Auxiliar 15: Teoría de la Medida

Profesor: Jaime San Martín Auxiliares: Mauro Escobar - Felipe Subiabre 10 de diciembre de 2010

P1. Considere una variable aleatoria T a valores en \mathbb{N} , de ley geométrica

$$\mathbb{P}\{T=n\} = a(1+a)^{-n-1}, \quad n \in \mathbb{N},$$

donde a > 0 está fijo. Sea \mathcal{F}_n la tribu más pequeña que hace medible a $T \wedge n$, $n \in \mathbb{N}$.

- (i) Verifique que la familia de tribus $(\mathcal{F}_n)_n$ es una filtración, es decir, $\mathcal{F}_n \subseteq \mathcal{F}_{n+1}$ para $n \ge 0$. Muestre que \mathcal{F}_n está engendrada por una partición de n+1 átomos.
- (ii) Demuestre que, para todo n,

$$\mathbb{E}(\mathbf{1}_{\{T \ge n+1\}} | \mathcal{F}_n) = (1+a)^{-1} \mathbf{1}_{\{T \ge n\}}.$$

(iii) Deduzca que

$$\mathbb{E}(T \wedge (n+1)|\mathcal{F}_n) = T \wedge n + (1+a)^{-1} \mathbf{1}_{T > n}.$$

(iv) ¿Para qué valores de λ el proceso

$$X_n = \lambda(T \wedge n) + \mathbf{1}_{\{T > n\}}, \quad n \in \mathbb{N},$$

es una martingala con respecto a la filtración $(\mathcal{F}_n)_n$?

(v) Considerando los valores de λ anteriores, calcule la esperanza condicional $\mathbb{E}((X_{n+1} - X_n)^2 | \mathcal{F}_n)$. Deduzca que el proceso

$$X_n^2 - a(T \wedge (n-1)), \quad n \ge 1,$$

es una martingala con respecto a la filtración $(\mathcal{F}_n)_n$.

P2. Sean $(\Omega, \mathcal{F}, \mathbb{P})$ espacio de probabilidad, $(M_n)_{1 \leq n \leq k}$ martingala con respecto a la filtración $(\mathcal{F}_n)_{1 \leq n \leq k}$ y $(H_n)_{1 \leq n \leq k}$ una familia de variables aleatorias sobre $(\Omega, \mathcal{F}, \mathbb{P})$ tal que H_n sea \mathcal{F}_{n-1} -medible, para $n = 1, \ldots, k$ (con la convención $\mathcal{F}_0 = \{\phi, \Omega\}$).

Sea a > 0, definimos $T = \min\{1 \le n \le k - 1 : |H_{n+1}| > a\}$ y T = k si el conjunto donde se toma el mínimo es vacío. Demuestre que T es un tiempo de parada para la filtración $(\mathcal{F}_n)_{1 \le n \le k}$. Definimos, para $n = 1, \ldots, k$,

$$X_n = \sum_{1 \le i \le T \land n} H_i(M_i - M_{i-1}).$$

Demuestre que $(X_n)_{1 \le n \le k}$ es una martingala con respecto a $(\mathcal{F}_n)_{1 \le n \le k}$.