Cálculo en Varias Variables Problemas de Continuidad, Espacios Métricos y Espacios Normados

Prof: Marcelo Leseigneur

Aux: Sebastián Bustamante F. - Víctor Verdugo S.

- **P1.** Sea X el conjunto de las n-tuplas ordenadas de ceros y unos. Mostrar que X tiene 2^n elementos y que d(x,y) ="número de lugares en que x e y tienen valores diferentes" es una métrica sobre X. (Esta es la llamada distancia de Hamming y es útil en teoría de autómatas y códigos.)
- **P2.** Determinar si la aplicación $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definida por $d(x,y) = |x^2 y^2|$ es una métrica sobre \mathbb{R} . Si no lo es, decir si existe un subconjunto de la recta en que sí lo sea. Dar el mayor de los conjuntos que lo cumplen.
- **P3.** Sea f una aplicación continua y periódica tal que el conjunto $\{T:T \text{ es período de } f\}$ es denso en \mathbb{R} . Demostrar que f es constante.
- **P4.** Sea $f: X \to Y$ una aplicación tal que $f|_A: A \to f(A)$ es continua, con $A \subset X$. ¿Es necesariamente f continua en A?
- **P5.** Sea X un conjunto no vacío. Una aplicación $d: X \times X \to \mathbb{R}$ se llama pseudométrica si se verifica lo siguiente:
 - i) $d(x,y) \ge 0$, $\forall x,y \in X$.
 - ii) $d(x,x) = 0, \ \forall x \in X.$
 - iii) $d(x,y) = d(y,x), \ \forall x,y \in X.$
 - iv) $d(x,y) \le d(x,z) + d(y,z), \ \forall x,y,z \in X.$

¿La función $d(x,y)=\int_a^b|x(t)-y(t)|dt$ define una métrica o pseudométrica en C[a,b]?¿Y en R[a,b] las funciones Riemann-integrables en [a,b]?

P6. Se considera el conjunto

$$C_0(\mathbb{R}^n) = \{ f : \mathbb{R}^n \to \mathbb{R} : f \text{ continua y } \lim_{x \to \pm \infty} f(x) = 0 \}$$

subespacio del espacio de Banach $(C(\mathbb{R}^n), \|\cdot\|_{\infty})$. Pruebe que $C_0(\mathbb{R}^n)$ es de Banach.

- **P7.** Sean $(X_1, \|\cdot\|_1), (X_2, \|\cdot\|_2)$ espacios normados. Si $\{x_n\}_{n\in\mathbb{N}}\subset X_1$ es una sucesion que converge a x en $(X_1, \|\cdot\|_1)$ y $\{T_n\}_{n\in\mathbb{N}}\subset\mathcal{L}(X_1, X_2)$ una sucesión que converge a T en $(L(X_1, X_2), \|\cdot\|)$, probar que $T_n(x_n)\to T(x)$ en $(X_2, \|\cdot\|_2)$.
- **P8.** Si X = C[0,1] con la norma $\|\cdot\|_1$, se definen los operadores $S,T:X\to X$ como $S(x)(s)=\int_0^1 x(t)dt$, T(x)(s)=sx(s) respectivamente.

- i) ¿Conmutan S y T?
- ii) Pruebe que $S, T \in \mathcal{L}(X, X)$.
- iii) Encuentre $\|S\|, \|T\|, \|TS\|, \|ST\|.$
- **P9.** Sea X = C[0,1] con la norma uniforme.
 - i) Si $T \in \mathcal{L}(X,X)$ se define como $T(f)(t) = \frac{tf(t)}{1+t^2}, \ t \in [0,1], \ f \in X,$ encuentre $\|T\|$.
 - ii) Si S se define como $S(f)(t)=\int_0^1K(t,s)f(s)ds$, donde K es continua, pruebe que S es lineal y continua.
 - iii) Fijado $t_0 \in [0,1]$, se define x^* por $x^*(f) = f(t_0)$. Pruebe que x^* es lineal, continua y encuentre $||x^*||$.
- **P10.** Considere $f: \mathbb{R}^n \to \mathbb{R}^m$ continua. Pruebe las siguientes propiedades:
 - i) Si $A \subset \mathbb{R}^m$ es abierto (cerrado), entonces $f^{-1}(A)$ es abierto (cerrado) en \mathbb{R}^n .
 - ii) $f(adh(A)) \subseteq adh(f(A))$, para cualquier $A \subseteq \mathbb{R}^n$.
 - iii) $f^{-1}(int(B)) \subseteq int(f^{-1}(B))$ y $adh(f^{-1}(B)) \subseteq f^{-1}(adh(B))$, para cualquier $B \in \mathbb{R}^m$.
- **P11.** Sea $f: \mathbb{R}^n \to \mathbb{R}^m$ continua y sea $Gr(f) := \{(x,y) \in \mathbb{R}^n \times \mathbb{R}^m : f(x) = y\}$. Probar que Gr(f) es cerrado.
- **P12.** Estudie la continuidad de la función $f(x,y) = \sin(xy) \frac{y^2 x^2}{x^2 + u^2}$.
- **P13.** Considere la función $f: R^2 \setminus \{(0,0)\} \to \mathbb{R}$ definida por $f(x,y) = \frac{xy}{x^2 + y^2}$. Pruebe que

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) = \lim_{y \to 0} \lim_{x \to 0} f(x, y) = 0,$$

pero que

$$\lim_{(x,y)\to(0,0)} f(x,y)$$

no existe.

P14. Considere la función $f: R^2 \setminus \{(0,0)\} \to \mathbb{R}$ definida por $f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$. Pruebe que

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) = \lim_{y \to 0} \lim_{x \to 0} f(x, y) = 1,$$

pero que

$$\lim_{(x,y)\to(0,0)} f(x,y)$$

no existe.

P15. Considere $l: \mathbb{R}^n \to \mathbb{R}^m$ función lineal y continua. Probar que el kernel de l, es decir, $ker(l) = \{x \in \mathbb{R}^n : l(x) = 0\}$ es cerrado.