
Parallel Processing Letters, Vol. 17, No. 4 (2007) 349-361 V M * W Iri <5 " »T
© World Scientific Publishing Company f g P ww.worldscientific.com

PARALLELIZING THREE DIMENSIONAL
CELLULAR AUTOMATA WITH OpenMP

SANTIAGO GARCIA CARBAJAL

Computer Science Department, University of Oviedo, Campus de Viesques, Despacho l.b.15.
Gijon, ASTURIAS, Spain

Received July 2007
Revised October 2007

Communicated by Colin Stirling

ABSTRACT
This paper describes our research on using Genetic Programming to obtain transition

rules for Cellular Automata, which are one type of massively parallel computing system.
Our purpose is to determine the existence of a limit of chaos for three dimensional
Cellular Automata, empirically demonstrated for the two dimensional case. To do so, we
must study statistical properties of 3D Cellular Automata over long simulation periods.
When dealing with big three dimensional meshes, applying the transition rule to the
whole structure can become a extremely slow task. In this work we decompose the
Automata into pieces and use OpenMp to parallelize the process. Results show that
using a decomposition procedure, and distributing the mesh between a set of processors,
3D Cellular Automata can be studied without having long execution times.

Keywords: Genetic Programming, Cellular Automata Parallelization, OpenMp.

1. Introduction. Cellular Automata

Cellular automata were originally conceived by Ulam and von Neumann in the 1940s
to provide a formal framework for investigating the behavior of complex, extended
systems [11], [9]. They are dynamical structures in which space, time, and the states
of the system are discrete. Each cell in a regular lattice changes its state with time
according to a rule which is local and deterministic. All cells in the lattice obey
the same rule, and their state is determined by the previous states of a surrounding
neighborhood of cells [12], [10].

The infinite or finite cellular array is n-dimensional, where n= 1,2,3 is used in
practice. The identical rule contained in each cell is essentially a finite state ma­
chine, usually specified in the form of a rule table (also known as the transition
function), with an entry for every possible neighborhood configuration of states.
The neighborhood of a cell consists of the adjacent cells. For one-dimensional CAs,
a cell is connected to r local neighbors on either side, where r is a parameter referred
to as the radius. Thus, each cell has 2r+l neighbors, including itself. The value a\

349

http://ww.worldscientific.com

350 S. Garcia Carbajal

of a site at position i changes according to §.

ai — f l f l i - r ' a t - r + l ' " ' " i + r J (1)

The local rule § has a range of r sites. Its form determines the behavior of the
cellular automaton.

For two-dimensional CAs, two types of cellular neighborhoods are usually con­
sidered:

• von Neumann neighborhood: The von Neumann neighborhood of range r is
defined by

TV, N (x0,yo) = {(x,y) : \x-xo\ + \y-yo\ < r}

See figure 1 (left).

(2)

Fig. 1. Von Neumann Neighborhood (left). Moore Neighborhood (right).

• Moore neighborhood: The Moore neighborhood of range r is defined by

NM(x0,yo) = {{x,y) : \x - x0\ < r,\y - ya\ < r} (3)

See figure 1 (right).

When considering a finite-sized grid, spatially periodic boundary conditions are
frequently applied, resulting in a circular grid for the one-dimensional case, and
a toroidal one for the two-dimensional case. The term configuration refers to an
assignment of states to cells in the grid.

For this work, we will be using a 3D extension of Moore Neighborhood, and
non periodic boundary conditions. The radius value is 1, which results on a neigh­
borhood of size 27 (26 plus the central cell) for each position in the grid. Finally,
the size of our automata will be [100]x[100]x[100]. The natural extension of Moore
Neighborhood (see figure 2, right) can be defined as

N (xo,yo,z0) = {(x,y,z) : \x - x0\ < r,\y-y0\ < r,\z - z0\ < r} (4)

Parallelizing Three Dimensional Cellular Automata with OpenMP 351

Fig. 2. von Neumann (left) and Moore (right) neighborhoods: 3D extension.

