MA1101 Semestre Primavera 2010

Profesor: Mauricio Telias Auxiliares: Orlando Rivera - César Vigouroux

Auxiliar
$$\#$$
 5

Lunes 27 de septiembre

P0. Sean v_1, \ldots, v_n vectores de \mathbb{R}^n , y $A \in \mathcal{M}_{n \times n}(\mathbb{R})$ la matriz cuyas columnas son v_1, \ldots, v_n . Pruebe que $\{v_1, \ldots, v_n\}$ es un conjunto l.i. sí y solo si A es invertible

P1. a) Pruebe que el conjunto de polinomios reales

$$\{1, (x-1), (x-1)(x-2), (x-1)(x-2)(x-3), \dots, \prod_{k=1}^{n} (x-k)\}$$

es l.i

- b) Un conjunto $\{x_1, \ldots, x_r\} \subset \mathbb{R}^n$ se dice ortogonal si $\forall i, j \leq r, i \neq j, \langle x_i, x_j \rangle = 0$. Sea $\{x_1, \ldots, x_r\}$ (r < n) un conjunto ortogonal que cumple además $||x_i|| = 1 \ \forall i$.
 - (i) Se define

$$x_{r+1} = y - \sum_{k=1}^{r} \langle y, x_k \rangle x_k,$$

con $y \in \mathbb{R}^n$. Pruebe que $\{x_1, \dots, x_{r+1}\}$ es ortogonal.

(ii) Demuestre que $\{x_1, \ldots, x_{r+1}\}$ es l.i. .

P2. Sean E, F e.v sobre un cuerpo \mathbb{K} . Sea T una función $T: E \to F$, que satisface:

- (1) $T(0_E)=0_F$. Donde 0_E y 0_F son los neutros aditivos en cada e.v.
- (2) $\forall x \in E$, $\forall \alpha \in \mathbb{K}$: $T(\alpha x) = \alpha T(x)$.
- (3) $\forall x, y \in E: T(x+y) = T(x) + T(y).$

Considere $T(E) = \{ y \in F \mid y = T(x), x \in E \}$

- a) Muestre que T(E) es un s.e.v de F.
- b) Suponga además que T satisface que: $\forall x \in E, T(x) = 0 \Rightarrow x = 0$. Muestre que si $\{u_1, \ldots, u_n\} \subseteq E$ es l.i, entonces $\{T(u_1), \ldots, T(u_n)\} \subseteq F$ es l.i.
- c) Supongamos E=F. Sea $x_o\in E$ tal que $T^m(x_0)=0$, $T^{m-1}(x_0)\neq 0$ para algún entero positivo m. Muestre que $x_0,T(x_0),\ldots,T^{m-1}(x_0)$ son linealmente independientes.

Nota: $T^m(x_0) = T(T \dots T(x_0))$ (la composición de T m veces) .

P3. Sea $n \in \mathbb{N}$. Para un intervalo $[a,b) \subseteq [0,n)$, con $a,b \in \mathbb{N}$, definimos la función $\mathbb{1}_{[a,b)}$ indicatriz de [a,b) por:

$$\mathbb{1}_{[a,b)}(x) := \left\{ \begin{array}{ll} 1, & x \in [a,b) \\ 0, & x \notin [a,b) \end{array} \right.$$

Sea $F([0,n),\mathbb{R})$ el e.v. de las funciones del intervalo [0,n) en \mathbb{R} . Definimos $E\subseteq F([0,n),\mathbb{R})$ como el conjunto de las funciones constantes por pedazos de largos enteros, es decir:

$$f \in E \Leftrightarrow \forall i \in \{1, \dots, n\}, \ \exists \lambda_i \in \mathbb{R} : \ \forall x \in [0, n), \ f(x) = \sum_{i=1}^n \lambda_i \mathbb{1}_{[i-1, i)}(x)$$

- a) Pruebe que $\forall a, b \in \mathbb{N}$ tal que $[a, b) \subseteq [0, n), \ \mathbb{1}_{[a, b)} \in E$.
- b) Sea $\alpha \in \mathbb{R}$ una constante y $f \in E$. Pruebe que $\alpha f \in E$.
- c) Pruebe que E es un s.e.v de $F([0,n),\mathbb{R})$.
- d) Pruebe que el conjunto de funciones $B:=\{\mathbb{1}_{[0,1)},\dots,\mathbb{1}_{[n-1,n)}\}$ es l.i.