MA1101 Semestre Primavera 2010

Auxiliar: César Vigouroux G.

Auxiliar Extra Control #1

Miércoles 29 de septiembre

- 1. Sean $p, d \in \mathbb{R}^3$, ambos no nulos. Se define: $L = \{x \in \mathbb{R}^3 / (x-p) \times d = 0\}$
 - (i) Pruebe que $L = \{x \in \mathbb{R}^3 / x = p + \lambda d, \lambda \in \mathbb{R}\}.$
 - (ii) Sea $b \in \mathbb{R}^3$, $b \neq \mathbf{0}$ y no ortogonal a b. Determine qué condiciones deben satisfacer d y b para que la recta L de la parte anterior y el plano $\Pi = \{x \in \mathbb{R}^3 / \langle x, b \rangle = 0\}$ se intersecten.
- 2. a) Sean p,q,r tres puntos en \mathbb{R}^3 no colineales. Sea π el plano que contiene a dichos puntos. Demuestre que

$$x \in \pi \Leftrightarrow \exists \alpha, \beta, \gamma \in \mathbb{R}$$
 tales que $\alpha + \beta + \gamma = 1, x = \alpha p + \beta q + \gamma r$

b) Sean las rectas

$$L_1 = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} + t \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}, \ L_2 = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix} + s \begin{pmatrix} 1\\0\\1 \end{pmatrix} \right\}$$

Pruebe que el plano que contiene a L_1, L_2 tiene ecuación cartesiana dada por x+y-z=1

- 3. Sea P= $\begin{pmatrix} 5 \\ -2 \\ -2 \end{pmatrix}$ y Π el plano de ecuación 2x-y-z=2.
 - a) Sea $R \in \mathbb{R}^3$ la proyección ortogonal del punto P sobre el plano Π . Pruebe que $R = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.
 - b) Calcular la proyección ortogonal de P sobre la recta que pasa por R de dirección $d = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$.
 - c) Sea Q la proyección calculada en la parte anterior. Determine la ecuación normal (o cartesiana) del plano que contiene a P, Q y R.
- 4. Sea \mathcal{P}_4 el conjunto de los polinomios a coeficientes reales de grado menor o igual a 4. Definimos

$$V_1 = \{ p \in \mathcal{P}_4 | \ p(1) + 2p(-1) = 0 \}, \ V_2 = \{ p \in \mathcal{P}_4 | \ p(x) = a + bx + cx^2 + bx^3 + ax^4 \ a, b, c \in \mathbb{R} \}$$

- a) Pruebe que V_1, V_2 son s.e.v. de \mathcal{P}_4
- b) Muestre que $V_1 = \langle \{1 + x^4, x + x^3, x^2\} \rangle$
- 5. Sea $M_{n,n}$ el espacio de las matrices a coeficientes reales. Consideramos los conjuntos:

$$E = \{A = (a_{i,j})_{i,j} \in M_{n,n} | \text{existe } c \in \mathbb{R} \text{ tal que } \sum_{j=1}^{n} a_{i,j} = c \text{ para todo } 1 \leq n \}$$

$$E_0 = \{ A = (a_{i,j})_{i,j} \in M_{n,n} | \sum_{i=1}^n a_{i,j} = 0 \text{ para todo } 1 \le n \}$$

a) Demuestre que E es s.e.v. de $M_{n,n}$

- b) Demuestre que E_0 es s.e.v de E
- c) Encuentre $\{A_1, \ldots A_{n(n-1)}\}\subseteq E_0$ que sean l.i y tales que $\langle \{A_1, \ldots A_{n(n-1)}\}\rangle = E_0$
- 6. Sea $A \in M_{n,n}$ una matriz invertible y U un s.e.v. estricto de \mathbb{R}^n . Se define

$$W = \{ y \in \mathbb{R}^n \mid \forall u \in U, \langle Au, Ay \rangle = 0 \}$$

- a) Probar que W es s.e.v. de \mathbb{R}^n y que $W \cap U = \{0\}$
- b) Sea $V = \{v \in \mathbb{R} \mid \exists u \in U, v = Au\}$. Pruebe que V es s.e.v. de \mathbb{R}^n
- c) Probar que si $\{v_1 \dots v_k\} \subseteq V$ es un conjunto l.i tal que $\langle \{v_1 \dots v_k\} \rangle = V$ y $\langle v_i, v_j \rangle = \delta_{i,j}$ entonces $\{u_1 \dots u_k\}$ definido por $u_i = A^{-1}v_i$ es l.i, $\langle \{u_1 \dots u_k\} \rangle = U$ y además $\langle Au_i, Au_j \rangle = \delta_{i,j}$
- d) Probar que

$$w \in W \Leftrightarrow \forall i \in \{1, \dots, k\}, \langle Aw, Au_i \rangle = 0$$

- e) Probar que si $v \in \mathbb{R}^n$ entonces $z = \sum_{i=1}^k \langle Av, Au_i \rangle u_i \in U$ y que $v z \in W$
- 7. Sea $n \in \mathbb{N}$. Para un intervalo $[a,b) \subseteq [0,n)$, con $a,b \in \mathbb{N}$, definimos la función $\mathbb{1}_{[a,b)}$ indicatriz de [a,b) por:

$$\mathbb{1}_{[a,b)}(x) := \left\{ \begin{array}{ll} 1, & x \in [a,b) \\ 0, & x \notin [a,b) \end{array} \right.$$

Sea $F([0,n),\mathbb{R})$ el e.v. de las funciones del intervalo [0,n) en \mathbb{R} . Definimos $E\subseteq F([0,n),\mathbb{R})$ como el conjunto de las funciones constantes por pedazos de largos enteros, es decir:

$$f \in E \Leftrightarrow \forall i \in \{1, \dots, n\}, \ \exists \lambda_i \in \mathbb{R} : \ \forall x \in [0, n), \ f(x) = \sum_{i=1}^n \lambda_i \mathbb{1}_{[i-1, i)}(x)$$

- a) Pruebe que $\forall a, b \in \mathbb{N}$ tal que $[a, b) \subseteq [0, n), \mathbb{1}_{[a, b)} \in E$.
- b) Sea $\alpha \in \mathbb{R}$ una constante y $f \in E$. Pruebe que $\alpha f \in E$.
- c) Pruebe que E es un s.e.v de $F([0, n), \mathbb{R})$.
- d) Pruebe que el conjunto de funciones $B := \{\mathbb{1}_{[0,1)}, \dots, \mathbb{1}_{[n-1,n)}\}$ es l.i.
- e) Pruebe que $E = \langle B \rangle$