MA2001-1 Cálculo en Varias Variables. Semestre 2010-2 Profesor: Marcelo Leseigneur Auxiliar: Víctor Verdugo

Auxiliar 2

Martes 24 de Agosto de 2010

P1. Sea un espacio vectorial X sobre \mathbb{R} y $\|\cdot\|_1$ y $\|\cdot\|_2$ normas en ese espacio. Diremos que estas normas son equivalentes si existen $\alpha, \beta > 0$ tales que

$$\alpha ||x||_1 \le ||x||_2 \le \beta ||x||_1$$

para todo $x \in X$. Denotemos por $B_1(x,r) = \{y \in X : ||x-y||_1 < r\}$ y $B_2(x,r) = \{y \in X : ||x-y||_2 < r\}$.

a) Pruebe que si $\|\cdot\|_1$ y $\|\cdot\|_2$ son equivalentes, entonces para todo $x \in X$ y para todo $\epsilon > 0$, existen $\delta_1, \delta_2 > 0$ tales que

$$B_1(x,\delta_1) \subset B_2(x,\epsilon)$$

$$B_2(x,\delta_2) \subset B_1(x,\epsilon)$$

b) Ahora suponga que existen $\epsilon, \delta > 0$ tales que

$$B_1(0,\delta) \subset B_2(0,1)$$

$$B_2(0,\epsilon) \subset B_1(0,1)$$

Pruebe que $\|\cdot\|_1$ y $\|\cdot\|_2$ son equivalentes.

P2. Sea $E = \mathcal{C}^1([0,1],\mathbb{R})$ el espacio vectorial de las funciones definidas en el intervalo [0,1], derivables, y con derivada continua. Considere la siguiente aplicación:

$$\|\cdot\|_E : \mathcal{C}^1([0,1],\mathbb{R}) \to \mathbb{R}_+$$
 $f \mapsto \|f\|_E = |f(0)| + \|f'\|_{\infty}$

- a) Pruebe que $(E, \|\cdot\|_E)$ es un espacio vectorial normado.
- b) Pruebe que $||f||_{\infty} \leq ||f||_{E}$, para todo $f \in E$.
- c) Mostrar que no existe ninguna constante positiva M tal que $||f||_E \le M||f||_\infty$ para todo $f \in E$.
- d) Concluya.
- **P3.** Sea $(X, \|\cdot\|)$ un espacio vectorial normado. Diremos que un conjunto $\theta \subseteq X$ es *abierto* si para todo $x \in \theta$, existe $B(x, \epsilon) \subset \theta$, para algún $\epsilon > 0$. Sea $\tau = \{\theta \subset X : \theta \text{ es abierto}\}$. Pruebe las siguientes afirmaciones:
 - 1) Si $\{\theta_i\}_{i=1}^n \subset \tau$, es decir, dada una familia finita de abiertos, se tiene que:

$$\bigcap_{i=1}^{n} \theta_i \in \tau$$

2) Si $\{\theta_{\lambda}\}_{{\lambda}\in\Lambda}\subset\tau$, es decir, dada una familia cualquiera de abiertos, se tiene que:

$$\bigcup_{\lambda \in \Lambda} \theta_{\lambda} \in \tau$$

3) $\emptyset \in \tau \ \text{y} \ X \in \tau$.