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Abstract

The probabilistic traveling salesman problem (PTSP) is an important theoretical and practical topic in the study of stochastic
network problems. It provides researchers with a modeling framework for exploring the stochastic effects in routing problems. This
paper focuses on developing the hybrid scatter search (HSS) by incorporating the nearest neighbor rule (NNR), threshold accepting
(TA) and edge recombination (ER) crossover into a scatter search conceptual framework to solve the PTSP. A set of numerical
experiments were conducted to test the validity of the HSS based on the test problems from Tang and Miller-Hooks’ study. The
numerical results showed that the HSS can effectively solve the PTSP in most of the tested cases in terms of objective function value.
Moreover, the results also indicated that incorporating threshold accepting into the scatter search framework can further increase
the computation efficiency while maintaining solution quality. These findings show the potential of the proposed HSS in solving the
large-scale PTSP.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The probabilistic traveling salesman problem (PTSP), a type of NP-hard problem, is a basic stochastic optimization
problem [1–3]. Due to the fact that the element of uncertainty not only exists, but also significantly affects, the system
performance in many real-world transportation and logistic applications, the results from the PTSP can provide insights
into research into other stochastic combinatorial optimization problems. The PTSP can be used to model many real-
world applications in logistical and transportation planning, such as daily pickup–delivery services with stochastic
demand, job sequencing involving changeover cost [4], design of retrieval sequences in a warehouse or in a cargo
terminal operations [5], meals on wheels in senior citizen services [6], trip-chaining activities [7], and vehicle routing
problem with stochastic demand [8].

The PTSP is an extension of the well-known traveling salesman problem (TSP), which has been extensively studied
in the field of combinatorial optimization. The goal of the TSP is to find the minimum length of a tour to all customers,
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given the distances between all pairs of customers. The objective of the PTSP is to minimize the expected length of
the a priori tour where each customer requires a visit only with a given probability. The a priori tour can be seen as a
template for the visiting sequence of all customers. In a given instance, the customers should be visited based on the
sequence of the a priori tour while the customers who do not need to be visited will simply be skipped. The TSP can
be treated as a special case of the PTSP. The main difference between PTSP and TSP is that in PTSP the probability of
each node being visited is between 0.0 and 1.0 while in TSP the probability of each node being visited is 1.0.

The closed form expressions and asymptotic analysis as well as combinatorial properties for computing the a priori
expected length of any given PTSP tour were first developed by Jaillet [1,4,9]. Computational studies of several heuristic
approaches modified from the TSP (e.g., nearest neighbor, savings approach, spacefilling curve, radical sorting, 1-shift,
2-opt and 3-opt exchanges) were analyzed by Bertsimas et al. [8] , Bertsimas and Howell [10], Bianchi et al. [11], and
Rossi and Gavioli [12]. By using stochastic integer programming formulation, an exact algorithm based on an integer
L-shaped method has been used to solve 50-node instances [13]. To efficiently and effectively solve the large-scale PTSP,
recent studies focus on adopting new algorithmic approaches based on meta-heuristics such as ant colony optimization
(ACO) [14–16], genetic algorithm [17], simulated annealing [18], and threshold accepting (TA) [7]. Lately, scatter
search, a conceptual framework of the population-based evolutionary meta-heuristics optimization method, has been
shown to yield promising outcomes for solving various complicated optimization problems [19–21]. Moreover, several
studies have found that the scatter search performed better than some widely used meta-heuristics such as genetic
algorithm [22–24], simulated annealing [23] and tabu search [25,26]. Therefore, based on a scatter search framework,
this study devises and tests a hybrid optimization procedure for solving the PTSP.

Even though numerous studies have attested to the potential efficacy of scatter searches [19–27], an in-depth review of
the literature revealed that no attempts have yet been made to solve the TSP and PTSP by scatter searches. Furthermore,
despite the fact pioneers in the area have developed the conceptual framework of a scatter search for complicated
optimization problems, the algorithmic procedure involved in each of the proposed components of the scatter search
cannot be generalized to other problem types and needs to be carefully redesigned, refined and redefined so as to better
fit the specific problem at hand. Therefore, this study designs a hybrid scatter search (HSS) procedure for solving the
PTSP by incorporating the nearest neighbor rule (NNR), TA, and edge recombination (ER) crossover operator to further
expand the conceptual framework and implementation of the scatter search.

To validate the effectiveness and efficiency of the proposed HSS, a set of test problems with various numbers of nodes
(50, 75, 100), each with different presence probability intervals (0.0–0.2, 0.0–0.5, 0.0–1.0) as used in Tang and Miller-
Hooks [7] are adopted for the purpose of comparison. The comparative results obtained can substantiate the potential
of the HSS in solving the PTSP, one of the most frequently encountered problem types in real-world applications.

The remainder of this paper is organized as follows. Section 2 introduces the expressions for evaluating the a priori
tour for the PTSP. Section 3 presents the details of the HSS for the PTSP. Section 4 describes the design of the numerical
experiment. The results of the numerical experiments are presented and discussed in Section 5, followed by concluding
comments.

2. Definition and evaluation of the PTSP

The PTSP is defined on a directed graph G := (V , E), where V := {0, v1, v2, . . . , vn} is the set of nodes or vertices,
E ⊆ V ×V is the set of directed edges. Node 0 represents the depot with the presence probability of 1.0. Each non-depot
node vi (i = 1, 2, . . . , n) is associated with a presence probability pi that represents the possibility that node vi will
be present in a given realization. Given a directed graph G, the PTSP is to find an a priori tour with minimal expected
length in G.

Solving the PTSP mainly relies on computing the expected length of an a priori tour. The computation of the expected
length of a specific a priori PTSP tour �, denoted as E[�], depends on the relative location of nodes on that tour and the
presence probability of each node in a given instance. By explicitly considering all realizations based on the presence
of each individual node, the expected length of tour � can be calculated. For an n-node PTSP instance, a tour � has 2n

possible realizations. The probability of realization rj , p(rj ), can be calculated based on the presence probability of
each individual node. Let L[rj (�)] describe the tour length of � for realization rj under the assumption that nodes not
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in rj are simply skipped in the tour. The expected tour length can then be formally described as

E[�] =
2n∑

j=1

p(rj )L[rj (�)]. (1)

The computation of expected length based on Eq. (1) is inefficient, because the computational complexity increases
exponentially with an increasing number of nodes. Jaillet and Odoni [28] proposed an efficient approach to calculate
E[�] in the complexity of O(n3) for the PTSP

E[�] =
n∑

i=0

n+1∑
j=i+1

⎧⎨
⎩d�(i)�(j)p�(i)p�(j)

j−1∏
k=i+1

(1 − p�(k))

⎫⎬
⎭ , (2)

�(i) denotes the node that has been assigned the ith stop in tour � and p�(i) is the presence probability of node �(i).
�(0) and �(n + 1) represent node 0, which is the depot. d�(i)�(j) represents the distance between nodes �(i) and �(j).
Eq. (2) is used to calculate the expected length of an a priori tour throughout this study.