1.1. Generation of transition rules for Cellular Automata with Genetic Program­
ming

1.1.1. Langton parameter

According to Stephen Wolfram [12], the patterns generated in the evolution of
Cellular Automata from disordered initial states can be grouped into four general
classes:

(i) Evolves to homogeneous state (Class I).
(ii) Evolves to simple separated periodic structures (Class II).

(iii) Yields chaotic aperiodic patterns (Class III).
(iv) Yields complex pattern of localized structures (Class IV).

In class I and II, and almost in all class III automata, information cannot be
transmitted between cells. Class I and II present too much inter-cell dependence
(two much order), and class III presents too little inter-cell dependence (too much
disorder).

In [6] Christopher Langton, proposes an algorithm to construct Cellular Au­
tomata with "interesting" behavior. In short, Cellular Automata are interesting
when their global behavior is more than the sum of the behaviors of their individ­
ual parts. The cells in interesting C.A. must interact cooperatively in some way in
order to support global dynamics of the system. To do so, they must communicate
information between themselves in a meaningful manner.

Langton proves that the four different classes of Cellular Automata observed
by Stephen Wolfram are grouped as a function of what is known as Langton
Pa ramete r , A. If we let P(3t) be the percentage of transitions to state 5ft in the
rule table of any Cellular Automata, then we can define the parameter lambda as:

A = 1.0-P(3?) (5)

In a Cellular Automaton with two possible states, A is bounded above by 0.5,
as it is the probability of each cell of being activated at any time. Figure 3 shows

352 S. Garcia Carbajal

the situation of the different classes of C.A. with respect to the value of A, and a
figuration of the existent "order" in the grid, decreasing as A tends to 0.5. There
is some empiric evidences of the existence of a "Limit of Chaos" value for Cellular
Automata somewhere in [0.3 — e : 0.3 + e].

order

+ +
c5i ass I

+
+ ++

+ +
+ + +

+ ; +
.-+j.-t

ClajssIJI !+ + f
ClaVsjlV1" '' y+Cliiss III

+ : + +

order

chaos

o.i 0.2 0.3 0.4 0.5 X

Fig. 3. Cellular Automata Classification according to Langton Parameter.

This research is part of a work where we are trying to determine the existence of
a "Limit of Chaos" in 3D Cellular Automata. For such a goal, we can approximately
calculate the value for Langton Parameter, by simply generating a. high number of
test cases, and counting the number of positive and negative evaluations of the rule
that defines the automaton. Consequently, we can use the value of A as Fitness
Function in a standard Genetic Programming approach [5] (\P(a) — A|, actually.
Explained in section 1.2).

Once we have obtained Cellular Automata with any desired A, we need to make
long simulations of the behavior of the automata, in order to calculate statistical
properties for each different A. Our study is based in the relation between Langton
Parameter, Entropy and Mutual Information [8]. Here arises the need for a fast
implementation of transition rules.

1.2. Genetic Programming

Genetic programming (GP) is a generic term used to mean an evolutionary
computation system which is used to evolve programs. Early forms of GP can be
traced back to Friedberg ([3]) and Cramer ([2]). The first GP system to bear the
name 'Genetic Programming' was devised by John R. Koza ([5]), and forms the
basis of conventional GP systems.

Koza's genetic programming represents programs by their parse trees. A parse
tree is a tree-structure which captures the executional ordering of the functional
components within a program: such that a program output appears at the root
node; functions are internal tree nodes; a function's arguments are given by its
child nodes; and terminal arguments are found at leaf nodes. A parse tree is a

->r.-\

Parallelizing Three Dimensional Cellular Automata with OpenMP 353

particularly natural structure for representing programs in LISP, the first used lan­
guage for genetic programming. This is one reason why the parse tree was chosen
as a representation for genetic programming. A problem, in GP, is specified by a
fitness function, a function set, and a terminal set. The function and terminal sets
determine from which components a program may be constructed; and the fitness
function measures how close a particular program's outputs are to the problem's re­
quired outputs. The initial population is filled with programs constructed randomly
from components in the function and terminal sets.

