since our objective is to select at
most one column for each block, we introduce a convexity constraint
for each block. Let Y" be | H |-elements column vector of Os except
the hth element which is 1. The jth element of Y" is denoted by
Yhij- Consider now the ith column corresponding to block h as being
composed of X and Y and can be denoted by [X?Yﬁ. Using the above
notations we can formulate the problem as follows:

P, Min» " > "¢l 2]

heH jech
Subject to
szh,i.j"z?:bj je{laza"'!r}7 (15)
heH jech
S vwiiZl=1 je{l,2,... H}, heH, (16)
ieGh
Z? € {0,1}. (17)

The objective is to minimize the combined harvesting and
transportation costs. Constraints (15) represent demand satisfac-
tion from combination of sources and (16) force the system to se-
lect only a column (harvesting and supply scenario) for each
block.

The above formulation guarantees the optimal solution only if
set G contains all the feasible columns corresponding to block h.
Generating all the possible columns beforehand for each block
may not be feasible. Therefore, only a limited version of the prob-
lem containing few columns is solved, while new profitable col-
umns are iteratively introduced until the optimal solution is
found. Since problem P, is a binary integer programming model,
to solve it, we first optimize its relaxed version (relaxing constrains
(16)) and then we use the branch-and-bound strategy to search for
the integer solution. We denote by P,(RM) the restricted and con-
tinuous version of the problem P,.

Letu,, n=1,2,...,r+ | H|, be the dual variables associated with
the current optimal solution of P,(RM). In order to generate a new
column, t, we must solve the following pricing problem:

.
Pr(h) Max» "ty - Xty + Urn - Yoo — C"

n=1

Subject to

Yhen =1 (18)
Z Zdl,k.s Xneaks < Vi ke K (19)
seS  lel

Xnefiks) € 10,1} VkeK, lel, seS, (20)

where f(l, k,s) generate the index according to the following for-
mula. f(l k;s)=(s—1)-L-K+ (k—1)-L+1 The cost c* depends
upon the number of products harvested in h (see Appendix for
the constraints and objective function terms related to c"). At
each iteration we solve Pr(h) for each block and we select the
column corresponding to the highest positive reduced cost. We
introduce the column in G" and solve again the P,(RM). We ter-
minate the column generation algorithm if there is no column
with positive reduced cost. The optimal solution of P,(RM) may
not have all z! as integer. We use the branch-and-bound
approach at this stage to search for an integer solution. In our
approach we use depth first search strategy from left to
right.

The idea of introducing z!' is to constraint the system to have
only single column as additional columns may not represent the
same harvesting scenario (i.e. each column represent a harvesting
scenario with specific harvesting cost for the entire block). Using
classical branching strategy known as variable branching (i.e.
selecting a column for the left branch-and dropping the same col-
umn for right branch) may create an unbalanced branching tree. In
our approach, we use constraint branching. In other words instead
of fixing (z' = 0) or (z! = 1), we fix x;. In simple terms, we have
two levels of branching. At the first level we branch on product
type i.e. we set that a particular product type is always harvested
in a given block (for the left branch) and the same product is never
harvested (in the block under consideration) for the right branch.
At the second level we assign supply of a product type to a sawmill,
in one branch, and block the supply of the same product for the
same sawmill in the other branch. Note that once we assigned a
particular product to any block in a branch we always count this
product in determining the harvesting cost, even if, in the
branch-and-bound tree, we encounter the null component corre-
spond to the same product type in a newly generated column. Fol-
lowing steps list the criteria we used to identify a product type and
sawmill for branching:

1. Select a column (correspond to a basic variable) having maxi-
mum number of product types in a block such that at least
one product is shared by at least one or more basic columns.
Mathematically, let us define py;,, such that g, =1ifz >0
and x,;; correspond to product type (k,[) is greater than zero,
else ;. = 0,whereh e H, ic G". keK, lelL,iNowiden-
tify a pair i, h; such that

Z Bhy vkl > Z Bhy ikl

k|l k.l

where hy#hy, by, hy € H, iy € G, i, € G, 2" >0, 77 >0.

2. Introduce a constraint in the left branch to harvest the selected
product in h; and a constraint to never harvest the product in h,
for the right branch. Continue the branch-and-price procedure.
If the constraint for the same product type and the same block
already exits then go not next step.

