Cálculo en Varias Variables Auxiliar 10 - Primavera 2010

Prof: Marcelo Leseigneur Aux: Sebastián Bustamante F. & Víctor Verdugo S.

P1. Sea $F(u,v)=f(uv,\frac{u^2-v^2}{2}),$ donde $f:\mathbb{R}^2\to\mathbb{R}$ es una función diferenciable. Verifique que

$$(u^2+v^2)\left[\left(\frac{\partial f}{\partial x}\right)^2+\left(\frac{\partial f}{\partial y}\right)^2\right]=\left(\frac{\partial F}{\partial u}\right)^2+\left(\frac{\partial F}{\partial v}\right)^2.$$

P2. Sea $F: \mathbb{R}^3 \to \mathbb{R}^3$ definida por:

$$F(u, v, w) = \begin{pmatrix} f_1(u, v, w) \\ f_2(u, v, w) \\ f_3(u, v, w) \end{pmatrix},$$

donde $f_i: \mathbb{R}^3 \to \mathbb{R}, \ i = 1, 2, 3.$

Se define la divergencia de F como:

$$div(F) = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}.$$

Por otro lado, sea $G: \mathbb{R}^3 \to \mathbb{R}^3$ definida por:

$$G(r, \theta, z) = \begin{pmatrix} r \cos \theta \\ r \sin \theta \\ z \end{pmatrix}.$$

Se definen además los vectores unitarios $\hat{r}, \hat{\theta}, \hat{z}$ como sigue:

$$\hat{r} = \frac{\frac{\partial G}{\partial r}}{\|\frac{\partial G}{\partial r}\|}, \hat{\theta} = \frac{\frac{\partial G}{\partial \theta}}{\|\frac{\partial G}{\partial \theta}\|}, \hat{z} = \frac{\frac{\partial G}{\partial z}}{\|\frac{\partial G}{\partial z}\|},$$

donde $\frac{\partial G}{\partial r}$, $\frac{\partial G}{\partial \theta}$, $\frac{\partial G}{\partial z}$ son vectores que se obtienen derivando parcialmente a G componente a componente. Considere, por último, $H:\mathbb{R}^3\to\mathbb{R}^3$ definida como:

$$H(r,\theta,z) = h_1(r,\theta,z)\hat{r} + h_2(r,\theta,z)\hat{\theta} + h_3(r,\theta,z)\hat{z}.$$

- i) Encuentre los vectores unitarios $\hat{r}, \hat{\theta}$ y $\hat{z}.$
- ii) Deduzca que H se puede escribir como:

$$H(r, \theta, z) = A_1(r, \theta, z)\hat{i} + A_2(r, \theta, z)\hat{j} + A_3(r, \theta, z)\hat{k},$$

donde \hat{i},\hat{j} y \hat{k} representan los vectores unitarios canónicos. Encuentre explícitamente A_1,A_2 y A_3 .

iii) Demuestre que

$$div(H) = \frac{1}{r} \left(\frac{\partial (rh_1)}{\partial r} + \frac{\partial h_2}{\partial \theta} \right) + \frac{\partial h_3}{\partial z}.$$

1

P3. Sean $f: \mathbb{R}^3 \to \mathbb{R}$ y $h: \mathbb{R}^2 \to \mathbb{R}$ dos funciones diferenciables. Si h(x,y) = f(x,y,h(x,y)), encuentre $\frac{\partial h}{\partial x}$ y $\frac{\partial h}{\partial y}$.