fcfm

Ingeniería Matemática

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE

UNIVERSIDAD DE CHILE
MA3403-4 Probabilidades y Estadística, Primavera 2010

Roberto Cortez Víctor Carmi Darío Cepeda

Pauta Control # 3

P1. a) 1) El estimador del método de los momentos se obtiene igualando el primer momento real de la variable con el primer momento muestral:

$$\frac{1}{\lambda} = \mathbb{E}(X_1) = \bar{X},$$

obteniendo entonces $\hat{\lambda}_M = 1/\bar{X}$. El estimador de máxima verosimilitud se obtiene encontrando el λ que maximiza la verosimilitud de la muestra:

$$L(x_1, \dots, x_n; \lambda) = \prod_{i=1}^n \lambda e^{-\lambda x_i} = \lambda^n e^{-\lambda \sum x_i}.$$

Lo anterior vale para $x_i \ge 0$. Derivando con respecto a λ e igualando a 0, obtenemos:

$$0 = n\lambda^{n-1}e^{-\lambda\sum x_i} - \lambda^n e^{-\lambda\sum x_i} \sum x_i.$$

Despejando λ , se llega a $\lambda = n/\sum x_i$, es decir, $\hat{\lambda}_{MV} = 1/\bar{X}$.

- 2) Ambos estimadores son iguales a $1/\bar{X}$. Por la ley fuerte de los grandes números, sabemos que \bar{X} converge casi seguramente a la esperanza de la variable, $1/\lambda$ en nuestro caso, cuando el tamaño de la muestra crece indefinidamente. O equivalentemente, $1/\bar{X}$ converge casi seguramente a λ , que es lo que queríamos probar.
- b) Los X_i siguen una $\mathcal{N}(\mu, \sigma^2)$, con ambos parámetros desconocidos. Planteamos las hipótesis

 $H_0: \mu = 7$

 $H_1: \mu < 7.$

Trabajamos con el estadístico

$$T = \frac{\bar{X} - 7}{s / \sqrt{n}},$$

el cual, bajo H_0 , se distribuye como una t-student con n-1=24 grados de libertad. Sabiendo que $\sum X_i=172{,}508$ y $s=\sqrt{0{,}04}=0{,}2=1/5$, obtenemos que el valor que toma el estadístico T es:

$$\frac{\frac{172,508}{25} - 7}{\frac{1/5}{\sqrt{25}}} = \frac{\frac{172,508}{25} - 7}{1/25} = 172,508 - 25 \cdot 7 = 172,508 - 175 = -2,492.$$

El p-valor del test corresponde a la probabilidad, bajo H_0 , de obtener un valor al menos tan extremo como el de la muestra. Usando la simetría de la distribución t-student y mirando una tabla, obtenemos:

$$p$$
-valor = $\mathbb{P}(T \le -2.492|H_0) = \mathbb{P}(t_{24} \le -2.492) = \mathbb{P}(t_{24} \ge 2.492) = 0.01$

Es decir, el p-valor es de 1 %. Para $\alpha = 5$ %, esto significa que debemos rechazar H_0 , con lo cual se concluye que la máquina efectivamente está produciendo piezas con grosor inferior a 7 cm.

P2. a) Los datos corresponden a una m.a.s. proveniente de una variable Bernoulli con parámetro p desconocido, para el cual queremos encontrar un intervalo de confianza. Trabajamos con el estadístico

$$Z = \frac{\hat{p} - p}{\sqrt{\hat{p}(1 - \hat{p})}/\sqrt{n}},$$

donde \hat{p} es la proporción observada de caras. Sabemos que Z sigue una distribución aproximadamente normal estándar, con lo cual imponemos:

$$90\% = \mathbb{P}(Z \in [-c, c]) \approx \mathbb{P}(\mathcal{N}(0, 1) \in [-c, c]) = 1 - 2\mathbb{P}(\mathcal{N}(0, 1) > c),$$

es decir, $\mathbb{P}(\mathcal{N}(0,1) > c) = 5\%$. Mirando una tabla, obtenemos que c = 1,65 (también sirve c = 1,64). De acuerdo a los datos, $\hat{p} = 13/25$, con lo cual el intervalo queda:

$$\begin{aligned} -c & \leq Z \leq c \\ -c & \leq \frac{\hat{p} - p}{\sqrt{\hat{p}(1 - \hat{p})}/\sqrt{n}} \leq c \\ \hat{p} - c \frac{\sqrt{\hat{p}(1 - \hat{p})}}{\sqrt{n}} & \leq p \leq \hat{p} + c \frac{\sqrt{\hat{p}(1 - \hat{p})}}{\sqrt{n}} \\ \frac{13}{25} - 1,65 \frac{\sqrt{\frac{13}{25} \frac{12}{25}}}{\sqrt{25}} & \leq p \leq \frac{13}{25} + 1,65 \frac{\sqrt{\frac{13}{25} \frac{12}{25}}}{\sqrt{25}} \\ \frac{13}{25} - \frac{1,65 \cdot \sqrt{156}}{125} & \leq p \leq \frac{13}{25} + \frac{1,65 \cdot \sqrt{156}}{125} \end{aligned}$$

b) Trabajamos con el estadístico

$$W = \frac{(n-1)s^2}{\sigma^2},$$

el cual sabemos que se distribuye como una $\chi^2_{n-1}=\chi^2_5.$ Imponemos entonces:

$$90\% = \mathbb{P}(c \le W \le d) = 1 - \mathbb{P}(W < c) - \mathbb{P}(W > d).$$

