MA2001-1 Cálculo en Varias Variables. Semestre 2010-2

Profesor: Marcelo Leseigneur Auxiliares: Víctor Verdugo y Sebastián Bustamante

Control 2

Miércoles 27 de Octubre 2010

P1. Sea $g: \mathbb{R}^n \to \mathbb{R}^n$ una función diferenciable y tal que existe $k \in (0,1)$ para el cual $||Dg(x)||_{\mathcal{L}(\mathbb{R}^n,\mathbb{R}^n)} \leq k$, para todo $x \in \mathbb{R}^n$. Sea f(x) = x + g(x):

- a) Pruebe que $||f(x) f(y)|| \ge (1 k)||x y||$, para todo $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$.
- b) Deduzca que f es inyectiva y que $\lim_{\|x\|\to\infty} \|f(x)\| = +\infty$.
- c) Argumente la diferenciabilidad de f y pruebe que

$$\langle Df(x)h, h \rangle \ge (1-k)||h||^2$$

para todo $(x,h) \in \mathbb{R}^n \times \mathbb{R}^n$.

Indicación: Recuerde la desigualdad de Cauchy-Schwarz

- d) Sea $y \in \mathbb{R}^n$ fijo y $u : \mathbb{R}^n \to \mathbb{R}$ definida por $u(x) = ||f(x) y||^2$, para todo $x \in \mathbb{R}^n$. Pruebe que u es diferenciable y calcule Du(x) en función de Df(x).
- e) Pruebe que existe un $x_0 \in \mathbb{R}^n$ tal que $\inf_{x \in \mathbb{R}^n} u(x) = u(x_0)$.

Indicación: Si $h: \mathbb{R}^n \to \mathbb{R}$ es una función contínua y tal que $\lim_{\|x\| \to \infty} h(x) = +\infty$, entonces existe $x_0 \in \mathbb{R}^n$ tal que $\inf_{x \in \mathbb{R}^n} h(x) = h(x_0)$.

- f) Muestre que $f(x_0) = y$ y concluya que f es biyectiva.
- **P2.** i) Sea $f: \mathbb{R}^2 \to \mathbb{R}$ la función definida por:

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

- a) Estudie la continuidad de f en \mathbb{R}^2 .
- b) Encuentre las derivadas parciales de f y estudie la continuidad de ellas en \mathbb{R}^2 .
- c) Estudie la diferenciabilidad de f en \mathbb{R}^2 .
- d) Muestre que $\frac{\partial f}{\partial x}(0,y) = -y, \forall y \in \mathbb{R}.$
- e) Muestre que $\frac{\partial f}{\partial u}(x,0) = x, \forall x \in \mathbb{R}.$
- f) ¿Es f de clase \mathcal{C}^2 ? Justifique.
- ii) Rehaga la demostración del Teorema de Schwarz. Justifique la igualdad de los límites iterados, y concluya.
- iii) a) Considere la función:

$$F(x_1, x_2, y) = y \arctan(1 - y^2) + 3x_1 + 5y - 8x_2^3 = 0$$

y el punto $(x_1, x_2, y) = (1, 1, 1)$. Pruebe que se satisfacen las condiciones del teorema de la Función Implícita y calcule $\frac{\partial y}{\partial x_1}(1, 1)$, $\frac{\partial y}{\partial x_2}(1, 1)$.

b) Sea $f: \mathbb{R}^5 \to \mathbb{R}^2$ tal que

$$f(u, v, w, x, y) = \begin{pmatrix} uvw + x + y + 2 \\ ux - vy + w^2 \end{pmatrix}$$

Muestre que se puede despejar (x, y) en términos de (u, v, w) entorno a $(u_0, v_0, w_0) = (1, 2, 3)$. Calcule $\frac{\partial x}{\partial v}(1, 2, 3)$ y $\frac{\partial y}{\partial w}(1, 2, 3)$.

P3. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ de clase $C^2(\mathbb{R}^2)$ y considere la siguiente ecuación en derivadas parciales:

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial u^2} \tag{1}$$

- a) Sea $\phi: \mathbb{R}^2 \to \mathbb{R}$ tal que $\phi(x,y) = (u,v) = (x+y,x-y)$ un cambio de variables. Usando que $f(x,y) = g(\phi(x,y))$ para alguna función g, calcule $\frac{\partial f}{\partial x}$ y $\frac{\partial f}{\partial y}$ en términos de g.
- b) Calcule $\frac{\partial^2 f}{\partial x^2}$ y $\frac{\partial^2 f}{\partial y^2}$ en términos de g.
- c) Asumiendo que f satisface (1), pruebe que

$$\frac{\partial^2 f}{\partial x^2} - \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 g}{\partial u \partial v} = 0$$

- d) Determine la forma general para $g: \mathbb{R}^2 \to \mathbb{R}$ que satisface $\frac{\partial^2 g}{\partial u \partial v} = 0$.
- e) Encuentre una solución particular para (1), que no sea la función nula ni un polinomio.

TIEMPO: 3 HORAS