3. The hybrid scatter search (HSS) for the PTSP

As mentioned above, a scatter search is an evolutionary method that has recently been applied and shown potential
for solving various complicated optimization problems [19–27]. Unlike genetic algorithm, a scatter search operates on
a small set of solutions (called reference set) and makes only limited use of randomization as a proxy for diversification
when searching for a globally optimal solution. In 1998 Glover [19] proposed a template to serve as the guideline of
implementing scatter search. The template consists of five components. They are the diversification generation method
(DGM), improvement method (IM), reference set update method (RSUM), subset generation method (SGM), and
solution combination method (SCM).

As most available scatter search applications are limited to non-routing problems, the algorithmic procedures involved
in most of its associated components need to be redesigned for the PTSP. Moreover, a previous study [21] incorporating
a screening mechanism (i.e., TA) into the scatter search framework showed the potential of increasing the computational
efficiency while maintaining solution quality. Therefore, this study proposed the HSS by adding TA to the five-
component scatter search template proposed by Glover [19] for the PTSP. As shown in Fig. 1, the HSS for the PTSP
consists of six components. These are: initialization (INIT), improvement method (IM), reference set update method
(RSUM), subset generation method (SGM), solution combination method (SCM), and TA. When starting to solve PTSP
(Iteration 0, G = 0), initial solutions are generated based on the NNR, which are improved by the IM. Then, RSUM
is called into place to further select solutions to form the reference set, based on solution quality (objective function
value) and their diversification (degree of similarity (DOS)). From the reference set the SGM is used to generate the
subsets, each containing two solutions. These subsets are later used to generate the new solutions via ER crossover
in the SCM. The newly generated solutions from the SCM are improved using the IM if the objective function can
satisfy the criteria set in the TA. The reference set is then updated based on the objective function value and DOS to
the new solutions. The solutions are allowed to evolve through successive iterations until the preset maximum number
of iterations (Gmax) is met.

As can be seen, even though the proposed HSS adopted Glover’s general template, the proposed HSS added the sixth
component (TA) and redesign the algorithmic procedures involved in most of its associated components. Specifically,
first, the NNR was adopted in the INIT to generate initial solutions (rather than the DGM as used in the original scatter
search). Second, a local search procedure was used in the IM to improve the solution generated. Third, the DOS was
proposed to represent the degree of diversification of the solution in the RSUM. Fourth, the ER crossover operator from
genetic algorithms was used in the SCM for generating new solutions. Finally, TA was introduced as the screening
mechanism for the newly generated solutions to increase the efficiency of the HSS. In the following sections, the
detailed descriptions of each of the embedded components are given.
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Fig. 1. The general procedure of the HSS for the PTSP.

3.1. Initialization (INIT)

The original scatter search framework used the diversification generation method to generate a collection of diverse
trial solutions by employing controlled randomization and frequency memory. The diversification generation method
tries to generate the solutions randomly while keeping these solutions uniformly distributed in the feasible region [19].
However, preliminary results done by the author showed that a systematic generation procedure based on the NNR
yielded better outcomes than one using random generated solutions. Hence, the NNR-based procedure is adopted to
systematically generate initial solutions and is described as follows.

The “Initialization (INIT)” is designed to generate m initial solutions (m = 20 in this study). Considering a PTSP
with n nodes (excluding the depot, node 0), the farthest node, a0, from node 0 is selected first and randomly inserted
into a location between (�(n+1)/2�−q) and (�(n+1)/2�+q). The reason why �(n+1)/2�−q and �(n+1)/2�+q

are used rather than the middle point of the tour (�(n+1)/2�) is to generate a set of different initial solutions. The value
of q should be within the range of 1 and �(n−1)/2� to guarantee a valid tour. Based on a preliminary test conducted by
the author, different values of q yielded similar objective function values with the same level of computational efforts.
In this study, q is set to be 4 since it yielded a slightly better objective function value as compared to those yielded by
other values of q. The NNR [29,30] is used to systematically build up the sequence of the tour. After selecting node a0,
the nearest node (a1) from a0 is selected and inserted in front of a0. The second nearest node (a2) from a0 is selected
and inserted behind a0. Then, among the remaining nodes, the nearest node (a3) from a1 is selected and inserted in
front of a1, while the nearest node (a4) from a2 is selected and inserted behind a2. The first initial solution (tour) is
thus built by following the above rule and expressed as follows:

...... 0 a5 3 a2 a4 a6 0...... 1 0a a a

To create different initial solutions, the remaining initial solutions are generated using the above rule with slight
modifications. The only difference lies in whenever l = 6, 12, 18, . . . , instead of using the nearest node from al−2, al

is randomly chosen from the first or second nearest node from al−2.

3.2. Improvement method (IM)

The improvement method (IM) is used to transform the solution generated into an enhanced solution via a local
search procedure. A simple local search method was used in the HSS to effectively and efficiently solve the PTSP. Later,
a set of numerical experiments were conducted to test the performance of the commonly used 2-opt, 3-opt exchanges.
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Fig. 2. The general procedure of the local search.

The local search procedure is summarized in Fig. 2 and described as follows. Assuming that one solution and its a
priori tour is (0, v1, v2, v3, . . . , vn, 0) where vi (i = 1, 2, . . . , n) represents the ith stop of the sequence in this tour.
First, a node va is randomly selected from vi (i =1, 2, . . . , n), followed by randomly choosing another node vb. If vb is
placed in sequence after va , as shown in case 1 of Fig. 2, the new solution will be generated by placing vb immediately
before va after the local search. If, on the contrary, vb is placed in sequence before va , as shown in case 2 of Fig. 2,
the new solution will be generated by placing vb immediately after va after the local search. Generally speaking, this
local search procedure mainly keeps the same sequence of the original tour by only relocating one randomly selected
node to the neighborhood of the other randomly selected node. If the local search yields a better E[�] value than the
one from the original solution, the new solution will replace the original solution. If no improvement has been found
after the local search, no replacement will be made. The procedure is repeated NIM times for each solution (NIM = 15
in this study).