Adicionalmente, imponemos simetría de las probabilidades, es decir, $5\% = \mathbb{P}(W < c) = 1 - \mathbb{P}(W \ge c)$ y $5\% = \mathbb{P}(W > d)$. Mirando una tabla, obtenemos c = 1,145 y d = 11,07. El intervalo queda:

$$\begin{split} c &\leq W \leq d \\ c &\leq \frac{(n-1)s^2}{\sigma^2} \leq d \\ \frac{(n-1)s^2}{d} &\leq \sigma^2 \leq \frac{(n-1)s^2}{c} \\ \frac{\sum (X_i - \bar{X})^2}{d} &\leq \sigma^2 \leq \frac{\sum (X_i - \bar{X})^2}{c} \\ \frac{0,14275}{11,07} &\leq \sigma^2 \leq \frac{0,14275}{1,145}. \end{split}$$

- **P3.** a) Sea X la variable que denota el tiempo de espera de la micro.
 - 1) X es una variable no-negativa. Aplicando la desigualdad de Markov:

$$\mathbb{P}(X \ge 15) \le \frac{\mathbb{E}(X)}{15} = \frac{5}{15} = \frac{1}{3}.$$

2) Se tiene que:

$$X \ge 15 \Leftrightarrow X - 5 \ge 10 \Leftrightarrow |X - 5| \ge 10,$$

donde la última equivalencia se debe a que X-5 no puede ser menor que -5, pues X es no-negativa, lo que en particular implica que X-5 no puede ser menor que -10. Aplicando la desigualdad de Chebyshev, tenemos entonces:

$$\mathbb{P}(X \ge 15) = \mathbb{P}(|X - 5| \ge 10) \le \frac{\operatorname{var}(X)}{10^2} = \frac{9}{100}.$$

3) Denotemos X_1, \ldots, X_n los tiempos de espera (en minutos) de los 36 días. Queremos calcular la probabilidad de que la suma de estos tiempos no cubra los 168 minutos de discografía, es decir, $\mathbb{P}(\sum X_i \leq 168)$. Si $\mu = 5$ y $\sigma^2 = 9$ son la esperanza y varianza de la variable, tenemos:

$$\mathbb{P}(\sum X_i \le 168) = \mathbb{P}\left(\frac{\frac{\sum X_i}{n} - \mu}{\sigma/\sqrt{n}} \le \frac{\frac{168}{n} - \mu}{\sigma/\sqrt{n}}\right) \approx \mathbb{P}\left(\mathcal{N}(0, 1) \le \frac{\frac{168}{n} - \mu}{\sigma/\sqrt{n}}\right),$$

donde la última aproximación se debe al teorema del límite central. La cantidad a la derecha de la desigualdad anterior corresponde a:

$$\frac{\frac{168}{n} - \mu}{\sigma/\sqrt{n}} = \frac{\frac{168}{36} - 5}{3/\sqrt{36}} = 2\frac{168 - 180}{36} = -\frac{24}{36} = -\frac{2}{3}.$$

Tenemos entonces:

$$\mathbb{P}(\sum X_i \le 168) \approx \mathbb{P}(\mathcal{N}(0,1) \le -2/3) = \mathbb{P}(\mathcal{N}(0,1) \ge 0.666) = 0.2514,$$

donde la última igualdad se obtiene desde una tabla (también sirve 0,2546). Es decir, la probabilidad de no alcanzar a terminar la discografía es de 25,14%.

b) La región de rechazo del test más potente se obtiene con el lema de Neyman-Pearson. La verosimilitud de la muestra es:

$$L(y;\theta) = \theta y^{\theta-1} \mathbb{1}_{(0,1)}(y).$$

Luego, para $y \in (0,1)$, la región de rechazo buscada viene dada por la expresión:

$$\eta \geq \frac{L(y;\theta_0)}{L(y;\theta_1)} = \frac{\theta_0 y^{\theta_0-1}}{\theta_1 y^{\theta_1-1}} = \frac{1}{\theta_1 y^{\theta_1-1}}.$$

Despejando y, se obtiene $R = \{y : y \ge c\}$, donde $c = (\theta_1 \eta)^{-1/(\theta-1)}$ es una constante. Ésta se determina imponiendo que el error tipo I valga α , es decir:

$$\alpha = \mathbb{P}(Y \in R|H_0) = \mathbb{P}(Y \ge c|H_0) = \int_c^1 \theta_0 y^{\theta_0 - 1} dy = \int_c^1 dy = 1 - c.$$

Luego, la región de rechazo del test más potente a nivel α es $R = \{y : y \ge 1 - \alpha\}$.