1.2.1. Obtaining any desired A with genetic programming

In order to obtain populations of Cellular Automata with any desired value for
Langton's Parameter we use our own standard Genetic Programming System (the
one explained in [4]). Parameters are listed in table 1. After setting the initial
configuration of the GP system, we obtain transition rules whose probability of
activation for any cell (A) is close to the desired one, in most cases. These large
populations of parse trees are the material we will be using in the future to study
the relationship between A and chaos in 3D Cellular Automata.

In [7], Christopher Langton developed the concept of "Edge of Chaos" while
trying to characterize the space of Cellular Automata. He found that raising the
value of parameter A (the proportion of transitions to an active state), one could
obtain all types of Cellular Automata. From frozen at a fixed point, to chaotic
ones. This is very analogous to Stephen Wolfram C.A. Classification ([12], [13]).
Additionally, it is well known that a system capable of computation must be able
of:

1. Information Storage, and

2. Information Transmission

Cellular Automata capable of universal computation are said to be in Class IV.
Classes seem to be passed in order I, II, IV, III when rising A. The main problem
is: "to determine whether a rule table is capable or universal computation or not".
We will use a Genetic Programming approach to obtain transition rules in the form
of syntactic trees, whose value of Langton Parameter, A, will be determined by the
evolutionary process. To do this, as in any other GP procedure, we must define:

1. The terminal set, T.

2. The function set, F.

3. The goal, and a fitness function capable of evaluate the performance of any
valid individual.

4. The set of parameters of the algorithm.

5. The method for designating a solution and the criterion for terminating a run.

Genetic Programming [5] is directly applicable to the generation of transition
rules for Cellular Automata, as the evaluation of a GP tree formed by logical opera­
tions in the internal nodes, with variables representing the neighbors of a cell in the

354 S. Garcia Carbajal

terminal ones, can be used as a way to obtain each cell's next state as a function of
the neighbors' previous ones. See figure 4.

.1 OR (M AND A)

Figure 4: Syntactic tree and meaning of a transition rule.

1.3. Terminal set

The first step when preparing to use Genetic Programming is to identify the
set of terminals. The terminal symbols are the inputs to the as-yet-undiscovered
computer program. When using 3D extension of Moore Neighborhood, (see figure
2, right), we have a neighborhood of 27 cells. We name each one of the cells in the
neighborhood with a capital letter (from A to Z), being x the central cell. Each one
of these letters can be a terminal node in the trees that we will search for with our
Genetic Programming system, as can be seen in figure 4.

1.4- Function Set

After identifying the terminal set, the second step is to define the set of functions
that will be used to generate the mathematical expression that attempts to solve
the problem. Each of the functions in the function set should be able to accept,
as its arguments, any value and data type that may possibly be returned by any
function in the function set and any value and data type that may possibly be
assumed by any terminal in the terminal set. That is, the function set and termi­
nal set selected should have the closure property so that any possible composition
of functions and terminals produces a valid executable computer program. If we
want to obtain Cellular Automata with two possible states (true, false) presenting
behaviors depending on the state of any of the cells in a 3D Moore Neighborhood,
we need to have logical functions in the internal nodes of the trees. So, we use the
following function set:

• AND: a node in the tree is evaluated to true if its two children nodes are
evaluated to true.

• OR: a node in the tree is evaluated to true if any of its two children nodes is
evaluated to true.

• XOR: a node in the tree is evaluated to true if its two children nodes are
evaluated to different values.

Parallelizing Three Dimensional Cellular Automata with OpenMP 355

• NOT: a node in the tree, with only one children node, is evaluated to true if
the latter is evaluated to false.

Terminal symbols and functions will be combined randomly in the construction of
the initial population. See figure 4. The tree in the figure represents the boolean
function J OR (M AND A). For optimization reasons, the transition rules are stored
as Lisp-like ones, with polish inverse notation. The expression in figure 4 is stored
this way:

OR(J,AND(M,A)). (6)

1.5. Fitness Function

In order to let the genetic process end up with a solution to any problem, it is
necessary to define the Fitness Function. In the situation we are dealing with, the
process, for each logical expression, S, is this:

1. Let K be the desired value for Langton parameter, A.

2. One hundred thousands different fitness cases are generated (it could be a
greater number, as this is just a parameter of the GP system). Each one
of these strings consists on 27 O's or l's randomly generated. Let Fc be the
number of cases.