3.3. Reference set update method (RSUM)

The reference set update method (RSUM) is used to build and maintain a reference set depending on solutions’
quality and diversity. The reference set, RefSet, is a collection of high quality (RefSet1) and diverse (RefSet2) solutions
which will be further used to generate new solutions. When starting to solve PTSP (G= 0), the reference set should be
built based on the quality and diversity of the “improved” initial solution from the IM. The procedure of establishing
the initial reference set is described in Section 3.3.1. After iteration 0, the reference set is updated based on the existing
reference set and the newly generated solution from the SCM. The procedure of updating the reference set is illustrated
in Section 3.3.2.

3.3.1. Initial reference set generation
The initial reference set is generated by first selecting the best b1 solutions (b1 = 5, in this study) from the solutions

improved by the IM in terms of their objective function value, E[�]. After including the best b1 solutions in RefSet,
the diverse solutions which are determined by DOS are included in the RefSet one by one via repeating the following
procedure b2 times (b2 =5, in this study). The DOS developed in this study is described first, followed by the procedure
of including b2 diverse solutions in the RefSet.

Assuming that one solution of the RefSet, S∗(v∗
i ), has the node sequence (0, v∗

1 , v∗
2 , v∗

3 , . . . , v∗
n, 0), and a solution

from non-RefSet, Sj (vi), has the node sequence (0, v1, v2, v3, . . . , vn, 0), each solution can be decomposed into (n+1)

edges, that is, (0, v∗
1), (v∗

1 , v∗
2), (v∗

2 , v∗
3), . . . , (v∗

n−1, v
∗
n), (v∗

n, 0) and (0, v1), (v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, 0).
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The DOS for these two solutions, DOS(Sj , S
∗), can be obtained by counting the number of the same edges between

these two solutions. The bigger the value of the DOS is, the more similar these two solutions are. For each solution in
non-RefSet, the maximum DOS, DOSmax(Sj ), to the solutions in RefSet is computed

DOSmax(Sj ) = max
S∗∈RefSet

{DOS(Sj , S
∗)}, S∗ ∈ RefSet; Sj ∈ non-RefSet. (3)

The solution with the minimum DOSmax(Sj ), (i.e., the most diverse solution) is added to the RefSet and deleted from
the non-RefSet. Once this case arises, the values of the DOSmax(Sj ) will need to be recomputed for all the solutions of
the non-RefSet. This procedure is repeated b2 times to conclude the initial reference set generation.

3.3.2. Reference set updating
After constructing the initial reference set, the SCM is used to generate the new solutions based on the subsets created

by the SGM. The reference set is dynamically updated based on the quality and DOS of the new solutions generated by
the SCM. A newly generated solution may become a member of RefSet1 only if the new solution has a better objective
function value than the solution with the worst objective value in RefSet1. To become a member of RefSet2, the new
solution should have a smaller DOSmax(Sj ) value than the solution with the largest DOSmax(Sj ) value in RefSet2. If
none of the members in the reference set are replaced by the newly generated solutions, the INIT is used to regenerate
new solutions to continue the evolution process.

3.4. Subset generation method (SGM)

Based on the solutions in the reference set, the SGM generates a 2-solution subset as a basis for creating combined
solutions in the SCM. There are (

b1
2 ) subsets by only considering b1 high quality solutions, while there are b1 × b2

subsets by considering both b1 high quality solutions and b2 diversified solutions. Based on preliminary tests, better
results are obtained by using all (

b1
2 ) subsets and randomly choosing half of b1 × b2 subsets to generate new solutions

in the SCM; this procedure is thus used in this paper.

3.5. Solution combination method (SCM)

The main purpose of the SCM is to create new solutions using a given subset of solutions generated by the SGM.
Based on the results from previous studies [17,31], the ER crossover from genetic algorithms performed best when
compared to other crossover strategies for both in TSP and PTSP. Therefore, ER crossover was adopted in this study
for the SCM.

ER crossover was proposed by Whitley et al. [32] to solve the traditional TSP.A 5-node PTSP is used as an example to
describe the procedure of ER crossover.Assuming that two solutions (tours) are chosen from the SGM—(0, 4, 3, 1, 2, 0)

and (0, 1, 2, 3, 4, 0), the edges connected to each node are as follows. For node 0, the first solution indicates that node
0 connects to nodes 2 and 4 and the second solution shows that node 0 connects to nodes 1 and 4. Therefore, node 0
connects to nodes 1, 2, and 4 by considering these two solutions. Similarly, node 1 connects to nodes 0, 2, 3; node 2
connects to nodes 0, 1, 3; node 3 connects to nodes 1, 2, 4; node 4 connects to nodes 0, 3. These are the initial edge
lists for each node.

The operation of the ER crossover is described below. To clearly illustrate the procedure, the newly added node in
each step for the new solution is denoted as vnew. Assuming that node 0 is selected as the starting node (vnew) for the
new solution, all edges incident to node 0 must be deleted from the initial edge list. As described, from node 0 we can
go to nodes 1, 2, or 4, while nodes 1 and 2 have two active edges and node 4 has only one active edge by deleting node
0 from the initial edge list. The node with the fewest active edges, node 4, is picked as the node (vnew) next to node
0 in the new solution. Then, the edge list for the remaining nodes (nodes 1, 2, and 3) is further updated by deleting
node 4. The updated edge list is node 1 (2, 3), node 2 (1, 3), and node 3 (1, 2). From node 4, we can only go to node
3 (as node 0 is deleted from the list already). Therefore, node 3 is chosen to be the node (vnew) next to node 4 in the
new solution. The edge list for the remaining nodes (nodes 1 and 2) is updated by deleting node 3. Since both nodes
1 and 2 have one active edge, a random choice is made between nodes 1 and 2. If node 1 (vnew) is selected, the new
solution is completed by adding node 2 next to node 1. Noted that if no nodes can be chosen to be added to the new
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solution during the process, the remaining node with the fewest active edges is selected to be the vnew to continue the
procedure. The procedure of ER crossover is summarized as follows:

Step 1: List the edge lists for all nodes and choose a starting node (node 0 in this study), which is the first vnew in the
new tour.

Step 2: Update the edge lists by deleting all edges incident to the vnew.
Step 3: From the edge list of the vnew, the node with the fewest active edges is selected to be added to the new solution.

If more than one node with the same active edge is present, randomly choose one of these nodes. If the edge
list of the vnew is empty, choose the node with the fewest active edges from the remaining nodes.

Step 4: Update the vnew, which is the node selected in step 3.
Step 5: Repeat steps 2, 3 and 4 until all nodes are included in the tour.

The new solution is generated following the above procedure, which is then checked by the criteria of the TA
mechanism before feeding into the IM.

