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ABSTRACT 
This paper describes our research on using Genetic Programming to obtain transition 

rules for Cellular Automata, which are one type of massively parallel computing system. 
Our purpose is to determine the existence of a limit of chaos for three dimensional 
Cellular Automata, empirically demonstrated for the two dimensional case. To do so, we 
must study statistical properties of 3D Cellular Automata over long simulation periods. 
When dealing with big three dimensional meshes, applying the transition rule to the 
whole structure can become a extremely slow task. In this work we decompose the 
Automata into pieces and use OpenMp to parallelize the process. Results show that 
using a decomposition procedure, and distributing the mesh between a set of processors, 
3D Cellular Automata can be studied without having long execution times. 

Keywords: Genetic Programming, Cellular Automata Parallelization, OpenMp. 

1. Introduction. Cellular Automata 

Cellular automata were originally conceived by Ulam and von Neumann in the 1940s 
to provide a formal framework for investigating the behavior of complex, extended 
systems [11], [9]. They are dynamical structures in which space, time, and the states 
of the system are discrete. Each cell in a regular lattice changes its state with time 
according to a rule which is local and deterministic. All cells in the lattice obey 
the same rule, and their state is determined by the previous states of a surrounding 
neighborhood of cells [12], [10]. 

The infinite or finite cellular array is n-dimensional, where n= 1,2,3 is used in 
practice. The identical rule contained in each cell is essentially a finite state ma­
chine, usually specified in the form of a rule table (also known as the transition 
function), with an entry for every possible neighborhood configuration of states. 
The neighborhood of a cell consists of the adjacent cells. For one-dimensional CAs, 
a cell is connected to r local neighbors on either side, where r is a parameter referred 
to as the radius. Thus, each cell has 2r+l neighbors, including itself. The value a\ 
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of a site at position i changes according to §. 

ai — f l f l i - r ' a t - r + l ' " ' " i + r J (1) 

The local rule § has a range of r sites. Its form determines the behavior of the 
cellular automaton. 

For two-dimensional CAs, two types of cellular neighborhoods are usually con­
sidered: 

• von Neumann neighborhood: The von Neumann neighborhood of range r is 
defined by 

TV, N (x0,yo) = {(x,y) : \x-xo\ + \y-yo\ < r} 

See figure 1 (left). 

(2) 

Fig. 1. Von Neumann Neighborhood (left). Moore Neighborhood (right). 

• Moore neighborhood: The Moore neighborhood of range r is defined by 

NM(x0,yo) = {{x,y) : \x - x0\ < r,\y - ya\ < r} (3) 

See figure 1 (right). 

When considering a finite-sized grid, spatially periodic boundary conditions are 
frequently applied, resulting in a circular grid for the one-dimensional case, and 
a toroidal one for the two-dimensional case. The term configuration refers to an 
assignment of states to cells in the grid. 

For this work, we will be using a 3D extension of Moore Neighborhood, and 
non periodic boundary conditions. The radius value is 1, which results on a neigh­
borhood of size 27 (26 plus the central cell) for each position in the grid. Finally, 
the size of our automata will be [100]x[100]x[100]. The natural extension of Moore 
Neighborhood (see figure 2, right) can be defined as 

N (xo,yo,z0) = {(x,y,z) : \x - x0\ < r,\y-y0\ < r,\z - z0\ < r} (4) 
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Fig. 2. von Neumann (left) and Moore (right) neighborhoods: 3D extension. 

1.1. Generation of transition rules for Cellular Automata with Genetic Program­
ming 

1.1.1. Langton parameter 

According to Stephen Wolfram [12], the patterns generated in the evolution of 
Cellular Automata from disordered initial states can be grouped into four general 
classes: 

(i) Evolves to homogeneous state (Class I). 
(ii) Evolves to simple separated periodic structures (Class II). 

(iii) Yields chaotic aperiodic patterns (Class III). 
(iv) Yields complex pattern of localized structures (Class IV). 

In class I and II, and almost in all class III automata, information cannot be 
transmitted between cells. Class I and II present too much inter-cell dependence 
(two much order), and class III presents too little inter-cell dependence (too much 
disorder). 

