pauta controi(1)
oprinita
P1) (a)

$$
\begin{align*}
& \max \quad 500 a+400 e \\
& \frac{3}{4} a+\frac{1}{2} e \leq \frac{41}{2} \quad\{03 a+2 e \leqslant 22 \tag{2}\\
& a \leq 6 \\
& \frac{4}{4} a+e \leq 60 \\
& a \geq 0 e \geq 0
\end{align*}
$$

Coms la pendiente de $c^{+} x=$ cte $\left(-\frac{5}{4}\right)$ entá entre las de las rectas (1) y (2) $\left(\begin{array}{cc}-\frac{1}{4} & y \\ -\frac{3}{2} \\ \text { respect }\end{array}\right)$
por 10 ge la solucián a t' en P.

$$
0 .
$$ Calalemos P : intersecciá de.

$$
\begin{aligned}
3 a+2 e & =22 \text { y } a+4 e
\end{aligned}=24
$$

Se deben hacer 4 antiwctos y 5 eupanados - i se gamará: $500.4+400: 5$

$$
=4000!
$$

Al subir el precio de lon anticuchos,? seguirá siendo solución mientros la pendiente $-\frac{(500+\text { extro })}{400} \geqslant-\frac{3}{2} \Rightarrow 500+$ extra $\leq 3.200=600$
Asi, cuando el precio sea 600, el coniunto solvción sesercel segmento $[P, Q]$
Qes Sa intersección de $a=6, \quad 3 a+2 e=22 \Rightarrow e=2 \Rightarrow$ Solucín $=\{(4)+(1-1) 6,5)+(a-1) 12\}$

$$
=\left\{\begin{array}{c}
\quad \leq \in[0,1] \\
(6-2>, 2-3) \mid \ \in[0,1]
\end{array}\right.
$$

Si se agrega la restricciá $e \leq 2$, el únics pho factible, óptimo er Q, por logip deteñ. pooducir 6 anticuchos.
(b) (i) Coun P en w acotado, existe $d \in P$, i.e. $A d=0 ; d \geq 0 . d \neq 0$. $y \operatorname{tg} C^{\top}(x+t d) \xrightarrow{t \rightarrow \infty}-\infty$. Sypangamos que $\exists y e D$.

$$
\begin{aligned}
\Rightarrow \quad A^{\top} y \leqslant c & \Rightarrow c^{\top} \geqslant y^{\top} A \Rightarrow c^{\top}(x+t d) \geqslant y^{\top} A(x+t d) \\
& \Rightarrow c^{\top}(x+t d) \geqslant \underbrace{g^{\top} A x}_{M>-\infty} \nLeftarrow \text { puen } c^{\top}(x+t d) \xrightarrow{t \rightarrow \infty}-\infty .
\end{aligned}
$$

(ii)

$$
\bar{x}=\left(\frac{B^{-1} b}{O}\right), y \text { adeinás por ser solucion } c^{\top} \bar{x} \leqslant c^{\top} x \forall x \in P \text {. }
$$

Por ser solución (mo deguerada), $\overline{C_{N}}=C_{N}-N^{\top} B^{-T} C_{B} \geqslant 0$
Pew entonces $A^{\top} \bar{y}=A^{\top} B^{-T} C_{B}=\left[\begin{array}{c}B^{\top} \\ N^{\top}\end{array}\right] B^{-\top} C_{B}=\left[\begin{array}{c}C_{B} \\ N^{\top} B_{B} C_{B}\end{array}\right] \leqslant\left[\begin{array}{c}C_{B} \\ C_{N}\end{array}\right]=C$

$$
\Rightarrow \bar{g} \in D .
$$

(iii) $b^{\top} \bar{y}=b^{\top} B^{-T} C_{B}=C_{B}^{\top} B^{-1} b=C^{\top} \bar{x}$

Sean $y_{n}, y_{2} \in D$ tha $\alpha y_{1}+(1-\alpha) y_{2}=B^{-T} C_{B} \quad, \quad \alpha \in(0,1)$

$$
\rightarrow A^{\top} y_{1} \leqslant c, \Delta^{\top} y_{2} \leqslant c
$$

$$
\Rightarrow C_{B} \leqslant B^{\top} y_{1}, C_{B} \leqslant B^{\top} y_{2}
$$

Por otro lado,

$$
\begin{aligned}
S_{i}^{\circ} C_{B}<B^{\top} y_{1} \Rightarrow & \alpha C_{B}+(A-\alpha) C_{B}<C_{B} \neq \Rightarrow C_{B}=B^{\top} y_{1}=B^{\top} y_{2} \\
& \quad \Rightarrow y_{1}=B^{\top} C_{B}=y_{2}
\end{aligned}
$$