3. Select a sawmill having largest number of columns (basic col-
umns correspond to h;) with positive component correspond
to the selected product type. We refer this sawmill as preferred
sawmill. Introduce a constraint to supply the selected product
type from h; to the preferred sawmill in the left branch-and a
constraint to bloc the supply of the same product type from
h; to the sawmill in the right branch.
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If we do not identify any product type or sawmill then the solu-
tion is integer. For a detailed overview of above approach, other
branching strategies, and useful results reader can consult Savels-
bergh (1997) and Barnhart et al. (1998).

The efficiency of column generation approach depends upon
how effectively we solve the sub-problem. To solve Pr(h) using
integer programming is very costly. Since the sub-problem is deal-
ing with only one block we can develop a fast algorithm to find a
near optimal solution. Let G(k,I) represent a set of indexes of all
x which correspond to product type (k,I). Mathematically:
Gk, l)={f(k,l,s)| s=1,2,...,S}. C(G(k,I)) gives the portion of
cost associated with decision variables in G(k,I) i.e. for a given h
and y

CGUk, D) = > (Bi—bn,) - x.

JjeG(k,l

Now the algorithm is as follows:
Let X" =xj, X3,...,x; is the set of decision variables to store
the optimal solution. Define the sets G(k,[) for all k e K and | € L.

Algorithm 2

1. Set y = 0, and set BestCost = 0.0.

2. Set the y = v + 1 and solve the problem P3 (see Appendix). Let
X' =x!, x},...,x! be the solution.

3. Define G(k,I) for the solution and set counter=0.

4. For k=1 to K, and For [ =1 to L.
(a) Counter = Counter + 1.
(b)  Compute cost[Counter] = C(G(k,I)).

5. Sort the array cost[] in decreasing order and set
sum = Y 7 costli]. We keep in memory the indexes (k, I) corre-
sponding to the first 1,..., y best cost after sorting. We represent
it by (K", 1Y), (P, 1), ..., (k' I").

. If sum < BestCost, stop, else

. Set BestCost=sum.

8. Fori=1,...,% o

(@) Setx; =x!ifje G(k,I). Else
(b) Setx; =0.
9. Go to 2.

N O

6.1. Numerical example

n this section we present experimentation results for both the
heuristic algorithm and the branch-and-price algorithm and com-
pare with the optimal result obtained by Cplex. All the different
problem instances are generated randomly using the following data.
In all the examples, harvesting cost is randomly generated between 2
and 5 such that it should increase as production type increases. Sim-
ilarly demand of each product type varies between 30 and 100,
transportation cost varies between 1.0 and 5.0. In all cases we have
fixed M equal to 250. The algorithms are coded in C++ and imple-
mented on P4 700 MHz computer with 512 MB RAM.

Firstly, in Table 1, we present the computational performance of
Algorithm 2. In all examples, we generated demand between 0 and
500 pieces, production cost for n product type is the sum of ran-
dom number between 1 and 4 and the production cost of n —1
product types. Dual variables are generated between 0 and 70,
transportation cost is generated according to the following for-
mula: 0.1 * (unit product volume) + 0.01 * (index of sawmill). Ten
instances of each problem size is solved. The mean percentage er-
ror and the percentage time gain ([Time taken by MIP — Time taken
by heuristic]/[Time taken by MIP]).

In Table 2, we compare B&P approach with heuristic (scenario
improvement) and Optimal (MIP using Cplex). For small problem

Table 1
Computational performance (Algorithm 2)

