Auxiliar 2: Teoría de la Medida

Profesor: Jaime San Martín Auxiliares: Mauro Escobar - Felipe Subiabre 24 de agosto de 2010

P1. Medida y Dimensión de Hausdorff

Sean $n \in \mathbb{N}, s, \varepsilon > 0$. Definimos $H^s_{\varepsilon} : \mathcal{P}(\mathbb{R}^n) \to \overline{\mathbb{R}}_+$ por:

$$H_{\varepsilon}^{s}(A) := V(s) \cdot \inf \left\{ \sum_{i \in \mathbb{N}} \left(\frac{\operatorname{diam}(C_{i})}{2} \right)^{s} : A \subseteq \bigcup_{i \in \mathbb{N}} C_{i}, \operatorname{diam}(C_{i}) < \varepsilon \,\, \forall i \in \mathbb{N} \right\}$$

Con diam(C) el diámetro del conjunto C con la norma usual de \mathbb{R}^n , y $V(s) = \frac{\pi^{\frac{s}{2}}}{\Gamma\left(1+\frac{s}{2}\right)}$ generaliza el volumen de la bola unitaria s-dimensional para s>0. Un recubrimiento $(C_i)_{i\in\mathbb{N}}$ de A tal que diam $(C_i)<\varepsilon$ $\forall i\in\mathbb{N}$ se llama ε -recubrimiento de A.

- (i) Pruebe que $H^s(A) := \lim_{\varepsilon \to 0^+} H^s_{\varepsilon}(A)$ existe en $\overline{\mathbb{R}}_+$ para $A \in \mathcal{P}(\mathbb{R}^n)$ y define una medida exterior. Ella es conocida como la **Medida de Hausdorff** s-dimensional.
- (ii) Pruebe que la σ -álgebra de conjuntos H^s -medibles contiene a los Borelianos de \mathbb{R}^n .
- (iii) Pruebe que H^0 es la medida cuentapuntos en \mathbb{R}^n
- (iv) Pruebe que si $n=1, H^1$ coincide con la medida de Lebesgue en \mathbb{R} (de hecho se verá más adelante que H^n coincide con la medida de Lebesgue en \mathbb{R}^n para $n \in \mathbb{N}$).
- (v) Pruebe que H^1 no es σ -finita en \mathbb{R}^2 . **Hint:** demuestre que $H^1([0,1] \times \{0\}) = 1$
- (vi) Pruebe que si $H^s(A) < \infty$, entonces $H^t(A) = 0 \ \forall t > s$
- (vii) Pruebe que si $H^s(A) > 0$, entonces $H^t(A) = \infty \ \forall t < s$

Las propiedades anteriores motivan la definición de **Dimensión de Hausdorff** de un conjunto $A \in \mathcal{P}(\mathbb{R}^n)$:

$$\dim_H(A):=\inf\{s\in[0,\infty):H^s(A)=0\}$$

- (viii) Calcule la dimensión de Hausdorff de un conjunto $A \subset \mathbb{R}^n$ numerable.
- (ix) Calcule la dimensión y medida de Hausdorff del conjunto de Cantor usual en R.

P2. Medidas Exteriores Métricas

Dado un espacio métrico (X,d), una medida exterior $\mu^* : \mathcal{P}(X) \to \overline{\mathbb{R}}_+$ se dice **Medida** Exterior Métrica si

$$\forall A, B \in \mathcal{P}(X), \ d(A, B) > 0 \implies \mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$$

(i) Sea U un abierto en X, μ^* una medida exterior métrica en X y $E\subseteq U$, y considere la sucesión de conjuntos

$$E_n := \left\{ x \in X : d(x, U^c) \ge \frac{1}{n} \right\} \cap E$$

Pruebe que $\mu^*(E_n) \nearrow \mu^*(E)$.

(ii) Demuestre que una medida exterior μ^* es medida exterior métrica si y sólo si todo abierto es μ^* -medible (use la parte (i) para probar la implicancia derecha).

Concluya que la medida de Hausdorff de la pregunta anterior es una medida exterior métrica.