In [6] Christopher Langton, proposes an algorithm to construct Cellular Au­
tomata with "interesting" behavior. In short, Cellular Automata are interesting 
when their global behavior is more than the sum of the behaviors of their individ­
ual parts. The cells in interesting C.A. must interact cooperatively in some way in 
order to support global dynamics of the system. To do so, they must communicate 
information between themselves in a meaningful manner. 

Langton proves that the four different classes of Cellular Automata observed 
by Stephen Wolfram are grouped as a function of what is known as Langton 
Pa ramete r , A. If we let P(3t) be the percentage of transitions to state 5ft in the 
rule table of any Cellular Automata, then we can define the parameter lambda as: 

A = 1.0-P(3?) (5) 

In a Cellular Automaton with two possible states, A is bounded above by 0.5, 
as it is the probability of each cell of being activated at any time. Figure 3 shows 
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the situation of the different classes of C.A. with respect to the value of A, and a 
figuration of the existent "order" in the grid, decreasing as A tends to 0.5. There 
is some empiric evidences of the existence of a "Limit of Chaos" value for Cellular 
Automata somewhere in [0.3 — e : 0.3 + e]. 
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Fig. 3. Cellular Automata Classification according to Langton Parameter. 

This research is part of a work where we are trying to determine the existence of 
a "Limit of Chaos" in 3D Cellular Automata. For such a goal, we can approximately 
calculate the value for Langton Parameter, by simply generating a. high number of 
test cases, and counting the number of positive and negative evaluations of the rule 
that defines the automaton. Consequently, we can use the value of A as Fitness 
Function in a standard Genetic Programming approach [5] (\P(a) — A|, actually. 
Explained in section 1.2). 

Once we have obtained Cellular Automata with any desired A, we need to make 
long simulations of the behavior of the automata, in order to calculate statistical 
properties for each different A. Our study is based in the relation between Langton 
Parameter, Entropy and Mutual Information [8]. Here arises the need for a fast 
implementation of transition rules. 

1.2. Genetic Programming 

Genetic programming (GP) is a generic term used to mean an evolutionary 
computation system which is used to evolve programs. Early forms of GP can be 
traced back to Friedberg ([3]) and Cramer ([2]). The first GP system to bear the 
name 'Genetic Programming' was devised by John R. Koza ([5]), and forms the 
basis of conventional GP systems. 

Koza's genetic programming represents programs by their parse trees. A parse 
tree is a tree-structure which captures the executional ordering of the functional 
components within a program: such that a program output appears at the root 
node; functions are internal tree nodes; a function's arguments are given by its 
child nodes; and terminal arguments are found at leaf nodes. A parse tree is a 

->r.-\ 
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particularly natural structure for representing programs in LISP, the first used lan­
guage for genetic programming. This is one reason why the parse tree was chosen 
as a representation for genetic programming. A problem, in GP, is specified by a 
fitness function, a function set, and a terminal set. The function and terminal sets 
determine from which components a program may be constructed; and the fitness 
function measures how close a particular program's outputs are to the problem's re­
quired outputs. The initial population is filled with programs constructed randomly 
from components in the function and terminal sets. 

1.2.1. Obtaining any desired A with genetic programming 

In order to obtain populations of Cellular Automata with any desired value for 
Langton's Parameter we use our own standard Genetic Programming System (the 
one explained in [4]). Parameters are listed in table 1. After setting the initial 
configuration of the GP system, we obtain transition rules whose probability of 
activation for any cell (A) is close to the desired one, in most cases. These large 
populations of parse trees are the material we will be using in the future to study 
the relationship between A and chaos in 3D Cellular Automata. 

In [7], Christopher Langton developed the concept of "Edge of Chaos" while 
trying to characterize the space of Cellular Automata. He found that raising the 
value of parameter A (the proportion of transitions to an active state), one could 
obtain all types of Cellular Automata. From frozen at a fixed point, to chaotic 
ones. This is very analogous to Stephen Wolfram C.A. Classification ([12], [13]). 
Additionally, it is well known that a system capable of computation must be able 
of: 

