Probabilidades y Estadística MA3403

Profesor de Cátedra : Roberto Cortez M. Profesor Auxiliar : Víctor Carmi L.

Darío Cepeda G.

Jueves 14 de Octubre del 2010

Clase Auxiliar 8

- 1. Encuentre la función generadora de momentos de una variable aleatoria $exp(\lambda)$.
- 2. En una tienda del mall, los tiempos entre dos llegadas de personas se distribuyen según una $exp(\lambda)$ y son independientes unos de otros. Sea S_n el tiempo que transcurre para que lleguen n personas. Recuerde que por la pérdida de memoria de la exponencial puede suponer que al inicio llegó una persona que no se considera dentro de las n personas. Encuentre la distribución de S_n .
- 3. Sea $X \sim N(\mu, \sigma^2)$. Calcule $\mathbb{E}(e^X)$.
- 4. Calcule la f.g.m. de una χ_1^2 .
- 5. Encontraremos la distribución de velocidades de Maxwell, para ello seguiremos los siguientes pasos:
 - a) Sea X una variable aleatoria con densidad de probabilidad $f_X(x)$. Encuentre la densidad de probabilidad $f_Y(y)$ de la variable aleatoria $Y = X^2$
 - b) Encuentre explícitamente la densidad de Y para el caso en que X sigue una N(0,1) e identifique la distribución de Y. Hint: $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.
 - c) Encuentre la distribución de $T^2=X_1^2+X_2^2+\ldots+X_k^2$ si las X_i son N(0,1) independientes.
 - d) Encuentre la densidad de probabilidad $f_T(t)$ de T.
 - e) Considere X, Y y Z con distribución $N(0, \sigma^2)$ y encuentre la densidad de $V = \sqrt{X^2 + Y^2 + Z^2}$. Tome $\sigma = \sqrt{\frac{KT}{M}}$. Esta distribución se conoce como la distribución de Maxwell-Boltzmann.