MA3701 Optimización: Análisis Post-optimal

Héctor Ramírez C.

4 de octubre de 2010

Consideremos un problema lineal en su forma estándar

$$\min c^t x$$
; $Ax = b, x > 0$

Una vez resuelto este problema, deseamos saber que ocurre con su solución si algunos parámetros del problema cambian.

En todos los casos consideraremos el siguiente tableau óptimo ($\bar{c}_N^t \ge 0$ y $B^{-1}b \ge 0$):

$$\begin{array}{c|cccc}
\hline
0 & \overline{c}_N^t & -\overline{z} \\
\hline
I & B^{-1}N & B^{-1}b
\end{array}$$

1. Variación en coeficientes de función objetivo: c

Si c cambia a \tilde{c} , se debe recalcular \bar{c}_N^t :

$$\overline{\tilde{c}}_N^t = \tilde{c}_N^t - \tilde{c}_B^t B^{-1} N$$

- \blacksquare Si $\overline{\tilde{c}}_N^t \geq 0$: La solución óptima sigue siendo la misma. La función objetivo toma el valor $\tilde{c}_B^t B^{-1} b$.
- \blacksquare Si $\overline{\tilde{c}}_N^t$ tiene una componente estrictamente negativa: Iterar con Simplex primal.

2. Variación en lado derecho: b

Si b cambia a \tilde{b} , se debe recalcular $B^{-1}b$.

- Si $B^{-1}\tilde{b} \ge 0$: La base óptima no cambia. La solución es ahora $\tilde{x} = [B^{-1}\tilde{b}|0]$ y función objetivo toma el valor $c_B^t B^{-1}\tilde{b}$.
- Si $B^{-1}\tilde{b}$ tiene alguna componente estrictamente negativa: Iterar con Simplex dual.

3. Introducción de nueva variable

Si se introduce una nueva variable x_{n+1} , con coeficiente c_{n+1} y columna A_{n+1} , esta variable se considera no-básica y su costo reducido viene dado por:

$$\bar{c}_{n+1} = c_{n+1} - c_B^t B^{-1} A_{\cdot n+1}$$

Así, el nuevo tableau será:

0	\bar{c}_N^t	\bar{c}_{n+1}	$-\bar{z}$
I	$B^{-1}N$	$B^{-1}A_{\cdot n+1}$	$B^{-1}b$

• Si $\overline{c}_{n+1} < 0$:

- Si $B^{-1}A_{n+1} \leq 0$: Se produce no-acotamiento.
- \bullet Si $B^{-1}A_{n+1}$ tiene alguna componente estrictamente positiva: Iterar con Simplex primal.
- Si $\bar{c}_{n+1} \geq 0$: La solución sigue siendo óptima con $x_{n+1} = 0$.

4. Introducción de nueva restricción

Se agrega la restricción $d^t x \leq d_0$ (o equivalentemente $d^t x + x_{n+1} = d_0$). El problema queda de la forma:

$$\min\left(c^{t},0\right)\cdot\left(x,x_{n+1}\right);\left[\begin{array}{cc}A&0\\d^{t}&1\end{array}\right]\left(\begin{array}{c}x\\x_{n+1}\end{array}\right)=\left(\begin{array}{c}b\\d_{0}\end{array}\right)$$

Se agrega x_{n+1} a la base, por lo que la matriz B y su inversa se calculan como sigue

$$\tilde{B} = \begin{bmatrix} B & 0 \\ d_B^t & 1 \end{bmatrix}$$

$$\tilde{B}^{-1} = \begin{bmatrix} B^{-1} & 0 \\ -d_B^t B^{-1} & 1 \end{bmatrix}$$

Notemos que los costos reducidos y la función objetivo no cambian. Sin embargo, $\tilde{B}^{-1}b$ y $\tilde{B}^{-1}N$ si cambian, obteniendo:

$$\begin{split} \tilde{B}^{-1}N &= \tilde{B}^{-1} \begin{pmatrix} N \\ d_N^t \end{pmatrix} \\ &= \begin{pmatrix} B^{-1}N \\ d_N^t - d_B^t B^{-1}N \end{pmatrix} \end{split}$$

$$\begin{split} \tilde{B}^{-1}b &= \tilde{B}^{-1} \begin{pmatrix} b \\ d_0 \end{pmatrix} \\ &= \begin{pmatrix} B^{-1}b \\ d_0 - d_B^t B^{-1}b \end{pmatrix} \end{split}$$

Así, el nuevo tableau será:

()	\overline{c}_N^t	0	$-\bar{z}$
1	_	$B^{-1}N$	0	$B^{-1}b$
()	$d_N^t - d_B^t B^{-1} N$	1	$d_0 - d_B^t B^{-1} b$

- Si $d_0 d_B^t B^{-1} b < 0$:
 - Si $d_N^t d_B^t B^{-1} N \ge 0$: Se produce no-acotamiento.
 - $\bullet\,$ Si $d_N^t-d_B^tB^{-1}N$ tiene alguna componente estrictamente negativa: Iterar con Simplex dual.
- Si $d_0 d_B^t B^{-1} b \ge 0$: La solución sigue siendo óptima. En la formulación estándar la nueva variable de holgura toma el valor $x_{n+1} = d_0$.