Number of Number of Mean Standard Relative time
sawmills product types  percentage deviation saving in using
error of mean algorithm 2
percentage over MIP
error
5 15 2.15736 1.99564 0.68
5 20 2.09111 2.28346 0.84
5 25 3.01229 4.25334 0.85
5 30 1.98382 2.67125 0.98
10 15 3.0955 4.06499 0.86
10 20 0.513287 0.813698 0.93
10 25 2.34493 4.26834 0.95
10 30 0.547781 0.747188 0.99
15 15 2.32249 3.09511 0.92
15 20 0.871089 1.26744 0.95
15 25 2.19865 4.29367 0.97
15 30 0.607191 1.0062 0.99
20 15 1.51891 1.99983 0.95
20 20 1.59909 1.66634 0.97
20 25 1.46996 1.68545 0.98
Table 2
Computational performance
Problem type (forest, MIP Heuristic Branch-and-
sawmill, product) price
1. 2,25 108.53 (0.16)  108.53 (0.078) 108.53
(2.54)
2. 2,25 98 (0.14) 98 (0.079) 98 (1.5)
3. 2,25 106 (0.06) 106 (0.015) 106 (1.42)
4.  2,2,5 105.3 (0.08) 105.3 (0.016) 105.3
(1.687)
5 2,2,5 82.7 (0.01) 82.7 (0.031) 82.7 (0.92)
6. 4,2,5 87.502 (0.19) 87.5(0.062) 87.5 (3.359)
7 4,2,5 111.2 (0.14) 111.2 (0.265) 111.2(2.703)
8 4,2,5 99.8 (0.2) 101.2 (0.062) 99.8 (2.96)
9 4,2,5 92.38 (1.05) 94.98 (0.218) 92.38
(4.062)
10. 4,2,5 106.652 111.8 (0.093) 106.6 (3.4)
(0.19)
11. 4,5,5 259.41 (0.74)  259.41 (0.468) 259.41
(27.4)
12. 4,5,5 214.53 (3.77) 214.53 (0.5) 214.53
(22.92)
13. 4,5,5 290.79 294.06 (0.281) 290.79
(14.95) (24.843)
14. 4,5,5 277.03 277.03 (0.203) 277.03
(10.67) (20.156)
15. 4,5,5 287.94 (1.58) 293.386 (0.234) 287.94
(23.484)
16. 4,5,10 550.57 562.51 (0.718) 552.6
[10.05%] (364.06)
17. 4,5,10 596.47 [8.2%] 634.97 (0.796) 596.43
(385.89)
18. 4,5,10 597.38 644.27 (0.75) 595.7
[7.57%] (466.376)
19. 4,5,10 621.51 631.13 (0.562) 624.508
[6.89%] (444.64)
20. 4,5,10 658.06[9.19%] 686.456 (0.515) 658.06
(412.127)

instances, less than 5 products and up to 4 stands, both MIP and
heuristics performed very well but, Cplex takes less time compared
to B&P. However, as the problem size grows, MIP consumes more
time and memory resources. We can see that for bigger problems
B&P approach outperformed the MIP using Cplex. In the Table 2,
the first data corresponds to the solution obtained by the algorithm
and the figure in bracket represents the time (in seconds) taken by
the algorithm. For problem instances 15 and onwards (Table 2), we
stop the MIP solver after 1000 seconds as beyond this time pro-
gram was unable to continue because of memory limits. In brack-
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ets, we report the optimality gap given by Cplex at the end of
1000 seconds. We also terminate the branch-and-price approach
when the optimality gap is less than or equal to 2.5%.

7. Conclusion

This work presents a problem of multi-commodity supply plan-
ning in the forest product supply chain. An integer programming
formulation describes the complexity of the global problem. A
branch-and-bound algorithm based on column generation ap-
proach is presented. A heuristic approach to find a good feasible
solution in short time which also serves as an upper bound for
the branch-and-bound algorithm is also developed. The approach
is fast and provides a good solution quickly involving much less ef-
fort compare to the corresponding full scale problem formulation.
The relative performance of the both algorithms are presented for
the randomly generated practical size problems.
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Appendix

Here we present the formulation for calculating the cost c"
which is very close to the formulation P;. For notation simplicity
we drop the indexes h and t from X (s and introduce index n
very similar to P; for identifying harvesting cost scenario

= XN: Z Z Z(bh,n + lefs) - Xf(ks)n - Aiks
n=1 keK IleL seS
under following constraints:
Aigs - Xraksyn <Z-Jiy VkeK; lel; ses, (21)
SN Xukgn <Z-In ¥ne1,2,.. N, (22)

leL keK seS

Z Zdl,k.s Xfuksn < Vi, for kek, (23)
leL seS

N

D= T (24)
i=1 keK leL

N

Y on<, (25)
i=1
I, € {0,1}, ne{1,2,...,N}, (26)

Jue{0,1} vkek; lel. (27)

Combining the ¢! function in problem Pr(h) we find that the
cost associated with variable y,,, , is fixed (see the constraint which
set the value 1) and the objective is to maximize the rest of the
objective function. The objective function consist of decision vari-
ables for each scenario ( scenario corresponding to every product
type cost) and the dual variables. Combining the dual variables
with the scenario cost ( transportation cost and the production
cost) we have (us s — a?s — bpn). We use the same expression in
MIP formulation of pricing algorithm.

Let us define B = Uskis) — @, now the problem P3(y) is de-
fined as follows:

P3(x) Max> > "> “(Buis — bny) - Xiels

keK leL  seS

Subject to

dl,k,s Xf(kls) < VZ vk e K, lel (28)
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