MA2001-1 Cálculo en Varias Variables. Semestre 2010-2 Profesor: Marcelo Leseigneur Auxiliar: Víctor Verdugo

Auxiliar 1

Martes 17 de Agosto de 2010

P1. Sean $x, y \in \mathbb{R}^n$ y $p, q \in \overline{\mathbb{R}}$ Holder-conjugados, es decir, $p, q \in [1, +\infty]$ y $\frac{1}{p} + \frac{1}{q} = 1$. Pruebe que

$$\sum_{i=1}^{n} |x_i y_i| \le ||x||_p ||y||_q$$

Para ello, puede serle útil probar primero que dados $a,b \geq 0$ y p,q Holder-conjugados, entonces

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}$$

P2. Consideremos $\mathcal{C}([0,1],\mathbb{R}) = \{f : [0,1] \to \mathbb{R} : f \text{ es continua}\}$, es decir, el espacio de las funciones continuas de [0,1] en \mathbb{R} . Se definen sobre este espacio las siguientes aplicaciones:

$$\|\cdot\|_{\infty} : \mathcal{C}([0,1], \mathbb{R}) \rightarrow \mathbb{R}_{+}$$

$$f \mapsto \|f\|_{\infty} = \sup_{x \in [0,1]} |f(x)|$$

$$\|\cdot\|_{1} : \mathcal{C}([0,1], \mathbb{R}) \rightarrow \mathbb{R}_{+}$$

$$f \mapsto \|f\|_{1} = \int_{0}^{1} |f(x)| dx$$

- a) Pruebe que $(\mathcal{C}([0,1],\mathbb{R}), \|\cdot\|_{\infty})$ y $(\mathcal{C}([0,1],\mathbb{R}), \|\cdot\|_1)$ son espacios vectoriales normados.
- b) Pruebe que $||f||_1 \leq ||f||_{\infty}$, $\forall f \in \mathcal{C}([0,1],\mathbb{R})$.
- c) Pruebe que no existe M > 0 tal que $||f||_{\infty} \leq M||f||_{1}, \forall f \in \mathcal{C}([0,1],\mathbb{R}).$
- **P3.** Dado $p \in [1, +\infty)$, se define los siguientes espacios:

$$\ell^{p} = \{(x_{n})_{n \in \mathbb{N}} \subset \mathbb{R} : \sum_{n} |x_{n}|^{p} < +\infty \}$$

$$\ell^{\infty} = \{(x_{n})_{n \in \mathbb{N}} \subset \mathbb{R} : \sup_{n} |x_{n}| < +\infty \}$$

$$c_{0} = \{(x_{n})_{n \in \mathbb{N}} \subset \mathbb{R} : \lim_{n} x_{n} = 0 \}$$

Consideremos ahora las aplicaciones $\|\cdot\|_p:\ell^p\to\mathbb{R}_+$ y $\|\cdot\|_\infty:\ell^\infty\to\mathbb{R}_+$ definidas por:

$$||x||_p = \left(\sum_n |x_n|^p\right)^{1/p}$$
$$||x||_{\infty} = \sup_n |x_n|$$

donde $x = (x_n)_{n \in \mathbb{N}}$

- a) Pruebe que $(\ell^p, \|\cdot\|_p)$ es un espacio vectorial normado.
- b) Pruebe que $(\ell^{\infty}, \|\cdot\|_{\infty})$ es un espacio vectorial normado.
- c) Pruebe que c_0 es un subespacio vectorial de ℓ^{∞} .