3.6. Screening mechanisms—threshold accepting

In the original scatter search [19], all newly generated solutions were improved using IM. However, it was time-
consuming to improve all the solutions using the local search. A previous study [21] found that computational efficiency
could be enhanced and solution quality be maintained by improving qualified solutions that have satisfied the specific
threshold value. Moreover, TA proposed by Dueck and Scheuer [33] was successfully implemented in several studies
related to TSP [34–37], vehicle routing problems [37,38], and PTSP [7]. Therefore, the concept of incorporating TA as
a screening mechanism into the scatter search is adopted in the HSS to solve the PTSP. A set of numerical tests were
conducted to test the performance of the proposed algorithm.

To establish criteria to screen out qualified solutions, an index,D, is defined in Eq. (4), which is based on the expected
length of the a priori tour of the new solution generated from the SCM and the expected length of the a priori tour of
the best solution in the RefSet1

D = E[�New] − E[�∗]
E[�∗] , (4)

where �∗ denotes the best solution in the RefSet1 in terms of objective function value; �New denotes the solution
generated from the SCM. E[�∗] and E[�New] are the objective function values based on tours �∗ and �New, respectively.

A new solution generated from the SCM is improved by IM if its value is D�D∗ and skips IM if its value is D>D∗.
The magnitude of threshold value D∗ will significantly affect the performance of the proposed algorithm. The larger
value D∗ has, the more solutions need to be improved using a local search algorithm, in which case, it would yield
better results in terms of objective function value with more computation effort. Two different settings of D∗ values
were used in the numerical experiments in this study. First, the value of D∗ equals infinite for the original scatter search,
which improves all solutions generated by the SCM. Second, a decreasing series of D∗ values, as shown in Eq. (5),
were used to examine the effects of incorporating TA into the HSS for solving the PTSP

D∗ = D0

(
1.0 − G

Gmax

)
, (5)

where D0 denotes the initial value of D∗ (D0 = 0.1, in this study); G and Gmax represent the current iteration number
and the maximum number of iterations in the HSS, respectively.

3.7. The procedure after iteration zero

The newly generated solutions from the SCM and IM are used to update the reference set in terms of the objective
function value and DOS to the new solutions. The above procedure is repeated until the preset maximum number of
iterations (Gmax) is met (the maximum number of iterations is set to be two times the number of nodes, i.e., Gmax =2n,
in this study). However, if there are no solutions to be updated in the reference set in the current iteration, the INIT
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is used to generate (m − m1 − m2) new solutions in the next iteration, but keeping m1 high quality solutions and
m2 diversified solutions from the current reference set (m1 = m2 = 2, in this study). The reason for keeping some
solutions of the current iteration to be used in the next iteration is to ascertain that the best solution of later iterations
will not be worse than the one from previous iterations. In addition, if the previous three iterations converge to the same
best solution, the IM is used to improve that “converged” solution by repeating NIM2 times to exhaustively search the
neighborhood of that “converged” solution (NIM2 = 25, in this study).

4. Numerical experiment

A numerical experiment was performed to address the following three objectives: to assess the performance of the
HSS as compared to a posteriori lower bounds and the results obtained by Tang and Miller-Hooks’ study; to test the
effects of incorporating TA into a scatter search conceptual framework; to examine the performance of three local
search strategies used in the IM (i.e., 2-opt, 3-opt exchanges and the simple local search used in the HSS) for solving
the PTSP under a scatter search framework. Ninety PTSP test instances and the performance measures used in this
study are described in Section 4.1, followed by a description of the design of the experiment.

4.1. Test instances and performance measures

Ninety instances generated by Tang and Miller-Hooks [7] with size n = 50, 75, and 100 were used as numerical
experiments in this study to examine the performance of the HSS for the PTSP. Three groups of problem sets categorized
by different intervals of customer presence probabilities were created for each problem size (n = 50, 75, and 100).
Presence probabilities of customer nodes were randomly generated from a uniform distribution on intervals (0.0, 0.2),
(0.0, 0.5), (0.0, 1.0), one for each problem size. The presence probability of the depot (node 0) was assigned as 1.0.
Ten different problem instances were randomly generated for each presence probability of customer nodes. For each
instance, the coordinates of one depot and n customer nodes (xi, yi) were generated based on a uniform distribution

from [0, 100]2. The Euclidean distance for each pair of nodes was calculated by using dij =
√

(xi − xj )
2 + (yi − yj )

2.
Since the true optimal solutions for these 90 PTSP instances are not known, an a posteriori optimum based on the

concept of re-optimization [8] is used to calculate the lower bound of the optimal solution for each PTSP instance. The
a posteriori optimum is defined as the average of the optimal TSP lengths for each subset of customers which require
a visit on a specific realization. Since the length induced by the a priori PTSP tour on a specific subset of customers
cannot be smaller than the optimal TSP solutions for that subset of customers, the a posteriori optimum is a lower
bound on the optimal PTSP solution. Because it requires 2n realizations to find the optimal TSP tour, it is impractical
to exactly evaluate the a posteriori optimum. Therefore, two approximations are made to obtain the “approximate”
lower bound (i.e., “approximate” a posteriori optimum) of the PTSP instances [8]. First, Monte Carlo sampling from
2n realizations is used. Second, each random sample of customers, S, is solved to near optimality as a TSP by choosing
the best of |S|/� random tours (� = 2) and applying to it the Lin–Kernighan [39] algorithm.

Tang and Miller-Hooks [7] focused on examining the performance of three different local search procedures (i.e.,
2-opt, or-opt, and enhanced 2-opt) for the problem instances with exact and approximate solution evaluations. Even
though the purpose of their study was not intended to find the best solution for these test instances, as the work by Tang
and Miller-Hooks [7] was thus far the only documented values for these specific PTSP instances, the best solutions
yielded in their study using three local search procedures based on both approximate and exact evaluations are used
and served as the upper bounds of the optimal solutions in this study.

4.2. Experimental design

To understand the effect of incorporating TA into the scatter search and three different local searches (i.e., 2-opt,
3-opt, and the local search described in Section 3.2), six algorithmic procedures were conducted and illustrated as
follows. SS+2-opt and SS+3-opt represent the original scatter search by improving all the generated solutions from the
SCM using 2-opt and 3-opt, respectively. SS+TA +2-opt and SS+TA +3-opt denote the scatter search incorporating
TA by improving only qualified solutions from the SCM using 2-opt and 3-opt, respectively. Finally, HSS0 represents



Y.-H. Liu / Computers & Operations Research 34 (2007) 2949–2963 2957

the original scatter search to improve all the solutions generated by the SCM, while HSS1 represents the scatter search
incorporating TA based on a series of decreasing threshold values to improve only qualified solutions from the SCM.