3. S is evaluated on each fitness case. Each one of these evaluations will lead to
a transition to true (1) or false (0). Let K\ be the number of evaluations of
S that give true as result, and Ki the number of negative evaluations.

4. We define the Fitness Function of a logical expression, S , F(S), as:

F(S) = \K-(K1/FC (7)

This is exactly the meaning of Langton Parameter. This way, we have an
estimation of the value of the parameter, that is used by the genetic system
to evolve the complete population towards this value. See figure 5.

A B
0 0 I

1 0 0
0 0 0

I 1 1

Z x
10

11
10

10

100000 different test cases

GP Expression
(Transition rule)

Kl Transitions to 1 (true)

K2 Transitions to 0 (false)

\

Kl /100000 = Estimation of Langton Parameter

Figure 5: Estimation of A for fitness function calculation.

356 S. Garcia Carbajal

1.6. Parameter Set, and Termination Criterion

Our goal is to obtain populations with any desired value for Langton Parameter,
in order to measure Entropy and Mutual Information at each value of A. Because
of this, our Termination Criterion is not to have one individual in the population
that satisfies X = K, but have a complete population with all the individuals as
adapted as possible. Because of that, our evolutionary process will stop after a
huge number of generations, G, empirically determined, is reached. Population
size is M=1000 individuals, and we use a depth limit of 10 levels for the randomly
generated individuals included in the initial population. See table 1 for complete
set of parameters.

After deciding a way to represent transition rules, our Genetic Programming
strategy to obtain expressions with any desired value of Langton Parameter consist
of:

1. Generate a random initial population of expressions.

2. Calculate the fitness of each expression (that is, how close is each one of them
to the desired value of A.

3. Apply genetic operators (reproduction, crossover and mutation) to evolve pop­
ulation.

4. Stop when Termination criterion is satisfied. In this case, when maximum
number of generations is reached.

When the genetic process is finished, we have populations with a known ap­
proximated value for A. Each individual is represented by a boolean function, or
tree, whose evolution, and statistical properties can be studied. An example of this
boolean expressions is shown below:

and(not(M),not(and(and(not(B),W),and(K,H))))

2. Parallelization

2.1. Experimental Platform

The Sunfire E15K of Edinburgh Parallel Computing Center (EPCC) was used
as the experimental platform. It consist of a four CPU front end for developing
and compilation, and a backend of forty eight CPUs for execution of jobs. The
two domains are running Solaris 9 and have the latest Sun Forte Development
package and HPC Cluster Tools installed. The Message Passing and Shared Memory
programming paradigms are supported.

2.2. Parallelization Strategy

Cellular Automata are inherently parallel, as they evolve in a discrete way,
following the same transition rule. Parallelizing a 3D Cellular Automata is so
direct as dividing the grid between the number of available processors, and collect
the final result when all of them have finished. See figure 6. Process and Processor

Parallelizing Three Dimensional Cellular Automata with OpenMP 357

are synonyms in this context. If an MPI approach is chosen, each processor will
apply the transition rule on a section of the whole Cellular Automaton. If the
system is developed using POSIX threads, or OpenMP, each process will do this
work, and the main process will break, deliver, and collect the new state of the grid.

In an OpenMp program, the programmer specifies, roughly speaking, what
pieces of the code can be run in parallel. The number of processes executing these
parallel constructs need not be hardwired. Therefore, adjusting the number of pro­
cessors at run time can be done transparently. Furthermore, OpenMp's execution
model, consisting of a succession of sequential code an parallel constructs, seems to
be appropriate for our 3D Cellular Automata schema.