1. Information Storage, and 

2. Information Transmission 

Cellular Automata capable of universal computation are said to be in Class IV. 
Classes seem to be passed in order I, II, IV, III when rising A. The main problem 
is: "to determine whether a rule table is capable or universal computation or not". 
We will use a Genetic Programming approach to obtain transition rules in the form 
of syntactic trees, whose value of Langton Parameter, A, will be determined by the 
evolutionary process. To do this, as in any other GP procedure, we must define: 

1. The terminal set, T. 

2. The function set, F. 

3. The goal, and a fitness function capable of evaluate the performance of any 
valid individual. 

4. The set of parameters of the algorithm. 

5. The method for designating a solution and the criterion for terminating a run. 

Genetic Programming [5] is directly applicable to the generation of transition 
rules for Cellular Automata, as the evaluation of a GP tree formed by logical opera­
tions in the internal nodes, with variables representing the neighbors of a cell in the 
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terminal ones, can be used as a way to obtain each cell's next state as a function of 
the neighbors' previous ones. See figure 4. 

.1 OR (M AND A) 

Figure 4: Syntactic tree and meaning of a transition rule. 

1.3. Terminal set 

The first step when preparing to use Genetic Programming is to identify the 
set of terminals. The terminal symbols are the inputs to the as-yet-undiscovered 
computer program. When using 3D extension of Moore Neighborhood, (see figure 
2, right), we have a neighborhood of 27 cells. We name each one of the cells in the 
neighborhood with a capital letter (from A to Z), being x the central cell. Each one 
of these letters can be a terminal node in the trees that we will search for with our 
Genetic Programming system, as can be seen in figure 4. 

1.4- Function Set 

After identifying the terminal set, the second step is to define the set of functions 
that will be used to generate the mathematical expression that attempts to solve 
the problem. Each of the functions in the function set should be able to accept, 
as its arguments, any value and data type that may possibly be returned by any 
function in the function set and any value and data type that may possibly be 
assumed by any terminal in the terminal set. That is, the function set and termi­
nal set selected should have the closure property so that any possible composition 
of functions and terminals produces a valid executable computer program. If we 
want to obtain Cellular Automata with two possible states (true, false) presenting 
behaviors depending on the state of any of the cells in a 3D Moore Neighborhood, 
we need to have logical functions in the internal nodes of the trees. So, we use the 
following function set: 

• AND: a node in the tree is evaluated to true if its two children nodes are 
evaluated to true. 

• OR: a node in the tree is evaluated to true if any of its two children nodes is 
evaluated to true. 

• XOR: a node in the tree is evaluated to true if its two children nodes are 
evaluated to different values. 
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• NOT: a node in the tree, with only one children node, is evaluated to true if 
the latter is evaluated to false. 

Terminal symbols and functions will be combined randomly in the construction of 
the initial population. See figure 4. The tree in the figure represents the boolean 
function J OR (M AND A). For optimization reasons, the transition rules are stored 
as Lisp-like ones, with polish inverse notation. The expression in figure 4 is stored 
this way: 

OR(J,AND(M,A)). (6) 

1.5. Fitness Function 

In order to let the genetic process end up with a solution to any problem, it is 
necessary to define the Fitness Function. In the situation we are dealing with, the 
process, for each logical expression, S, is this: 

1. Let K be the desired value for Langton parameter, A. 

2. One hundred thousands different fitness cases are generated (it could be a 
greater number, as this is just a parameter of the GP system). Each one 
of these strings consists on 27 O's or l's randomly generated. Let Fc be the 
number of cases. 

3. S is evaluated on each fitness case. Each one of these evaluations will lead to 
a transition to true (1) or false (0). Let K\ be the number of evaluations of 
S that give true as result, and Ki the number of negative evaluations. 

4. We define the Fitness Function of a logical expression, S , F(S), as: 

F(S) = \K-(K1/FC (7) 

This is exactly the meaning of Langton Parameter. This way, we have an 
estimation of the value of the parameter, that is used by the genetic system 
to evolve the complete population towards this value. See figure 5. 