5. Results and discussion

In these experiments, the average run time and solution quality of six algorithmic procedures are examined. All
implementations were coded in FORTRAN and performed on an Intel Pentium IV 2.8 GHz CPU personal computer
with 512 MB memory, running Windows XP operating system (3479 MFlops), and using Compaq Visual Fortran 6.5
compiler. Instead of using one run for each instance as in Tang and Miller-Hooks’ (TMH) study, each instance is tested
by running each of the six algorithmic procedures designed in this study 100 times using different random seeds and
averaging the results in an attempt to enhance the robustness of the results (as used in [16]). Since 10 different problem
instances were tested for each presence probability of customer nodes associated with a specific problem size, there
was a 1000-run average for each of these six algorithmic procedures, while TMHs study was based on a 10-run average
and was conducted on a DEC AlphaServer 1200/533 computer with 1 GB memory (1277 MFlops). Average statistics
for the experiments are reported in Table 1.

Definitions of terms used in the column headings are given as follows. n denotes problem size, which is the number
of customer nodes. p represents the customer presence probability interval (0.0, p). E[�] denotes the average optimal
value of the expected length of the a priori PTSP tour. BEST np represents the means of the 10 best E[�]s obtained
among these six algorithmic procedures in this study for problem size n with customer probability interval p. LB
denotes the lower bound to the optimal PTSP solution based on a posteriori analysis. CPU is the total CPU running
time in seconds. Since computation time fluctuates among various computer platforms, it may not be an objective
measure for cross platform comparison, so MFlops was used instead as the basis of comparison.

In Table 1, TMH-AP and TMH-EX represent the best solution found from three local search procedures using
approximate and exact solution evaluation, respectively, in TMHs study. The best average value of E[�] among these
eight optimization methods (i.e., TMH-AP, TMH-EX, SS + 2-opt, SS + TA + 2-opt, SS + 3-opt, SS + TA + 3-opt,
HSS0 and HSS1) for each problem size with different presence probability intervals is highlighted in bold.

Overall the average optimal values of expected length of the a priori PTSP tour, E[�], obtained via HSS0 and HSS1
are better than those obtained via TMH-EX (see Table 1). The only exception is when the number of nodes is 50 and
the presence probability intervals are smaller [i.e., (0.0, 0.2) and (0.0, 0.5)] where the solution quality of the three
methods (i.e., TMH-EX, HSS0, and HSS1) appears to be similar. In terms of computation efficiency, when the number
of nodes is 75, TMH-EX and HSS0 (without TA) performed similarly; nevertheless, when the number of nodes is
100, the performance of TMH-EX in terms of computation time and the average E[�] is worse than that of HSS0. All
average values of E[�] yielded from the SS + 2-opt and SS + TA + 2-opt are worse than the ones obtained from the
HSS0 and HSS1 with about the same computational effort. Furthermore, the SS + 3-opt and SS + TA + 3-opt not
only obtained the highest E[�] values but also required much more computational effort. This indicates that the local
search used in the HSS consistently performed better (i.e., with lesser E[�] value, less computational effort) than the
traditionally used 2-opt and 3-opt exchanges as a local search strategy in the PTSP.

Since the average E[�] value yielded from the HSS (the simplest) is the lowest and the one yielded from the 3-opt
exchange (the most complicated) is the highest among these three local searches, the numerical results showed that
the simpler local search yielded better results than the more complicated local searches. In details, the 2-opt exchange
results in a set of tour by reversing a section of tour �; the 3-opt exchange results in a set of tours by removing a section of
� and inserting it, with or without reversal, at another place in the tour, whereas the local search used in the HSS mainly
keeps the same sequence of the original tour by only relocating one randomly selected node to the neighborhood of the
other randomly selected node. The obtained finding suggested that significant changes from the current solution might
not be in favor of the evolving process under scatter search framework for the PTSP. Noted that the above findings are
based on test instances with nodes equal to or under 100 for heterogeneous PTSP, the transferability of current findings
to other contexts (e.g., nodes larger than 100 for heterogeneous PTSP, different numbers of nodes for homogeneous
PTSP) should be conducted to warrant external validity of the findings.

As for the HSS0 and HSS1, both yielded very similar average values of E[�] for all test problems, the HSS0, however,
requires about 39–58% more computation time than the HSS1 does. Similar results are also found in the pair comparison
of SS + 2-opt and SS + TA + 2-opt as well as SS + 3-opt and SS + TA + 3-opt. In alignment with Liu’s findings [21],
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Table 1
Comparison of numerical results among the six algorithmic procedures (i.e., HSS0, HSS1, SS + 2-opt, SS + TA + 2-opt, SS + 3-opt and SS + TA + 3-opt) and Tang and Miller-Hooks’ study on
PTSP instances

n p TMH-AP TMH-EX SS + 2-opt SS + TA + 2-opt SS + 3-opt SS + TA + 3-opt HSS0 HSS1 BESTnp LB

E[�] CPUa E[�] CPUa E[�] CPUb E[�] CPUb E[�] CPUb E[�] CPUb E[�] CPUb E[�] CPUb

50 0.2 227.0 24.8 224.8 81.0 225.3977 54.8 225.3277 40.0 226.3047 95.3 226.1941 64.5 224.8317 54.1 224.8318 38.9 224.8303 219.6895
0.5 342.0 3.9 341.3 72.4 343.7170 55.2 343.8559 38.7 346.1918 97.7 346.4212 63.3 341.5706 55.0 341.5031 38.5 340.7560 331.1057
1.0 467.5 3.7 476.4 64.8 455.8059 55.3 456.6000 37.4 462.8650 99.4 462.9192 61.6 452.6835 54.5 453.1582 37.2 445.5598 433.2096

75 0.2 270.0 302.0 266.2 844.2 267.7197 240.8 267.8118 165.1 269.9921 421.3 269.7747 266.5 265.9315 240.6 265.9343 152.5 265.8555 258.3310
0.5 409.5 23.5 404.9 721.1 409.9771 239.1 410.3344 157.8 416.1893 427.5 416.1240 262.4 404.0113 243.7 403.9542 155.2 399.2976 380.6214
1.0 548.7 12.5 549.1 648.0 539.8799 238.9 540.6778 154.8 549.6745 433.4 549.7331 260.5 532.4545 245.4 533.7677 156.2 515.3975 498.6566