Our parallelization strategy is based on the OpenMP parallel for construct [1],
whose pseudo code is shown below:

- code to be executed only by the master -
pragma omp parallel for
for (i=0; i<MAX; i++)

{
- the iterations of this loop are divided among

}
- code to be executed only by the master -

all processes -

What we do is (see figure 6) to break the Cellular Automaton into so many pieces
as the number of threads (i.e. processors) we are using. Each one of these pieces is
passed to one thread, and after applying the transition rule, the whole automaton
is gathered together again. This approach is very sensible to the complexity of the
transition rule, but permits us reduce the execution time by a factor of five using
ten processors, as we explain in section 3.

3. Results

Experiments were carried out using simulation periods of 100, 1000,10000 and
100000 steps. For each simulation period, we used sets of 1, 2, 5, 10, 20 and 25
processors. During the execution of the tests, the maximum number of threads per
user was limited to a maximum of 10, but the experiments were performed anyway
for 15, 20, and 25 processors.

Table 2 summarizes the results obtained for each number of processors, including
Average execution time and Standard Deviation. Figure 7 shows the execution time,
and figure 8 shows speedup (left) and efficiency (right) obtained for each experiment.

The first remarkable aspect about the execution time is that the process scales
reasonably well up to ten processors; for larger numbers of multi thread execution,
the efficiency decays very fast. In this context, it is important to realize that the
function included on each cell that forms the tridimensional Cellular Automata can
be a very short one, or a large expression, with long execution time due to its
recursive nature.

The second thing that comes up immediately is that the speedup is constant for
each number of processors, independently of the length of the simulation period.
This is not true for larger Cellular Automata ([150]x[150]x[150]), but we don't need

358 S. Garcia Carbajal

Process N- l

Fig. 6. Parallelization of Cellular Automata evolution.

so many cells for our Entropy calculations.
Table 3 shows a relative measure of the parallel efficiency achieved with each

number of processors. To calculate this, we call Sp the pseudo speedup computed
with respect to the execution time achieved using only one processor. We will call
Ep the corresponding relative efficiency. Again, we can see that we can reduce
the execution time by a factor of five in all cases, using ten processors. For higher
numbers of processors the relative efficiency goes down under 20%.

Table 1: Induction of Transition rules. Parameter set.
Objective
Objective

Function Set
Terminal Set

Fitness Cases (Fc)
Fitness Function
Population Size

Generations
Mutation Rate

Maximum Initial Depth
Termination Criterion

Find Transition Rules with a fixed A
Automata with a fixed Langton Parameter. (A = K)

AND, OR, NOT, XOR
{A..Z}Ux

100000
[K-iKi/FJl

M=1000
G=200

0.05
10

Maximum number of Generations reached

Parallelizing Three Dimensional Cellular Automata with OpenMP 359

0.6

O.S5

0.5

0.45

0.4

0.35

0.3

0,25

0.2

0.15

Parallelizalion Hesulls. 100 Staps simulation

' ' '

! • -

^ ^ _ _ _ _

"• H

-:
-

-

Para He lizalion Results. 1000 Steps simulation

10 15

Number of Processors

100 steps — i —

Parallelization Results, 10000 Steps simulation

Number of Processors

10000 steps -

Number a I Processors

1000 steps — i —

Parallelization Results. 100000 Steps simulation

550

500

450

| 4K}

S 350
3

3 3W

250

200

150

__̂

Number ol Processors

100000 steps -

Figure 7: Parallelization Results. Execution Times (mean).

//
//

//

?
(r - -

Speedup Results.

^ ^ S j j ^ :
/ i - ^ - ^ 3 ^ -

| j

1-

^^~ |
' '̂ SS

• - J

:

1

0.9

0.6

0.7

| O.G

S o ,
0.4

0.3

0.2

Efficiency Results,

N^/V

\

"!"" |

•

-
-

-

-
1 —-4

Number of Processors Number of Processors

Figure 8: Parallelization Results. Speedup (left). EfRciency (right).