A B 
0 0 I 

1 0 0 
0 0 0 

I 1 1 

Z x 
10 

11 
10 

10 

100000 different test cases 

GP Expression 
(Transition rule) 

Kl Transitions to 1 (true) 

K2 Transitions to 0 (false) 

\ 

Kl /100000 = Estimation of Langton Parameter 

Figure 5: Estimation of A for fitness function calculation. 
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1.6. Parameter Set, and Termination Criterion 

Our goal is to obtain populations with any desired value for Langton Parameter, 
in order to measure Entropy and Mutual Information at each value of A. Because 
of this, our Termination Criterion is not to have one individual in the population 
that satisfies X = K, but have a complete population with all the individuals as 
adapted as possible. Because of that, our evolutionary process will stop after a 
huge number of generations, G, empirically determined, is reached. Population 
size is M=1000 individuals, and we use a depth limit of 10 levels for the randomly 
generated individuals included in the initial population. See table 1 for complete 
set of parameters. 

After deciding a way to represent transition rules, our Genetic Programming 
strategy to obtain expressions with any desired value of Langton Parameter consist 
of: 

1. Generate a random initial population of expressions. 

2. Calculate the fitness of each expression (that is, how close is each one of them 
to the desired value of A. 

3. Apply genetic operators (reproduction, crossover and mutation) to evolve pop­
ulation. 

4. Stop when Termination criterion is satisfied. In this case, when maximum 
number of generations is reached. 

When the genetic process is finished, we have populations with a known ap­
proximated value for A. Each individual is represented by a boolean function, or 
tree, whose evolution, and statistical properties can be studied. An example of this 
boolean expressions is shown below: 

and(not(M),not(and(and(not(B),W),and(K,H)))) 

2. Parallelization 

2.1. Experimental Platform 

The Sunfire E15K of Edinburgh Parallel Computing Center (EPCC) was used 
as the experimental platform. It consist of a four CPU front end for developing 
and compilation, and a backend of forty eight CPUs for execution of jobs. The 
two domains are running Solaris 9 and have the latest Sun Forte Development 
package and HPC Cluster Tools installed. The Message Passing and Shared Memory 
programming paradigms are supported. 

2.2. Parallelization Strategy 

Cellular Automata are inherently parallel, as they evolve in a discrete way, 
following the same transition rule. Parallelizing a 3D Cellular Automata is so 
direct as dividing the grid between the number of available processors, and collect 
the final result when all of them have finished. See figure 6. Process and Processor 
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are synonyms in this context. If an MPI approach is chosen, each processor will 
apply the transition rule on a section of the whole Cellular Automaton. If the 
system is developed using POSIX threads, or OpenMP, each process will do this 
work, and the main process will break, deliver, and collect the new state of the grid. 

In an OpenMp program, the programmer specifies, roughly speaking, what 
pieces of the code can be run in parallel. The number of processes executing these 
parallel constructs need not be hardwired. Therefore, adjusting the number of pro­
cessors at run time can be done transparently. Furthermore, OpenMp's execution 
model, consisting of a succession of sequential code an parallel constructs, seems to 
be appropriate for our 3D Cellular Automata schema. 

Our parallelization strategy is based on the OpenMP parallel for construct [1], 
whose pseudo code is shown below: 

- code to be executed only by the master -
# pragma omp parallel for 
for (i=0; i<MAX; i++) 

{ 
- the iterations of this loop are divided among 

} 
- code to be executed only by the master -

all processes -

What we do is (see figure 6) to break the Cellular Automaton into so many pieces 
as the number of threads (i.e. processors) we are using. Each one of these pieces is 
passed to one thread, and after applying the transition rule, the whole automaton 
is gathered together again. This approach is very sensible to the complexity of the 
transition rule, but permits us reduce the execution time by a factor of five using 
ten processors, as we explain in section 3. 

3. Results 

Experiments were carried out using simulation periods of 100, 1000,10000 and 
100000 steps. For each simulation period, we used sets of 1, 2, 5, 10, 20 and 25 
processors. During the execution of the tests, the maximum number of threads per 
user was limited to a maximum of 10, but the experiments were performed anyway 
for 15, 20, and 25 processors. 

Table 2 summarizes the results obtained for each number of processors, including 
Average execution time and Standard Deviation. Figure 7 shows the execution time, 
and figure 8 shows speedup (left) and efficiency (right) obtained for each experiment. 

The first remarkable aspect about the execution time is that the process scales 
reasonably well up to ten processors; for larger numbers of multi thread execution, 
the efficiency decays very fast. In this context, it is important to realize that the 
function included on each cell that forms the tridimensional Cellular Automata can 
be a very short one, or a large expression, with long execution time due to its 
recursive nature. 