100 0.2 309.8 342.7 301.8 4484.7 304.6202 732.5 304.7778 481.8 309.7818 1281.0 309.5559 772.6 300.8495 689.9 300.8700 448.6 300.7714 290.4925
0.5 470.0 154.1 480.2 4153.2 475.6531 719.8 476.9202 463.7 487.5215 1278.8 486.9553 748.3 462.9770 690.3 463.3905 459.2 455.4603 432.9905
1.0 653.6 44.5 649.0 3752.8 641.9049 819.9 641.8654 505.8 659.2151 1505.4 659.7380 869.8 632.1090 790.1 632.4073 512.4 606.2822 580.6438

aRunning on DEC AlphaServer 1200/533 computer with 1 GB RAM (1277 MFlops).
bRunning on Intel Pentium IV 2.8 GHz CPU personal computer with 512 MB RAM (3479 MFlops).
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Table 2
Percentage differences between E[�] and lower bound (LB), �LB (%)

n p TMH-AP TMH-EX SS + 2-opt SS + TA + 2-opt SS + 3-opt SS + TA + 3-opt HSS0 HSS1 BESTnp

50 0.2 3.33 2.33 2.60 2.57 3.01 2.96 2.34 2.34 2.34
0.5 3.29 3.08 3.81 3.85 4.56 4.63 3.16 3.14 2.91
1.0 7.92 9.97 5.22 5.40 6.85 6.86 4.75 4.60 2.85

75 0.2 4.52 3.05 3.63 3.67 4.51 4.43 2.94 2.94 2.91
0.5 7.59 6.38 7.71 7.81 9.34 9.33 6.15 6.13 4.91
1.0 10.04 10.12 8.27 8.43 10.23 10.24 6.78 7.04 3.34

100 0.2 6.65 3.89 4.86 4.92 6.64 6.56 3.57 3.57 3.54
0.5 8.55 10.90 9.85 10.15 12.59 12.46 6.93 7.02 5.19
1.0 12.56 11.77 10.55 10.54 13.53 13.62 8.86 8.91 4.42

the results from these numerical tests indicate that incorporating TA into scatter search framework can significantly
improve computational efficiency while maintaining solution quality.

The lower bound (LB), obtained from a posteriori method, to the solution from these algorithmic procedures would
be an upper bound of the relative error performed by these methods with respect to the PTSP optimum. If E[�opt]
is truly the optimal value of a specific PTSP instance, by definition E[�opt]�LB. If the solution value obtained from
a specific algorithmic procedures is E[�h], the percentage difference to the true PTSP optimum (�opt, as shown in
Eq. (6)) should be less than the percentage difference to LB (�LB, as shown in Eq. (7)), i.e., �opt��LB

�opt = E[�h] − E[�opt]
E[�opt] × 100%, (6)

�LB = E[�h] − LB

LB
× 100%. (7)

Since the exact values of E[�opt] for these 90 PTSP instances are unknown, �LB is used for the purpose of comparison
among different algorithmic procedures (shown in Table 2). The value of �LB should be positive since finding the optimal
value which is lower than the corresponding LB is impossible. As can be seen in Table 2, the values of �LB for BESTnp

are in the range of 2.34–2.91% for n = 50, 2.91–4.91% for n = 75, and 3.54–5.19% for n = 100, and the expected
length of the best a priori tour obtained from the HSS0 and HSS1 was at most 5.19% (for the case of n = 100 and
p = 0.5) higher than the tour length obtained from re-optimization. Given the fact that the obtained lower bounds are
approximate, because the heuristic procedure was used to solve the TSP and there were sampling errors, it implies
that the expected length of the best a priori tour obtained from the HSS0 and HSS1 may be approximately at most
5.19% higher than the tour length obtained from re-optimization. Moreover, except the case of problem size n = 50
and p = 0.5, the values of �LB for HSS0 and HSS1 (2.34–8.91%) are consistently better than those of the other six
procedures (i.e., SS + 2-opt, SS + TA + 2-opt, SS + 3-opt, SS + TA + 3-opt and TMHs). The results indicate that the
average values of optimal solution obtained by the HSS0 and HSS1 are at most 9% higher than the truly optimal values.
Additionally, the �LB values become larger when p values become larger for all three problem sizes. This shows that
more computational effort is required to obtain the optimal solution in the PTSP with generalized probability interval.
Finally, as expected, the larger the problem size is, the bigger the �LB value is.

TMHs study only showed the averaged statistics of 10 instances for each problem size with a given presence
probability interval. Since the results from the HSS0 and HSS1 performed better than the ones from SS + 2-opt,
SS + TA + 2-opt, SS + 3-opt and SS + TA + 3-opt, detailed results of the HSS0 and HSS1 for each of the 90 instances
are given in Tables 3–5 to further explore the characteristics of the optimal solutions for the PTSP. Definitions of
terms used in the column headings for Tables 3–5 are given as follows. In “PTSP instances”, to take “50-0.2-01”
for example, it represents the instance with problem size 50, customer presence probability interval (0.0, 0.2), and
instance number 01. E[�] and �E[�], respectively, denote the average and standard deviation of the expected length of
100 runs for a given PTSP instance. CPU is the 100-run average CPU running time (in seconds) for each instance.
NBest represents the number of runs (out of 100 runs) of finding the best E[�] value of the expected length. Best E[�]
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Table 3
Detailed results of HSS0 and HSS1 for problem size n = 50

PTSP instances HSS0 HSS1 Best E[�] LB

E[�] �E[�] CPU NBest E[�] �E[�] CPU NBest

50-0.2-01 217.8268 0.000 54.0 100 217.8268 0.000 39.4 100 217.8268 214.6886
50-0.2-02 205.9634 0.001 53.6 98 205.9632 0.001 38.4 98 205.9631 197.6997
50-0.2-03 212.2929 0.002 53.9 98 212.2932 0.004 38.4 98 212.2926 205.3531
50-0.2-04 215.6969 0.001 54.9 86 215.6974 0.002 39.4 84 215.6967 213.1593
50-0.2-05 249.5913 0.037 53.9 92 249.5904 0.037 39.5 97 249.5863 243.8822
50-0.2-06 218.7962 0.000 54.6 100 218.7962 0.000 38.9 100 218.7962 215.3893
50-0.2-07 245.8009 0.000 53.2 99 245.8011 0.000 37.0 96 245.8009 238.5387
50-0.2-08 239.1635 0.000 53.8 98 239.1634 0.000 37.3 100 239.1634 235.1963
50-0.2-09 237.7384 0.001 56.0 73 237.7384 0.001 43.2 76 237.7378 233.6960
50-0.2-10 205.4463 0.017 53.5 35 205.4474 0.017 37.2 31 205.4387 199.2916

