Auxiliar 7: Teoría de la Medida

Profesor: Jaime San Martín Auxiliares: Mauro Escobar - Felipe Subiabre 4 de octubre de 2010

P1. (i) Sea (X, \mathcal{F}, μ) esp. de medida, $f \in L^1(X, \mathcal{F}, \mu)$ y ν medida con signo definida por $\nu(A) = \int_A f \ d\mu$. Pruebe que para todo $A \in \mathcal{F}$ se cumple

$$|\nu|(A) = \int_A |f| \ d\mu.$$

(ii) Sea ν una medida con signo σ -finita en el espacio medible (X, \mathcal{F}) . Pruebe que $\frac{\partial \nu}{\partial |\nu|}$, la derivada de Radon-Nikodým de ν con respecto a $|\nu|$, satisface

$$\left|\frac{\partial \nu}{\partial |\nu|}\right| = 1 \qquad |\nu| - \mathrm{ctp} \ \mathrm{en} \ X.$$

P2. Sea (X, \mathcal{F}) espacio medible. Sea $T: X \to X$ función $\mathcal{F} - \mathcal{F}$ -medible y μ medida de probabilidad. Se dice que μ es T-invariante si $\mu \circ T^{-1} = \mu$. Se dice que μ es ergódica si es T-invariante y

$$\forall A \in \mathcal{F}$$
 $\mu(A \triangle T^{-1}(A)) = 0 \Rightarrow \mu(A) = 0 \lor \mu(A) = 1.$

Consideremos el conjunto de las medidas de probabilidad T-invariantes

$$\mathcal{M}_T(X) = \{ \mu : \mathcal{F} \to [0,1] \mid \mu(X) = 1, \ \mu \text{ es } T - \text{invariante} \}.$$

- (i) Pruebe que $\mathcal{M}_T(X)$ es un conjunto convexo.
- (ii) Pruebe que μ es ergódica ssi μ es un punto extremo de $\mathcal{M}_T(X)$.
- (iii) Si μ y ν son ergódicas y $\mu \neq \nu$, entonces $\mu \coprod \nu$.
- **P3.** Consideremos ν una medida con signo finita sobre ([0, 1], \mathcal{B} [0, 1]), tal que

$$\nu(\{0\}) = \nu([0,1]) = 0.$$

Si definimos $F(x) = \nu([0, x])$, entonces F es de variación acotada y continua por la derecha. Pruebe que si f es de clase \mathcal{C}^1 , entonces

$$\int_{[0,1]} f \ d\nu = -\int_{[0,1]} f'(x) F(x) \ dx.$$

1