Auxiliar 13 - Cálculo Avanzado y Aplicaciones

Escuela de Ingeniería, Universidad de Chile Martes 16 de Noviembre, 2010

Profesor Cátedra: Jaime H. Ortega Profesores Auxiliares: Pía Francisca Leyton - Matías Godoy Campbell

Pregunta 1. Pruebe que se tienen los siguientes resultados:

a) Si
$$f(x) = \mathbf{1}_{[-a,a]}$$
 con $a > 0$ Entonces $\mathcal{F}(f(x))(s) = \sqrt{\frac{2}{\pi}} \frac{\sin(as)}{s}$

b) Si
$$f(x) = \frac{x}{(1+x^2)^2}$$
 Entonces $\mathcal{F}(f(x))(s) = -\frac{i}{2}\sqrt{\frac{\pi}{2}}se^{-|s|}$

c) Si
$$f(x) = \frac{a}{a^2 + x^2}$$
 Entonces $\mathcal{F}(f(x))(s) = \sqrt{\frac{\pi}{2}}e^{-a|s|}$

d) Deduzca de c) que si
$$f(x) = \frac{a^3 - ax^2}{(a^2 + x^2)^2}$$
 Entonces $\mathcal{F}(f(x))(s) = \sqrt{\frac{\pi}{2}}a|s|e^{-a|s|}$

Pregunta 2. Usando Transformada de Fourier pruebe las siguientes identidades:

a) Identidad de Plancherel:

$$\int_{-\infty}^{\infty} f(y) \overline{g(y)} dy = \int_{-\infty}^{\infty} \hat{f}(s) \overline{\hat{g}}(s) ds$$

b) Deduzca de lo anterior la Identidad de Parseval:

$$\int_{-\infty}^{\infty} |f(y)|^2 dy = \int_{-\infty}^{\infty} |\hat{f}(s)|^2 ds$$

c) Pruebe que si $\hat{f}(s) = 0 \ \forall s$ entonces $f \equiv 0$

Suponga que todas las funciones consideradas decaen lo suficientemente rápido en infinito de modo que todas las integrales consideradas sean convergentes.

Pregunta 3. En esta pregunta utilizaremos Transformada de Fourier para resolver la Ecuación de ondas en una dimensión con condiciones iniciales:

Queremos determinar $u(x,t) \in \mathcal{C}^2(\mathbb{R}) \times \mathcal{C}^2(\mathbb{R}_+)$ tal que resuelva:

$$(EO) \begin{cases} u_{tt} - c^2 u_{xx} = 0 & x \in \mathbb{R}, \ t > 0 \\ u(x,0) = f(x) & x \in \mathbb{R} \\ u_t(x,0) = g(x) & x \in \mathbb{R} \end{cases}$$

Para esto, considere los siguientes pasos:

- a) Aplique Transformada de Fourier en la variable x en (EO), resuelva la EDO resultante.
- b) Aplicando propiedades de la Transformada y Antitransformada de Fourier concluya la conocida fórmula de D'Alambert:

$$u(x,t) = \frac{f(x-ct) + f(x+ct)}{2} + \frac{1}{2c} \int_{x-ct}^{x+ct} g(y)dy$$

Pregunta 4. (Desigualdad de Heisemberg) Para $b, \beta \in \mathbb{R}$ Pruebe que se tiene:

$$\int_{\mathbb{R}} (x-b)^2 |f(x)|^2 dx \int_{\mathbb{R}} (s-\beta)^2 |\hat{f}(s)|^2 ds \ge Cte \cdot ||f||_2^4$$

Note que la desigualdad es trivial si cualquiera de las integrales es infinita. En caso contrario, note que puede reducirse al caso $b = \beta = 0$ considerando $g(x) = e^{-i\beta x} f(x - b)$. ¿Cuándo se tiene la igualdad?

Esta desigualdad es análoga al principio de incertidumbre de la mecánica cuántica, nos dice que f y \hat{f} no pueden ser localizadas simultaneamente alrededor de los puntos b y β

<u>Indicación</u>: Recuerde la desigualdad de Cauchy-Schwarz:

$$\left| \int f(x)g(x)dx \right| \le \left(\int |f(x)|^2 dx \right)^{1/2} \left(\int |g(x)|^2 dx \right)^{1/2}$$

Donde la igualdad se alcanza si y sólo si $\exists \alpha$ tal que $f(x) = \alpha g(x)$