50-0.5-01 313.4487 0.429 54.3 84 313.4981 0.475 37.3 79 313.2754 306.5944
50-0.5-02 349.8649 0.312 54.7 31 349.8497 0.368 38.0 15 349.6135 335.1117
50-0.5-03 335.0868 1.444 55.2 84 335.0268 1.390 38.0 86 334.5397 326.6912
50-0.5-04 348.8993 2.438 55.1 76 348.4791 1.473 39.6 83 348.0985 339.8941
50-0.5-05 327.0622 0.031 56.7 99 327.0676 0.063 41.5 98 327.0590 319.8797
50-0.5-06 376.0036 0.004 55.2 0 375.9711 0.316 39.5 1 372.8447 363.9523
50-0.5-07 324.3353 0.116 54.1 88 324.3203 0.021 37.7 91 324.3143 316.1415
50-0.5-08 338.7731 3.852 54.3 12 338.2905 1.888 37.4 16 336.8873 326.1261
50-0.5-09 352.7201 0.962 55.5 39 353.0536 1.420 38.8 23 352.3847 338.0644
50-0.5-10 349.5115 1.268 54.4 5 349.4741 0.990 37.2 8 348.5425 338.6011

50-1.0-01 484.5245 17.774 54.0 16 487.2461 15.731 37.7 9 453.8909 443.1984
50-1.0-02 406.7128 1.833 54.9 1 406.8130 1.752 37.7 0 400.3352 390.7903
50-1.0-03 464.8456 2.959 53.5 15 464.2556 3.074 36.9 21 460.5522 447.1663
50-1.0-04 457.9771 2.373 55.5 93 458.1937 3.014 38.0 89 457.5278 448.6270
50-1.0-05 425.6183 4.195 53.4 5 426.3734 5.924 36.9 11 422.4490 402.6439
50-1.0-06 500.9560 7.338 53.9 38 501.3387 8.266 36.0 41 495.3570 481.1812
50-1.0-07 486.9585 15.119 54.9 4 487.0555 16.173 37.2 4 476.5402 459.8339
50-1.0-08 441.6687 1.941 55.6 4 441.8262 1.630 38.1 2 436.6021 428.2492
50-1.0-09 439.9052 1.839 54.7 2 440.4553 1.258 37.2 1 435.3252 423.8814
50-1.0-10 417.6682 0.680 54.6 6 418.0240 1.571 36.5 10 417.0180 406.5244

denotes the best optimal value that can be found by these six algorithmic procedures conducted in this study for a given
PTSP instance.

Tables 3–5 show the detailed results for problem size n = 50, 75 and 100, respectively. The results indicate that
the HSS1 (with TA) can more efficiently obtain a competitive solution quality in comparison to the HSS0 in all PTSP
instances. Due to the concept of stochastic optimization adopted in the HSS, the values of average E[�] using the
HSS1 are sometimes better than those of using the HSS0. However, the values of �E[�] and NBest somehow tend to be
instance-dependent for the same combination of n and p. For example, the values of �E[�] for instance numbers 01 and
07 are much higher than those of the other instances in n=50 and p =1.0; the value of NBest for instance number 10 is
much smaller than those of the other instances in n=50 and p=0.2; similar outcomes are found in other combinations
of n and p. The fact that some instances under the same combination of n and p have smaller NBest values where
others have higher NBest values indicates that the possibility of finding the optimal solution for some instances based
on the HSS may fluctuate across instances. While the occasional inconsistencies found among instances may suggest
that the effectiveness of finding the optimal solution might be mediated by some factors, such as the characteristics
of the instance (e.g., the relative location and presence probability of each node), another notable observation is with
regard to the inadequacy of past studies that relied on a single-instance numerical experiment. Explicitly, one PTSP
test instance for a specific combination of n and p, as used in some of the previous studies [15,16], assumed that same
combination of n and p will yield similar results by the same method. As could be seen from the results obtained
in this study, shown in Tables 3–5, the assumption is not held and the numerical experiment based on one PTSP test



Y.-H. Liu / Computers & Operations Research 34 (2007) 2949–2963 2961

Table 4
Detailed results of HSS0 and HSS1 for problem size n = 75

PTSP instances HSS0 HSS1 Best E[�] LB

E[�] �E[�] CPU NBest E[�] �E[�] CPU NBest

75-0.2-01 267.2297 0.174 242.8 21 267.2363 0.187 153.8 21 267.1769 255.9436
75-0.2-02 278.1329 0.002 239.8 47 278.1339 0.013 152.4 54 278.1316 272.0016
75-0.2-03 268.2563 0.024 240.6 74 268.2608 0.035 151.5 76 268.2517 262.0525
75-0.2-04 271.5160 0.059 242.2 59 271.5119 0.054 151.1 76 271.4945 263.9936
75-0.2-05 264.5358 0.261 237.8 47 264.5533 0.268 152.4 49 264.3252 257.9032
75-0.2-06 236.2287 0.757 239.5 46 236.2245 0.758 154.0 46 235.9334 224.9284
75-0.2-07 273.2101 0.071 238.4 36 273.2233 0.075 150.3 34 273.1455 263.8956
75-0.2-08 251.4527 0.004 241.6 86 251.4539 0.012 157.8 77 251.4515 248.8204
75-0.2-09 280.4426 0.180 241.7 25 280.4349 0.171 152.1 29 280.3401 270.6063
75-0.2-10 268.3100 0.009 242.0 47 268.3102 0.009 149.6 46 268.3049 263.1644

75-0.5-01 401.6708 2.661 245.9 5 401.6105 2.994 160.8 8 395.8143 374.1341
75-0.5-02 424.1370 10.957 243.3 48 424.7521 11.813 153.5 47 416.6071 395.4633
75-0.5-03 430.0806 2.523 242.8 1 430.3539 2.415 157.0 0 425.7107 410.5180
75-0.5-04 404.1698 0.362 241.5 14 404.1872 0.566 150.5 17 403.7272 383.8160
75-0.5-05 401.9754 4.332 243.9 6 401.6037 5.098 151.5 7 396.6220 372.4662
75-0.5-06 379.2370 0.423 240.9 7 379.2818 0.393 157.8 6 378.1053 365.4089
75-0.5-07 427.5199 6.811 247.1 1 428.0349 6.142 154.2 0 418.1928 397.7712
75-0.5-08 400.7357 2.403 241.1 2 399.9225 2.933 155.6 2 394.1244 371.9494
75-0.5-09 368.0461 0.375 241.4 35 367.9580 0.356 151.6 43 367.6530 358.5981
75-0.5-10 402.5403 8.369 248.9 47 401.8370 7.809 159.4 47 396.4189 376.0886