1
2
5
10
20
25

100

M
0.591
0.336
0.155
0.108
0.139
0.178

a

0.0153
0.0661
0.0045
0.0012
0.0026
0.0046

Table 2: Parallelization Results.
1000

V
5.835
3.099
1.417
1.012
1.370
1.897

a

0.000576
0.010867
0.037420
0.100611
0.366752
0.498086

10000
M

58.730
31.079
14.279
10.345
14.268
19.108

a
0.01577
0.04798
0.11885
0.10635
0.20432
0.42188

100000
M

587.3
310.878
142.404
101.929
139.903
188.698

a
0.110
0.407
0.640
0.649
1.832
4.645

360 S. Garcia Carbajal

Table 3: Parallelization Results. Efficiency.

Processors

1
2
5
10
20
25

100 Steps.
CPU time

0.591
0.336
0.155
0.108
0.139
0.178

SF

1
1.756
3.796
5.428
4.251
3.316

EP

1
0.878
0.759
0.542
0.212
0.132

Processors

1
2
5
10
20
25

1000 Steps
CPU time

5.835
3.099
1.417
1.012
1.370
1.897

SF

1
1.882
4.115
5.763
4.258
3.074

EP

1
0.941
0.823
0.576
0.212
0.122

Processors

1
2
5
10
20
25

100000 Steps
CPU time

587.3
310.878
142.404
101.929
139.903
188.698

Sy

1
1.889
4.124
5.761
4.197
3.112

EP

1
0.944
0.824
0.576
0.209
0.124

Processors

1
2
5
10
20
25

10000 Steps
CPU time

58.730
31.079
14.279
10.345
14.268
19.108

SF

1
1.889
4.112
5.676
4.116
3.073

EP

1
0.944
0.822
0.567
0.205
0.122

4. C o n c l u s i o n s

We have employed the parallel for construct, one of the basic OpenMP features
to decompose, evolve, and gather pieces of 3D Cellular Automata . We are using a
radius of 1, tha t implies a neighborhood of 27 cells. For larger neighborhoods the
evaluation of recursive expressions, and the modification of the 3D grid would be
extremely slow. The use of or approach will let us study the behavior and statistical
properties of 3D Cellular Automata using neighborhood radius greater than 1, as
we can reduce the execution times by a factor of five. At the moment, and in the
machine used to run these experiments, the optimal number of processor is ten.

5. A c k n o w l e d g m e n t s

This work was carried out under the HPC-EUROPA project (RII3-CT-2003-
506079), with the support of the European Community - Research Infrastructure
Action - under the FP6 "Structuring the European Research Area" Program.

6. R e f e r e n c e s

[1] OpenMP Architecture Review Board. OpenMP C and C+ + Application Program
Interface. OpenMP Architecture Review Board, 2005.

[2] Nichael Lynn Cramer. A representation for the adaptive generation of simple sequential
programs. In John J. Grefenstette, editor, Proceedings of an International Confer­
ence on Genetic Algorithms and the Applications, pages 183-187, Carnegie-Mellon
University, Pittsburgh, PA, USA, 24-26 July 1985.

[3] R.M. Friedberg. A learning machine: Part i. IBM J. Research and Development,
2(1):2-13, 1958.

Parallelizing Three Dimensional Cellular Automata with OpenMP 361

[4] S. Garcia and F. Gonzlez. Evolutive introns: A non-costly method of using introns in
GP. Genetic Programming and Evolvable Machines, 2(2):111—122, June 2001.

[5] J. R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[6] C. Langton. pages 1-2, 1988.
[7] C.G. Langton. Computation at the edge of chaos: phase transitions and emergent

computation. Physica D, 42:12-37, 1990.
[8] Claude E. Shannon and Warren Weaver. The mathematical theory of communication.

The University of Illinois Press, pages 1-2, 1949.
[9] Mosh Sipper. Machine nature: The Coming Age of Bio-inspired Computing.

McGraw-Hill, 2002.
[10] T. Toffoli and N. Margolus. Cellular Automata Machines. The MIT Press, Cam­

bridge, Massachusetts, 1987.
[11] J. von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press,

Illinois, Illinois, 1966.
[12] S. Wolfram. Universality and complexity in cellular automata. Physica D, 10:1-35,

1984.
[13] S. Wolfram and N. H. Packard. Two-dimensional cellular automata. ,/. Stat. Phys.,

38:901-946, 1985.

