MA2001-1 Cálculo en Varias Variables. Semestre 2010-2 Profesor: Marcelo Leseigneur Auxiliar: Víctor Verdugo

Auxiliar 3

Martes 31 de Agosto de 2010

- **P1.** Diremos que $(A_n)_{n\in\mathbb{N}}$ es una familia decreciente de conjuntos si $A_{n+1}\subseteq A_n$, para todo $n\in\mathbb{N}$.
 - a) De un ejemplo en $\mathbb R$ de una familia decreciente de conjuntos acotados (no vacíos) cuya intersección sea vacía.
 - b) De un ejemplo en $\mathbb R$ de una familia decreciente de conjuntos cerrados (no vacíos) cuya intersección sea vacía.
- **P2.** Dados dos conjuntos A, B en un evn $(E, \|\cdot\|)$, demuestre que:
 - a) int $(A \cap B) = \text{int}A \cap \text{int}B$
 - b) $\operatorname{int}(A \cup B) \supset \operatorname{int} A \cup \operatorname{int} A$ (de un ejemplo donde no hay igualdad)
 - c) $\overline{A \cup B} = \overline{A} \cup \overline{B}$
 - d) $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$ (de un ejemplo donde no hay igualdad)
- **P3.** Sea $(X, \|\cdot\|)$ un espacio de Banach y $(F_n)_{n\in\mathbb{N}}$ una sucesión decreciente de cerrados no vacíos. Suponga que

$$\operatorname{diam}(F_n) = \sup\{\|x - y\| : x, y \in F_n\} \stackrel{n \to \infty}{\longrightarrow} 0$$

Pruebe que $\bigcap_{n\in\mathbb{N}} F_n$ es un síngleton.

- **P4.** Sea $(E, \|\cdot\|)$ un espacio vectorial normado, y $A, B \subseteq E$ cerrados. Pruebe que existen θ_A, θ_B abiertos tales que $A \subset \theta_A, B \subset \theta_B$ y $\theta_A \cap \theta_B = \emptyset$.
- **P5.** Consideremos el espacio vectorial $\mathcal{M}_2(\mathbb{R})$ de las matrices de 2×2 a coeficientes en \mathbb{R} . Se define la función $\|\cdot\|_{\infty} : \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathbb{R}_+$ como

$$||A||_{\infty} = \max_{i \in \{1,2\}} \left\{ \sum_{j=1}^{2} |a_{ij}| \right\}$$

- a) Pruebe que $(\mathcal{M}_2(\mathbb{R}), \|\cdot\|_{\infty})$ es un espacio vectorial normado.
- b) Estudie la convergencia de la sucesión $\{A_n\}_{n\in\mathbb{N}}$ definida por

$$A_n = \left(\begin{array}{cc} (-1)^n & \frac{1}{n} \\ 0 & 1 \end{array} \right)$$

- **P6.** Sea $A \subseteq \mathbb{R}^n$ un abierto y $x_0 \in \mathbb{R}^n$.
 - a) Pruebe que el conjunto $A + x_0 = \{a + x_0 : a \in A\}$ es abierto.
 - b) Concluya que $A + B = \{a + b : a \in A, b \in B\}$ es abierto independiente de la naturaleza de B.