Universidad de Chile

Facultad de Ciencias Físicas y Matemáticas

Departamento de Ingeniería Matemática

Auxiliar #1 Probabilidades

Profesor: Alejandro Maass.

Auxiliares: Raimundo Briceño, Gonzalo Contador.

P1. Principio de Inclusión-Exclusión

Sea $(\Omega, \beta, \mathbb{P})$ espacio de probabilidad y $A_1...A_n \in \beta$. Muestre que

$$\mathbb{P}(\bigcup_{i=1}^{n} A_i) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{|J|=k} \mathbb{P}(A_J)$$

Donde J es un subconjunto de $\{1...n\}$ y $A_J := \bigcap_{j \in J} A_j$.

P2. Pruebe que toda función de distribución de probabilidad se puede escribir como una combinación convexa entre una función de distribución absolutamente contínua y una función de distribución discreta.

P3. Pruebe que la intersección de sigma álgebras es una sigma álgebra. ¿Qué puede decir sobre la unión de sigma álgebras?

P4. Sea $(\Omega, \beta, \mathbb{P})$ espacio de probabilidad y $A \in \beta$ un conjunto tal que $\mathbb{P}(A) > 0$. Definimos la aplicación

$$\mathbb{Q}:\beta\longrightarrow [0,1]$$

$$B \mapsto \mathbb{Q}(B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)}$$

Muestre que \mathbb{Q} es una medida de probabilidad bien definida sobre β .

P5. La ley de los eventos improbables

Diremos que la variable aleatoria X sigue una distribución de Poisson de parámetro $\lambda>0$ si se tiene

$$\mathbb{P}(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

para k entero no negativo. De igual manera, diremos que Y sigue una distribución Binomial(n,p), donde $n\in\mathbb{N},\,p\in(0,1)$ si se verifica

$$\mathbb{P}(Y=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

para $k \in \{0,1...n\}$ Sea $\lambda \in (0,1)$. Consideremos una sucesión $(X_n)_{n \in \mathbb{N}}$ de variables aleatorias, $X_n \sim Binomial(n,\frac{\lambda}{n})$, y una variable aleatoria $X \sim Poisson(\lambda)$. Pruebe que

$$\lim_{n\to\infty} \mathbb{P}(X_n = k) = \mathbb{P}(X = k)$$