75-1.0-01 517.6145 8.472 243.0 1 518.8125 10.061 151.0 1 508.2188 495.7458
75-1.0-02 544.0231 10.928 248.0 0 548.9797 13.745 155.9 1 525.1215 514.0083
75-1.0-03 483.0474 6.831 241.8 48 483.7197 9.153 156.4 50 477.8853 463.8400
75-1.0-04 589.4052 11.633 247.7 1 591.9009 11.868 155.9 0 566.4671 540.7981
75-1.0-05 534.6487 7.761 247.6 1 534.5060 7.222 154.8 1 523.1762 507.0453
75-1.0-06 496.1454 8.641 247.8 0 496.1859 6.803 163.1 1 483.6226 455.7104
75-1.0-07 530.3000 11.259 245.6 1 530.7877 9.007 160.0 0 498.9775 485.0399
75-1.0-08 572.1857 17.318 243.9 1 575.8030 17.657 156.9 1 538.5227 521.5663
75-1.0-09 534.7928 8.456 240.2 5 532.9310 7.500 150.2 7 524.4635 508.5160
75-1.0-10 522.3820 18.545 248.1 7 524.0509 20.104 158.2 4 506.7259 494.2957

instance may be subject to problems caused by biased sampling of the PTSP instances, which may inadvertently result
in over-estimation or under-estimation of the performance of proposed methods for PTSP. As such, to obtain more
robust results, researchers are advised to include at least a certain amount of test instances with the same combination
of n andp while conducting PTSP numerical experiments.

6. Conclusions

In this paper, the hybrid scatter search (HSS) is developed to solve the PTSP. Specifically, the algorithm incorporating
the nearest neighbor rule (NNR), edge recombination (ER) crossover operator and threshold accepting (TA) into
scatter search conceptual framework is found to provide the highest quality solutions for efficiently solving the PTSP
as compared to the other methods. The numerical results show that the HSS1 (incorporating TA) yields the most
promising solutions by considering the balance between solution quality and computation efficiency. Incorporating
TA into scatter search framework makes it possible to tackle large size PTSP instances with significantly reduced
computational effort while maintaining solution quality.

To summarize, the contributions of this paper are two-fold. First, the algorithm for applying the scatter search in
solving the PTSP is delineated and its effectiveness investigated. The degree of similarity (DOS), used to identify the
degree of diversification of the solutions, is proposed. This concept has great generalization value to other path or
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Table 5
Detailed results of HSS0 and HSS1 for problem size n = 100

PTSP instances HSS0 HSS1 Best E[�] LB

E[�] �E[�] CPU NBest E[�] �E[�] CPU NBest

100-0.2-01 277.0741 0.038 691.1 17 277.0725 0.037 444.7 20 277.0646 270.8800
100-0.2-02 298.5914 0.018 690.5 37 298.5917 0.017 448.3 30 298.5833 288.4480
100-0.2-03 309.5821 0.019 685.2 29 309.5882 0.036 440.6 31 309.5724 301.0215
100-0.2-04 298.7707 0.020 689.9 26 298.7709 0.018 446.6 28 298.7581 290.9564
100-0.2-05 319.7071 0.218 691.9 11 319.7043 0.186 439.8 15 319.6604 307.3508
100-0.2-06 301.1365 0.040 694.8 12 301.1450 0.045 461.0 9 301.0939 289.5183
100-0.2-07 301.6730 0.330 685.8 12 301.6719 0.354 453.3 9 301.2825 289.0584
100-0.2-08 293.6836 0.166 694.0 21 293.8878 1.502 460.4 24 293.5226 280.3611
100-0.2-09 304.4171 0.122 688.6 19 304.4350 0.156 451.2 10 304.3593 294.5659
100-0.2-10 303.8598 0.195 687.2 18 303.8326 0.023 439.7 17 303.8172 292.7645

100-0.5-01 460.8128 4.973 688.2 14 460.4716 4.252 455.1 20 457.6049 439.0936
100-0.5-02 470.7284 6.846 691.9 1 470.6758 7.621 452.7 1 456.9695 430.8148
100-0.5-03 466.4306 6.060 698.0 0 466.5975 7.411 452.7 3 460.7578 442.1253
100-0.5-04 453.4958 10.451 691.1 2 452.8060 10.590 460.8 1 443.1313 421.8299
100-0.5-05 477.2997 5.631 688.3 3 478.0997 6.174 469.2 2 463.3070 437.2832
100-0.5-06 487.6004 6.973 694.4 2 488.8272 7.416 460.8 1 480.9816 456.1878
100-0.5-07 458.1454 7.227 689.6 5 459.3902 7.526 450.8 3 449.0551 429.2602
100-0.5-08 451.8641 2.622 686.1 8 451.8133 2.706 462.0 4 449.9378 425.5203
100-0.5-09 461.1461 8.470 686.9 36 463.4657 10.896 460.3 13 458.1998 438.3832
100-0.5-10 442.2463 5.368 688.2 2 441.7575 5.288 467.2 1 434.6582 409.4063

100-1.0-01 630.6988 9.900 674.7 1 630.4203 9.273 448.6 0 600.8967 581.7041
100-1.0-02 630.4584 11.483 831.8 4 632.6600 13.409 531.6 5 617.2408 584.7798
100-1.0-03 648.3107 13.395 907.9 0 651.2759 15.686 582.1 1 618.1410 591.7672
100-1.0-04 652.3943 11.583 759.7 1 650.1259 9.427 484.6 0 625.6162 590.1654
100-1.0-05 597.6962 12.662 715.9 1 600.4709 15.554 470.2 0 571.9203 549.3956
100-1.0-06 671.3405 13.202 875.0 0 667.8283 13.999 567.4 1 637.0537 613.0466
100-1.0-07 580.3668 10.963 682.0 1 579.5737 8.792 447.9 0 561.3058 533.5301
100-1.0-08 632.7219 8.493 746.3 1 633.8284 8.634 502.0 0 620.4662 598.3241
100-1.0-09 656.1888 25.973 1023.8 1 656.3908 25.680 643.9 0 612.7653 592.4442
100-1.0-10 620.9131 12.443 683.6 0 621.4990 12.775 445.4 1 597.4162 571.2806

routing related problems, such as (stochastic) vehicle routing problems, etc. Second, the threshold accepting used as
the screening tool for local search is further incorporated into the scatter search framework to improve the efficiency
of the traditional scatter search.
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