Auxiliar 9: Teoría de la Medida

Profesor: Jaime San Martín Auxiliares: Mauro Escobar - Felipe Subiabre 18 de octubre de 2010

P1. Sea $f_n(x) = \frac{1}{\sqrt{\pi}} \operatorname{sen}(nx)$. Pruebe que $f_n \to 0$ sobre el espacio $L^2([0, 2\pi], \lambda)$, donde λ es la medida de Lebesgue. Pruebe además que $(f_n)_n$ no converge ni ctp ni en medida.

P2. [Desigualdad de Minkowsky]

Sean (X, \mathcal{T}, μ) e (Y, \mathcal{F}, ν) dos espacios de medida σ -finitos y $f: X \times Y \to \mathbb{R}$ una función $\mathcal{T} \otimes \mathcal{F}$ -medible. Pruebe que si $f \geq 0$ y $1 \leq p < \infty$, entonces

$$\left[\int \left(\int f(x,y) \ d\nu(y) \right)^p d\mu(x) \right]^{\frac{1}{p}} \le \int \left[\int f(x,y)^p \ d\mu(x) \right]^{\frac{1}{p}} d\nu(y)$$

P3. [Desigualdades de Young]

(i) Sean $f \in L^p$ y $g \in L^1$, con $1 \le p < \infty$. Mostrar que (f * g)(x) existe ctp, $f * g \in L^p$ y

$$||f * g||_{L^p} \le ||f||_{L^p} \cdot ||g||_{L^1}$$
.

(ii) Si $\frac{1}{p} + \frac{1}{q} = 1$, sean $f \in L^p$ y $g \in L^q$. Entonces (f * g)(x) existe $\forall x, f * g$ es acotada y uniformemente continua,

$$||f * g||_{L^{\infty}} \le ||f||_{L^{p}} \cdot ||g||_{L^{q}}.$$

P4. [Convolución de medidas]

Sea $\mathcal{M} = \{ \mu : \mu \text{ es medida con signo sobre } (\mathbb{R}, \mathcal{B}) \text{ y } |\mu|(\mathbb{R}) < +\infty \}$, donde $|\mu|$ es la variación total. Para $\mu, \lambda \in \mathcal{M}$ definiremos su convolución $\mu * \lambda$ como

$$(\mu * \lambda)(A) := (\mu \otimes \lambda)(B)$$

para todo $A \in \mathcal{B}$, donde $B := \{(x, y) : x + y \in A\}$.

(i) Demuestre la fórmula

$$(\mu * \lambda)(A) = \int \mu(A - t) \ d\lambda(t)$$

para toda $\lambda, \mu \in \mathcal{M}$ y todo $A \in \mathcal{B}$, donde $A - t := \{x - t : x \in A\}$.

- (ii) Demostrar que $\mu * \lambda \in \mathcal{M}$ y que $\|\mu * \lambda\| \leq \|\mu\| \cdot \|\lambda\|$.
- (iii) Demostrar que $\mu * \lambda$ es la única medida $\nu \in \mathcal{M}$ que cumple

$$\int f \ d\nu = \iint f(x+y) \ d\mu(x) \ d\lambda(y)$$

para toda $f \in \mathcal{C}_0(\mathbb{R})$.