The second thing that comes up immediately is that the speedup is constant for 
each number of processors, independently of the length of the simulation period. 
This is not true for larger Cellular Automata ([150]x[150]x[150]), but we don't need 
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Process N- l 

Fig. 6. Parallelization of Cellular Automata evolution. 

so many cells for our Entropy calculations. 
Table 3 shows a relative measure of the parallel efficiency achieved with each 

number of processors. To calculate this, we call Sp the pseudo speedup computed 
with respect to the execution time achieved using only one processor. We will call 
Ep the corresponding relative efficiency. Again, we can see that we can reduce 
the execution time by a factor of five in all cases, using ten processors. For higher 
numbers of processors the relative efficiency goes down under 20%. 

Table 1: Induction of Transition rules. Parameter set. 
Objective 
Objective 

Function Set 
Terminal Set 

Fitness Cases (Fc) 
Fitness Function 
Population Size 

Generations 
Mutation Rate 

Maximum Initial Depth 
Termination Criterion 

Find Transition Rules with a fixed A 
Automata with a fixed Langton Parameter. (A = K) 

AND, OR, NOT, XOR 
{A..Z}Ux 

100000 
[K-iKi/FJl 

M=1000 
G=200 

0.05 
10 

Maximum number of Generations reached 
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1 
2 
5 
10 
20 
25 

100 

M 
0.591 
0.336 
0.155 
0.108 
0.139 
0.178 

a 

0.0153 
0.0661 
0.0045 
0.0012 
0.0026 
0.0046 

Table 2: Parallelization Results. 
1000 

V 
5.835 
3.099 
1.417 
1.012 
1.370 
1.897 

a 

0.000576 
0.010867 
0.037420 
0.100611 
0.366752 
0.498086 

10000 
M 

58.730 
31.079 
14.279 
10.345 
14.268 
19.108 

a 
0.01577 
0.04798 
0.11885 
0.10635 
0.20432 
0.42188 

100000 
M 

587.3 
310.878 
142.404 
101.929 
139.903 
188.698 

a 
0.110 
0.407 
0.640 
0.649 
1.832 
4.645 
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Table 3: Parallelization Results. Efficiency. 

Processors 

1 
2 
5 
10 
20 
25 

100 Steps. 
CPU time 

0.591 
0.336 
0.155 
0.108 
0.139 
0.178 

SF 

1 
1.756 
3.796 
5.428 
4.251 
3.316 

EP 

1 
0.878 
0.759 
0.542 
0.212 
0.132 

Processors 

1 
2 
5 
10 
20 
25 

1000 Steps 
CPU time 

5.835 
3.099 
1.417 
1.012 
1.370 
1.897 

SF 

1 
1.882 
4.115 
5.763 
4.258 
3.074 

EP 

1 
0.941 
0.823 
0.576 
0.212 
0.122 

Processors 

1 
2 
5 
10 
20 
25 

100000 Steps 
CPU time 

587.3 
310.878 
142.404 
101.929 
139.903 
188.698 

Sy 

1 
1.889 
4.124 
5.761 
4.197 
3.112 

EP 

1 
0.944 
0.824 
0.576 
0.209 
0.124 

Processors 

1 
2 
5 
10 
20 
25 

10000 Steps 
CPU time 

58.730 
31.079 
14.279 
10.345 
14.268 
19.108 

SF 

1 
1.889 
4.112 
5.676 
4.116 
3.073 

EP 

1 
0.944 
0.822 
0.567 
0.205 
0.122 

4. C o n c l u s i o n s 

We have employed the parallel for construct, one of the basic OpenMP features 
to decompose, evolve, and gather pieces of 3D Cellular Automata . We are using a 
radius of 1, tha t implies a neighborhood of 27 cells. For larger neighborhoods the 
evaluation of recursive expressions, and the modification of the 3D grid would be 
extremely slow. The use of or approach will let us study the behavior and statistical 
properties of 3D Cellular Automata using neighborhood radius greater than 1, as 
we can reduce the execution times by a factor of five. At the moment, and in the 
machine used to run these experiments, the optimal number of processor is ten. 
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